1
|
Gao C, Liu YJ, Yu J, Wang R, Shi JJ, Chen RY, Yang GJ, Chen J. Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review. Cells 2024; 14:15. [PMID: 39791716 PMCID: PMC11719737 DOI: 10.3390/cells14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways. High levels of UBE2T expression are associated with poor survival outcomes, highlighting its potential as a molecular biomarker for cancer prognosis. Increasing evidence suggests that UBE2T acts as an oncogene and could serve as a promising therapeutic target in cancer treatment. This review aims to provide a detailed overview of UBE2T's structure, functions, and molecular mechanisms involved in cancer progression as well as recent developments in UBE2T-targeted inhibitors. Such insights may pave the way for novel strategies in cancer diagnosis and treatment, enhancing our understanding of UBE2T's role in cancer biology and supporting the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Chen P, Liang K, Mao X, Wu Q, Chen Z, Jin Y, Lin K, He T, Yang S, Huang H, Ye G, Gao J, Zhou D, Zeng Z. Single-cell transcriptomes of dissecting the intra-tumoral heterogeneity of breast cancer microenvironment. J Cancer Res Clin Oncol 2024; 151:17. [PMID: 39724260 PMCID: PMC11671554 DOI: 10.1007/s00432-024-06015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To investigate the mechanism by which heterogeneity in breast cancer developed and acted in single-cell transcriptomes. METHODS The composition of breast cancer based on the single-cell transcriptomes of 54,055 high-quality cells from clinical specimens of 4 malignant and 4 non-malignant patients were investigated. RESULTS We identified six common expression programs and six subtype-specific expression programs form malignant epithelial cells. The expression program of malignant epithelial cells exhibited activated EMT (Epithelial Mesenchymal Transition) in TME, which might indicate EMT intervention have a general therapeutic effect on various subtypes. Gene set enrichment analysis (GSEA) based on the top 50 highly NMF (non-negative matrix factorization) score genes in each program depicted the distinct function of each program in breast cancer progression. Moreover, we revealed the profound cellular heterogeneity of myeloid cell lineages in breast cancer. In macrophages, two mainly tumor associated macrophages (TAMs), TAM1 and TAM2, were also detected and the highly variable genes in TAM2 were strongly enriched in IFN-α and IFN-γ. The changes of lipid metabolism pathways in macrophages are closely related to the microenvironment of breast cancer. CONCLUSION We constructed a comprehensive single-cell transcriptome atlas of 54,055 cells from 4 malignant and 4 nonmalignant patients, providing insights into the mechanisms underlying breast cancer progression and the development of potential therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Kaifeng Liang
- Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China
| | - Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Qiuyuan Wu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhiyan Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Kairong Lin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Tiancheng He
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Shuqing Yang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Huiqi Huang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Guolin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhihao Zeng
- Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China.
| |
Collapse
|
3
|
Wang C, Yang Y, Yang X, Yang Q, Liu R, Li W, Liu X. IFN-mediated lncRNA-ISL promotes SVV infection through G1P3. Vet Microbiol 2024; 302:110318. [PMID: 39823712 DOI: 10.1016/j.vetmic.2024.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 01/20/2025]
Abstract
lncRNAs play important regulatory roles in almost every aspect of physiological processes. However, the mechanisms by which animal-encoded lncRNAs regulate the interaction of viral infection with host antiviral immunity are unknown. To explore the mechanisms of lncRNA regulation of SVV infection and interferon responses. We performed complete transcriptome sequencing analysis of porcine kidney 15 (PK-15) after infection with SVV-1 strain and IFN-α treatment, and identified and screened the sequencing data to obtain potential functional lncRNA-ISL. selected genes were knocked down using CRISPR/Cas9 guide RNAs (gRNAs), and the results of the sequencing were monitored by qRT-PCR and protein blotting in multiple cell lines for selected gene mRNAs and their proteins as well as SVV infection. The results showed that 68 lncRNAs were significantly altered by IFN-α and 176 lncRNAs were significantly altered after SVV infection. We found that lncRNA-ISL gRNA significantly inhibited SVV infection compared to negative gRNA control. The expression of the antiviral ISG G1P3 was significantly increased following lncRNA-ISL gRNA editing compared to negative gRNA control in SVV-infected PK-15 cells. We observed that lncRNA-ISL regulation of SVV was independent of JAK-STAT signaling and not associated with G1P3 DNA methylation. Finally, we confirmed that the regulatory effect of lncRNA-ISL on G1P3 occurs during the initial transcription.
Collapse
Affiliation(s)
- Chen Wang
- Southwest University, College of Veterinary Medicine, Chongqing 400715, China.
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China; National Health Commission Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Xiwang Yang
- Southwest University, College of Veterinary Medicine, Chongqing 400715, China.
| | - Qiyue Yang
- Southwest University, College of Veterinary Medicine, Chongqing 400715, China.
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China; National Health Commission Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan 571199, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China; National Health Commission Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan 571199, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xiao Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; Southwest University, College of Veterinary Medicine, Chongqing 400715, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; State Key Laboratory of Silkworm Genome Biology, Chongqing 400715, China.
| |
Collapse
|
4
|
Gajate-Arenas M, García-Pérez O, Domínguez-De-Barros A, Sirvent-Blanco C, Dorta-Guerra R, García-Ramos A, Piñero JE, Lorenzo-Morales J, Córdoba-Lanús E. Differential Inflammatory and Immune Response to Viral Infection in the Upper-Airway and Peripheral Blood of Mild COVID-19 Cases. J Pers Med 2024; 14:1099. [PMID: 39590591 PMCID: PMC11595938 DOI: 10.3390/jpm14111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES COVID-19 is characterised by a wide variety of clinical manifestations, and clinical tests and genetic analysis might help to predict patient outcomes. METHODS In the current study, the expression of genes related to immune response (CCL5, IFI6, OAS1, IRF9, IL1B, and TGFB1) was analysed in the upper airway and paired-blood samples from 25 subjects infected with SARS-CoV-2. Relative gene expression was determined by RT-qPCR. RESULTS CCL5 expression was higher in the blood than in the upper airway (p < 0.001). In addition, a negative correlation was found between IFI6 and viral load (p = 0.033) in the upper airway, suggesting that the IFI6 expression inhibits the viral infection. Concerning sex, women expressed IL1B and IRF9 in a higher proportion than men at a systemic level (p = 0.008 and p = 0.049, respectively). However, an increased expression of IRF9 was found in men compared to women in the upper airway (p = 0.046), which could be due to the protective effect of IRF9, especially in men. CONCLUSIONS The higher expression of CCL5 in blood might be due to the key role of this gene in the migration and recruitment of immune cells from the systemic circulation to the lungs. Our findings confirm the existence of sex differences in the immune response to early stages of the infection. Further studies in a larger cohort are necessary to corroborate the current findings.
Collapse
Affiliation(s)
- Malena Gajate-Arenas
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Omar García-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angélica Domínguez-De-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Candela Sirvent-Blanco
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Sección de Matemáticas, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Alma García-Ramos
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 La Laguna, Tenerife, Spain; (M.G.-A.); (O.G.-P.); (A.D.-D.-B.); (C.S.-B.); (R.D.-G.); (A.G.-R.); (J.E.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Lee DH, Park EG, Kim JM, Shin HJ, Lee YJ, Jeong HS, Roh HY, Kim WR, Ha H, Kim SW, Choi YH, Kim HS. Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases. Genes Genomics 2024; 46:1313-1325. [PMID: 39215947 DOI: 10.1007/s13258-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transposable elements (TEs) are known to be inserted into genome to create transcript isoforms or to generate long non-coding RNA (lncRNA) sequences. The insertion of TEs generates a gene protein sequence within the genome, but also provides a microRNA (miRNA) regulatory region. OBJECTIVE To determine the effect of gene sequence changes caused by TE insertion on miRNA binding and to investigate the formation of an overlapping lncRNA that represses it. METHODS The distribution of overlapping regions between exons and TE regions with lncRNA was examined using the Bedtools. miRNAs that can bind to those overlapping regions were identified through the miRDB web program. For TE-lncRNA overlapping genes, bioinformatic analysis was conducted using DAVID web database. Differential expression analysis was conducted using data from the GEO dataset and TCGA. RESULTS Most TEs were distributed more frequently in untranslated regions than open reading frames. There were 30 annotated TE-lncRNA overlapping genes with same strand that could bind to the same miRNA. As a result of identifying the association between these 30 genes and diseases, TGFB2, FCGR2A, DCTN5, and IFI6 were associated with breast cancer, and HMGCS1, FRMD4A, EDNRB, and SNCA were associated with Alzheimer's disease. Analysis of the GEO and TCGA data showed that the relevant expression of miR-891a and miR-28, which bind to the TE overlapping region of DCTN5 and HMGCS1, decreased. CONCLUSION This study indicates that the interaction between TE-lncRNA overlapping genes and miRNAs can affect disease progression.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Tan X, Gao X, Zheng H, Yuan H, Liu H, Ran Q, Luo M. Platelet dysfunction caused by differentially expressed genes as key pathogenic mechanisms in COVID-19. Minerva Cardiol Angiol 2024; 72:517-534. [PMID: 38804627 DOI: 10.23736/s2724-5683.24.06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became prevalent worldwide, which brought a heavy medical burden and tremendous economic losses to the world population. In addition to the common clinical respiratory symptoms such as fever, cough and headache, patients with COVID-19 often have hematological diseases, especially platelet dysfunction. Platelet dysfunction usually leads to multiple organ dysfunction, which is closely related to patient severity or mortality. In addition, studies have confirmed significant changes in the gene expression profile of circulating platelets under SARS-CoV-2 infection, which will further lead to changes in platelet function. At the same time, studies have shown that platelets may absorb SARS-COV-2 mRNA independently of ACE2, which further emphasizes the importance of the stability of platelet function in defense against SARS-CoV-2 infection. This study reviewed the relationship between COVID-19 and platelet and SARS-CoV-2 damage to the circulatory system, and further analyzed the significantly differentially expressed mRNA in platelets after infection with SARS-CoV-2 on the basis of previous studies. The top eight hub genes were identified as NLRP3, MT-CO1, CD86, ICAM1, MT-CYB, CASP8, CXCL8 and CXCR4. Subsequently, the effects of SARS-CoV-2 infection on platelet transcript abnormalities and platelet dysfunction were further explored on the basis of 8 hub genes. Finally, the treatment measures of complications caused by platelet dysfunction in patients with COVID-19 were discussed in detail, so as to provide reference for the prevention, diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyong Tan
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Huanhuan Zheng
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Yuan
- Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Qijun Ran
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China -
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Schubert SA, Ruano D, Joruiz SM, Stroosma J, Glavak N, Montali A, Pinto LM, Rodríguez-Girondo M, Barge-Schaapveld DQCM, Nielsen M, van Nesselrooij BPM, Mensenkamp AR, van Leerdam ME, Sharp TH, Morreau H, Bourdon JC, de Miranda NFCC, van Wezel T. Germline variant affecting p53β isoforms predisposes to familial cancer. Nat Commun 2024; 15:8208. [PMID: 39294166 PMCID: PMC11410958 DOI: 10.1038/s41467-024-52551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53β and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53β isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53β isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53β mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jordy Stroosma
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikolina Glavak
- School of Medicine, University of Dundee, Dundee, UK
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Anna Montali
- School of Medicine, University of Dundee, Dundee, UK
| | - Lia M Pinto
- School of Medicine, University of Dundee, Dundee, UK
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Wang F, Lyu XY, Qin YM, Xie MJ. Relationships between systemic sclerosis and atherosclerosis: screening for mitochondria-related biomarkers. Front Genet 2024; 15:1375331. [PMID: 39050259 PMCID: PMC11266065 DOI: 10.3389/fgene.2024.1375331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Patients with systemic sclerosis (SSc) are known to have higher incidence of atherosclerosis (AS). Mitochondrial injuries in SSc can cause endothelial dysfunction, leading to AS; thus, mitochondria appear to be hubs linking SSc to AS. This study aimed to identify the mitochondria-related biomarkers of SSc and AS. Methods We identified common differentially expressed genes (DEGs) in the SSc (GSE58095) and AS (GSE100927) datasets of the Gene Expression Omnibus (GEO) database. Considering the intersection between genes with identical expression trends and mitochondrial genes, we used the least absolute shrinkage and selection operator (LASSO) as well as random forest (RF) algorithms to identify four mitochondria-related hub genes. Diagnostic nomograms were then constructed to predict the likelihood of SSc and AS. Next, we used the CIBERSORT algorithm to evaluate immune infiltration in both disorders, predicted the transcription factors for the hub genes, and validated these genes for the two datasets. Results A total of 112 genes and 13 mitochondria-related genes were identified; these genes were then significantly enriched for macrophage differentiation, collagen-containing extracellular matrix, collagen binding, antigen processing and presentation, leukocyte transendothelial migration, and apoptosis. Four mitochondria-related hub DEGs (IFI6, FSCN1, GAL, and SGCA) were also identified. The nomograms showed good diagnostic values for GSE58095 (area under the curve (AUC) = 0.903) and GSE100927 (AUC = 0.904). Further, memory B cells, γδT cells, M0 macrophages, and activated mast cells were significantly higher in AS, while the resting memory CD4+ T cells were lower and M1 macrophages were higher in SSc; all of these were closely linked to multiple immune cells. Gene set enrichment analysis (GSEA) showed that IFI6 and FSCN1 were involved in immune-related pathways in both AS and SSc; GAL and SGCA are related to mitochondrial metabolism pathways in both SSc and AS. Twenty transcription factors (TFs) were predicted, where two TFs, namely BRCA1 and PPARγ, were highly expressed in both SSc and AS. Conclusion Four mitochondria-related biomarkers were identified in both SSc and AS, which have high diagnostic value and are associated with immune cell infiltration in both disorders. Hence, this study provides new insights into the pathological mechanisms underlying SSc and AS. The specific roles and action mechanisms of these genes require further clinical validation in SSc patients with AS.
Collapse
Affiliation(s)
- Fei Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Yan Lyu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ming Qin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Juan Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Butt DQ, Harun MH, Che Jalil NA, Shamsuddin SH, Jaafar S, Ahmad B. Protumorigenic Interferon-Stimulated Genes in Cancer: A Comprehensive Review. Cureus 2024; 16:e63216. [PMID: 39070493 PMCID: PMC11279184 DOI: 10.7759/cureus.63216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Interferon-stimulated genes (ISGs), whose production is triggered by interferons, are known to defend the host from pathogenic and cancer-specific antigens, one of which is by inducing apoptosis in infected or mutated cells. It has been reported recently that specific ISGs aid cancer cells in evading immunosurveillance and inflammatory cells by inhibiting the apoptosis process. This report reviewed four apoptosis-regulating ISG proteins: interferon-stimulated gene 15 (ISG15), interferon alpha-inducible protein 27 (IFI27), interferon alpha-inducible protein 6 (IFI6), and radical S-adenosyl methionine domain containing 2 (RSAD2), demonstrating anti-apoptosis function, and considered them protumorigenic.
Collapse
Affiliation(s)
- Danial Qasim Butt
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Masitah Hayati Harun
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Nur Asyilla Che Jalil
- Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | | | - Saidi Jaafar
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Basaruddin Ahmad
- Biostatistics Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
10
|
Gajate-Arenas M, Fricke-Galindo I, García-Pérez O, Domínguez-de-Barros A, Pérez-Rubio G, Dorta-Guerra R, Buendía-Roldán I, Chávez-Galán L, Lorenzo-Morales J, Falfán-Valencia R, Córdoba-Lanús E. The Immune Response of OAS1, IRF9, and IFI6 Genes in the Pathogenesis of COVID-19. Int J Mol Sci 2024; 25:4632. [PMID: 38731851 PMCID: PMC11083791 DOI: 10.3390/ijms25094632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
COVID-19 is characterized by a wide range of clinical manifestations, where aging, underlying diseases, and genetic background are related to worse outcomes. In the present study, the differential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1, and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities. Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samples from 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderate hospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52-0.79; p = 0.001), IRF9 (OR = 0.581, CI = 0.43-0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39-0.69; p < 0.001) was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50-0.83; p = 0.001), CCL5 (OR = 0.57, CI = 0.39-0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653-0.979; p = 0.03), and IFI6 (OR = 0.827, CI = 0.69-0.991; p = 0.039) expression was associated with patient survival. In conclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed.
Collapse
Affiliation(s)
- Malena Gajate-Arenas
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (R.F.-V.)
| | - Omar García-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
| | - Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (R.F.-V.)
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
- Department of Mathematics, Statistics and Operations Research, Faculty of Sciences, Mathematics Section, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Faculty of Health Sciences, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (R.F.-V.)
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38029 San Cristóbal de La Laguna, Spain; (M.G.-A.); (O.G.-P.); (A.D.-d.-B.); (R.D.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Viet-Nhi NK, Minh Quan T, Cong Truc V, Anh Bich T, Hoang Nam P, Le NQK, Chen PY, Hung SH. Multi-Omics Analysis Reveals the IFI6 Gene as a Prognostic Indicator and Therapeutic Target in Esophageal Cancer. Int J Mol Sci 2024; 25:2691. [PMID: 38473938 DOI: 10.3390/ijms25052691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The role of the IFI6 gene has been described in several cancers, but its involvement in esophageal cancer (ESCA) remains unclear. This study aimed to identify novel prognostic indicators for ESCA-targeted therapy by investigating IFI6's expression, epigenetic mechanisms, and signaling activities. We utilized public data from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) to analyze IFI6's expression, clinical characteristics, gene function, pathways, and correlation with different immune cells in ESCA. The TIMER2.0 database was employed to assess the pan-cancer expression of IFI6, while UALCAN was used to examine its expression across tumor stages and histology subtypes. Additionally, the KEGG database helped identify related pathways. Our findings revealed 95 genes positively correlated and 15 genes negatively correlated with IFI6 in ESCA. IFI6 was over-expressed in ESCA and other cancers, impacting patient survival and showing higher expression in tumor tissues than normal tissues. IFI6 was also correlated with CD4+ T cells and B cell receptors (BCRs), both essential in immune response. GO Biological Process (GO BP) enrichment analysis indicated that IFI6 was primarily associated with the Type I interferon signaling pathway and the defense response to viruses. Intriguingly, KEGG pathway analysis demonstrated that IFI6 and its positively correlated genes in ESCA were mostly linked to the Cytosolic DNA-sensing pathway, which plays a crucial role in innate immunity and viral defense, and the RIG-I-like receptor (RLR) signaling pathway, which detects viral infections and activates immune responses. Pathways related to various viral infections were also identified. It is important to note that our study relied on online databases. Given that ESCA consists of two distinct subgroups (ESCC and EAC), most databases combine them into a single category. Future research should focus on evaluating IFI6 expression and its impact on each subgroup to gain more specific insights. In conclusion, inhibiting IFI6 using targeted therapy could be an effective strategy for treating ESCA considering its potential as a biomarker and correlation with immune cell factors.
Collapse
Affiliation(s)
- Nguyen-Kieu Viet-Nhi
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tran Minh Quan
- Department of Thoracic Surgery, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Vu Cong Truc
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Tran Anh Bich
- Department of Otolaryngology, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Pham Hoang Nam
- Department of Otolaryngology, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Po-Yueh Chen
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shih-Han Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
12
|
Davenport AM, Morris M, Sabti F, Sabti S, Shakya D, Hynds DL, Cheriyath V. G1P3/IFI6, an interferon stimulated protein, promotes the association of RAB5 + endosomes with mitochondria in breast cancer cells. Cell Biol Int 2023; 47:1868-1879. [PMID: 37598317 DOI: 10.1002/cbin.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
G1P3/IFI6 is an interferon stimulated gene with antiapoptotic, prometastatic, and antiviral functions. Despite its pleiotropic functions, subcellular localization of G1P3 remains unclear. Using biochemical- and confocal microscopic approaches, this study identified the localization of G1P3 in organelles of the endomembrane system and in the mitochondria of breast cancer cells. In cell fractionation studies, both interferon-induced endogenous- and stably expressed G1P3 cofractionated with affinity-isolated mitochondria. Results of the protease protection assay have suggested that ~24% of mitochondrial G1P3 resides within the mitochondria. Conforming to this, confocal microscopy studies of cells stably expressing epitope-tagged G1P3 (MCF-7/G1P3-FLAG), identified its localization in mitochondria (~38%) as well as in ER, trans-Golgi network (TGN), lysosomes, and in RAB5 positive (RAB5+ ) endosomes. These results suggested the trafficking of G1P3 from TGN into endolysosomes. Both G1P3 and RAB5 were known to confer apoptosis resistance through mitochondrial stabilization. Therefore, the effects of G1P3 on the localization of RAB5 in mitochondria were tested. Compared to vector control, the co-occurrence of RAB5 with the mitochondria was increased by 1.5-fold in MCF-7/G1P3-FLAG expressing cells (p ≤ .005). Taken together, our results demonstrate a role for G1P3 to promote the association of RAB5+ endosomes with mitochondria and provide insight into yet another mechanism of G1P3-induced cancer cell survival.
Collapse
Affiliation(s)
- Anne M Davenport
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| | - Madeleine Morris
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Fatima Sabti
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Sarah Sabti
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Diksha Shakya
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - DiAnna L Hynds
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| | - Venugopalan Cheriyath
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| |
Collapse
|
13
|
Ramon-Gil E, Geh D, Leslie J. Harnessing neutrophil plasticity for HCC immunotherapy. Essays Biochem 2023; 67:941-955. [PMID: 37534829 PMCID: PMC10539947 DOI: 10.1042/ebc20220245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Neutrophils, until recently, have typically been considered a homogeneous population of terminally differentiated cells with highly conserved functions in homeostasis and disease. In hepatocellular carcinoma (HCC), tumour-associated neutrophils (TANs) are predominantly thought to play a pro-tumour role, promoting all aspects of HCC development and progression. Recent developments in single-cell technologies are now providing a greater insight and appreciation for the level of cellular heterogeneity displayed by TANs in the HCC tumour microenvironment, which we have been able to correlate with other TAN signatures in datasets for gastric cancer, pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). TANs with classical pro-tumour signatures have been identified as well as neutrophils primed for anti-tumour functions that, if activated and expanded, could become a potential therapeutic approach. In recent years, therapeutic targeting of neutrophils in HCC has been typically focused on impairing the recruitment of pro-tumour neutrophils. This has now been coupled with immune checkpoint blockade with the aim to stimulate lymphocyte-mediated anti-tumour immunity whilst impairing neutrophil-mediated immunosuppression. As a result, neutrophil-directed therapies are now entering clinical trials for HCC. Pharmacological targeting along with ex vivo reprogramming of neutrophils in HCC patients is, however, in its infancy and a greater understanding of neutrophil heterogeneity, with a view to exploit it, may pave the way for improved immunotherapy outcomes. This review will cover the recent developments in our understanding of neutrophil heterogeneity in HCC and how neutrophils can be harnessed to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| |
Collapse
|
14
|
Reghupaty SC, Kanwal S, Mendoza RG, Davis E, Li H, Lai Z, Dozmorov MG, Faison MO, Siddiqui RA, Sarkar D. Dysregulation of Type I Interferon (IFN-I) Signaling: A Potential Contributor to Racial Disparity in Hepatocellular Carcinoma (HCC). Cancers (Basel) 2023; 15:4283. [PMID: 37686559 PMCID: PMC10486472 DOI: 10.3390/cancers15174283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.
Collapse
Affiliation(s)
| | - Sadia Kanwal
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Rachel G. Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Haiwen Li
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Mikhail G. Dozmorov
- Department of Biostatistics and Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Milton Omar Faison
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Rafat Ali Siddiqui
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Ren JX, Gao Q, Zhou XC, Chen L, Guo W, Feng KY, Lu L, Huang T, Cai YD. Identification of Gene Markers Associated with COVID-19 Severity and Recovery in Different Immune Cell Subtypes. BIOLOGY 2023; 12:947. [PMID: 37508378 PMCID: PMC10376631 DOI: 10.3390/biology12070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
As COVID-19 develops, dynamic changes occur in the patient's immune system. Changes in molecular levels in different immune cells can reflect the course of COVID-19. This study aims to uncover the molecular characteristics of different immune cell subpopulations at different stages of COVID-19. We designed a machine learning workflow to analyze scRNA-seq data of three immune cell types (B, T, and myeloid cells) in four levels of COVID-19 severity/outcome. The datasets for three cell types included 403,700 B-cell, 634,595 T-cell, and 346,547 myeloid cell samples. Each cell subtype was divided into four groups, control, convalescence, progression mild/moderate, and progression severe/critical, and each immune cell contained 27,943 gene features. A feature analysis procedure was applied to the data of each cell type. Irrelevant features were first excluded according to their relevance to the target variable measured by mutual information. Then, four ranking algorithms (last absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, and max-relevance and min-redundancy) were adopted to analyze the remaining features, resulting in four feature lists. These lists were fed into the incremental feature selection, incorporating three classification algorithms (decision tree, k-nearest neighbor, and random forest) to extract key gene features and construct classifiers with superior performance. The results confirmed that genes such as PFN1, RPS26, and FTH1 played important roles in SARS-CoV-2 infection. These findings provide a useful reference for the understanding of the ongoing effect of COVID-19 development on the immune system.
Collapse
Affiliation(s)
- Jing-Xin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Gao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Chao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kai-Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem 2023; 478:1325-1343. [PMID: 36308668 PMCID: PMC9617539 DOI: 10.1007/s11010-022-04593-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
SARS-CoV-2 is a positive-strand RNA virus that infects humans through the nasopharyngeal and oral route causing COVID-19. Scientists left no stone unturned to explore a targetable key player in COVID-19 pathogenesis against which therapeutic interventions can be initiated. This article has attempted to review, coordinate and accumulate the most recent observations in support of the hypothesis predicting the altered state of mitochondria concerning mitochondrial redox homeostasis, inflammatory regulations, morphology, bioenergetics and antiviral signalling in SARS-CoV-2 infection. Mitochondria is extremely susceptible to physiological as well as pathological stimuli, including viral infections. Recent studies suggest that SARS-CoV-2 pathogeneses alter mitochondrial integrity, in turn mitochondria modulate cellular response against the infection. SARS-CoV-2 M protein inhibited mitochondrial antiviral signalling (MAVS) protein aggregation in turn hinders innate antiviral response. Viral open reading frames (ORFs) also play an instrumental role in altering mitochondrial regulation of immune response. Notably, ORF-9b and ORF-6 impair MAVS activation. In aged persons, the NLRP3 inflammasome is over-activated due to impaired mitochondrial function, increased mitochondrial reactive oxygen species (mtROS), and/or circulating free mitochondrial DNA, resulting in a hyper-response of classically activated macrophages. This article also tries to understand how mitochondrial fission-fusion dynamics is affected by the virus. This review comprehends the overall mitochondrial attribute in pathogenesis as well as prognosis in patients infected with COVID-19 taking into account pertinent in vitro, pre-clinical and clinical data encompassing subjects with a broad range of severity and morbidity. This endeavour may help in exploring novel non-canonical therapeutic strategies to COVID-19 disease and associated complications.
Collapse
Affiliation(s)
- Chandan Bhowal
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
17
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Ruisoto P, Navarro-Jiménez E, Ramos-Campo DJ, Tornero-Aguilera JF. Metabolic Health, Mitochondrial Fitness, Physical Activity, and Cancer. Cancers (Basel) 2023; 15:814. [PMID: 36765772 PMCID: PMC9913323 DOI: 10.3390/cancers15030814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer continues to be a significant global health issue. Traditional genetic-based approaches to understanding and treating cancer have had limited success. Researchers are increasingly exploring the impact of the environment, specifically inflammation and metabolism, on cancer development. Examining the role of mitochondria in this context is crucial for understanding the connections between metabolic health, physical activity, and cancer. This study aimed to review the literature on this topic through a comprehensive narrative review of various databases including MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. The review highlighted the importance of mitochondrial function in overall health and in regulating key events in cancer development, such as apoptosis. The concept of "mitochondrial fitness" emphasizes the crucial role of mitochondria in cell metabolism, particularly their oxidative functions, and how proper function can prevent replication errors and regulate apoptosis. Engaging in high-energy-demanding movement, such as exercise, is a powerful intervention for improving mitochondrial function and increasing resistance to environmental stressors. These findings support the significance of considering the role of the environment, specifically inflammation and metabolism, in cancer development and treatment. Further research is required to fully understand the mechanisms by which physical activity improves mitochondrial function and potentially reduces the risk of cancer.
Collapse
Affiliation(s)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n Villaviciosa de Odón, 28670 Madrid, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Navarre, Spain
| | | | | | | |
Collapse
|
18
|
Azzarito G, Henry M, Rotshteyn T, Leeners B, Dubey RK. Transcriptomic and Functional Evidence That miRNA193a-3p Inhibits Lymphatic Endothelial Cell (LEC) and LEC + MCF-7 Spheroid Growth Directly and by Altering MCF-7 Secretome. Cells 2023; 12:cells12030389. [PMID: 36766731 PMCID: PMC9913637 DOI: 10.3390/cells12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Margit Henry
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
19
|
Liu B, Pang K, Feng C, Liu Z, Li C, Zhang H, Liu P, Li Z, He S, Tu C. Comprehensive analysis of a novel cuproptosis-related lncRNA signature associated with prognosis and tumor matrix features to predict immunotherapy in soft tissue carcinoma. Front Genet 2022; 13:1063057. [PMID: 36568384 PMCID: PMC9768346 DOI: 10.3389/fgene.2022.1063057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: A crucial part of the malignant processes of soft tissue sarcoma (STS) is played by cuproptosis and lncRNAs. However, the connection between cuproptosis-related lncRNAs (CRLs) and STS is nevertheless unclear. As a result, our objective was to look into the immunological activity, clinical significance, and predictive accuracy of CRLs in STS. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively, provided information on the expression patterns of STS patients and the general population. Cuproptosis-related lncRNA signature (CRLncSig) construction involved the univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analysis. The predictive performance of the CRLncSig was evaluated using a serial analysis. Further research was done on the connections between the CRLncSig and the tumor immune milieu, somatic mutation, immunotherapy response, and chemotherapeutic drug susceptibility. Notably, an in vitro investigation served to finally validate the expression of the hallmark CRLs. Results: A novel efficient CRLncSig composed of seven CRLs was successfully constructed. Additionally, the low-CRLncSig group's prognosis was better than that of the high-CRLncSig group's based on the new CRLncSig. The innovative CRLncSig then demonstrated outstanding, consistent, and independent prognostic and predictive usefulness for patients with STS, according to the evaluation and validation data. The low-CRLncSig group's patients also displayed improved immunoreactivity phenotype, increased immune infiltration abundance and checkpoint expression, and superior immunotherapy response, whereas those in the high-CRLncSig group with worse immune status, increased tumor stemness, and higher collagen levels in the extracellular matrix. Additionally, there is a noticeable disparity in the sensitivity of widely used anti-cancer drugs amongst various populations. What's more, the nomogram constructed based on CRLncSig and clinical characteristics of patients also showed good predictive ability. Importantly, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) demonstrated that the signature CRLs exhibited a significantly differential expression level in STS cell lines. Conclusion: In summary, this study revealed the novel CRLncSig could be used as a promising predictor for prognosis prediction, immune activity, tumor immune microenvironment, immune response, and chemotherapeutic drug susceptibility in patients with STS. This may provide an important direction for the clinical decision-making and personalized therapy of STS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ke Pang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haixia Zhang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shasha He, ; Chao Tu,
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shasha He, ; Chao Tu,
| |
Collapse
|
20
|
Dutta R, Guruvaiah P, Reddi KK, Bugide S, Reddy Bandi D, Edwards YJK, Singh K, Gupta R. UBE2T promotes breast cancer tumor growth by suppressing DNA replication stress. NAR Cancer 2022; 4:zcac035. [PMID: 36338541 PMCID: PMC9629447 DOI: 10.1093/narcan/zcac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths among women, and current therapies benefit only a subset of these patients. Here, we show that ubiquitin-conjugating enzyme E2T (UBE2T) is overexpressed in patient-derived breast cancer samples, and UBE2T overexpression predicts poor prognosis. We demonstrate that the transcription factor AP-2 alpha (TFAP2A) is necessary for the overexpression of UBE2T in breast cancer cells, and UBE2T inhibition suppresses breast cancer tumor growth in cell culture and in mice. RNA sequencing analysis identified interferon alpha-inducible protein 6 (IFI6) as a key downstream mediator of UBE2T function in breast cancer cells. Consistently, UBE2T inhibition downregulated IFI6 expression, promoting DNA replication stress, cell cycle arrest, and apoptosis and suppressing breast cancer cell growth. Breast cancer cells with IFI6 inhibition displayed similar phenotypes as those with UBE2T inhibition, and ectopic IFI6 expression in UBE2T-knockdown breast cancer cells prevented DNA replication stress and apoptosis and partly restored breast cancer cell growth. Furthermore, UBE2T inhibition enhanced the growth-suppressive effects of DNA replication stress inducers. Taken together, our study identifies UBE2T as a facilitator of breast cancer tumor growth and provide a rationale for targeting UBE2T for breast cancer therapies.
Collapse
Affiliation(s)
- Roshan Dutta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kiran Kumar Reddi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy Bandi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kamaljeet Singh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
21
|
Immune-Related Gene Signatures to Predict the Effectiveness of Chemoimmunotherapy in Triple-Negative Breast Cancer Using Exploratory Subgroup Discovery. Cancers (Basel) 2022; 14:cancers14235806. [PMID: 36497286 PMCID: PMC9735620 DOI: 10.3390/cancers14235806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Although immunotherapy has shown potential in TNBC patients, clinical studies have only demonstrated a modest response. Therefore, the exploration of immunotherapy in combination with chemotherapy is warranted. In this project we identified immune-related gene signatures for TNBC patients that may explain differences in patients' outcomes after anti-PD-L1+chemotherapy treatment. First, we ran the exploratory subgroup discovery algorithm on the TNBC dataset comprised of 422 patients across 24 studies. Secondly, we narrowed down the search to twelve homogenous subgroups based on tumor mutational burden (TMB, low or high), relapse status (disease-free or recurred), tumor cellularity (high, low and moderate), menopausal status (pre- or post) and tumor stage (I, II and III). For each subgroup we identified a union of the top 10% of genotypic patterns. Furthermore, we employed a multinomial regression model to predict significant genotypic patterns that would be linked to partial remission after anti-PD-L1+chemotherapy treatment. Finally, we uncovered distinct immune cell populations (T-cells, B-cells, Myeloid, NK-cells) for TNBC patients with various treatment outcomes. CD4-Tn-LEF1 and CD4-CXCL13 T-cells were linked to partial remission on anti-PD-L1+chemotherapy treatment. Our informatics pipeline may help to select better responders to chemoimmunotherapy, as well as pinpoint the underlying mechanisms of drug resistance in TNBC patients at single-cell resolution.
Collapse
|
22
|
Lin M, Sade-Feldman M, Wirth L, Lawrence MS, Faden DL. Single-cell transcriptomic profiling for inferring tumor origin and mechanisms of therapeutic resistance. NPJ Precis Oncol 2022; 6:71. [PMID: 36210388 PMCID: PMC9548500 DOI: 10.1038/s41698-022-00314-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive epithelial cancer with poor overall response rates to checkpoint inhibitor therapy (CPI) despite CPI being the recommended treatment for recurrent or metastatic HNSCC. Mechanisms of resistance to CPI in HNSCC are poorly understood. To identify drivers of response and resistance to CPI in a unique patient who was believed to have developed three separate HNSCCs, we performed single-cell RNA-seq (scRNA-seq) profiling of two responding lesions and one progressive lesion that developed during CPI. Our results not only suggest interferon-induced APOBEC3-mediated acquired resistance as a mechanism of CPI resistance in the progressing lesion but further, that the lesion in question was actually a metastasis as opposed to a new primary tumor, highlighting the immense power of scRNA-seq as a clinical tool for inferring tumor origin and mechanisms of therapeutic resistance.
Collapse
Affiliation(s)
- Maoxuan Lin
- grid.39479.300000 0000 8800 3003Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02118 USA ,grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA
| | - Moshe Sade-Feldman
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Lori Wirth
- grid.32224.350000 0004 0386 9924Department of Medicine, Massachusetts General Hospital, Boston, MA 02118 USA
| | - Michael S. Lawrence
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Daniel L. Faden
- grid.39479.300000 0000 8800 3003Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
23
|
Marklund M, Schultz N, Friedrich S, Berglund E, Tarish F, Tanoglidi A, Liu Y, Bergenstråhle L, Erickson A, Helleday T, Lamb AD, Sonnhammer E, Lundeberg J. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat Commun 2022; 13:5475. [PMID: 36115838 PMCID: PMC9482614 DOI: 10.1038/s41467-022-33069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.
Collapse
Affiliation(s)
- Maja Marklund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Niklas Schultz
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Stefanie Friedrich
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden
| | - Emelie Berglund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Firas Tarish
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Anna Tanoglidi
- Department of Pathology, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Yao Liu
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Ludvig Bergenstråhle
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Thomas Helleday
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
24
|
Li XY, An HB, Zhang LY, Liu H, Shen YC, Yang XT. Non-negative matrix factorization model-based construction for molecular clustering and prognostic assessment of head and neck squamous carcinoma. Heliyon 2022; 8:e10100. [PMID: 35991972 PMCID: PMC9389204 DOI: 10.1016/j.heliyon.2022.e10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose We aimed at exploring the efficacy of non-negative matrix factorization (NMF) model-based clustering for prognostic assessment of head and neck squamous carcinoma (HNSCC). Methods The transcriptome microarray data of HNSCC samples were downloaded from The Cancer Genome Atlas (TCGA) and the Shanghai Ninth People’s Hospital. R software packages were used to establish NMF clustering, from which relevant prognostic models were developed. Results Based on NMF, samples were allocated into 2 subgroups. Predictive models were constructed using differentially expressed genes between the two subgroups. The high-risk group was associated with poor prognostic outcomes. Moreover, multi-factor Cox regression analysis revealed that the predictive model was an independent prognostic predictor. Conclusion The NMF-based prognostic model has the potential for prognostic assessment of HNSCC.
Collapse
|
25
|
A Regulatory Axis between Epithelial Splicing Regulatory Proteins and Estrogen Receptor α Modulates the Alternative Transcriptome of Luminal Breast Cancer. Int J Mol Sci 2022; 23:ijms23147835. [PMID: 35887187 PMCID: PMC9319905 DOI: 10.3390/ijms23147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein-protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.
Collapse
|
26
|
Hao J, Sun M, Li D, Zhang T, Li J, Zhou D. An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J Nanobiotechnology 2022; 20:288. [PMID: 35717249 PMCID: PMC9206756 DOI: 10.1186/s12951-022-01466-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Radiation-induced skin injury (RISI) is a common complication of radiotherapy. Interferon-alpha inducible protein 6 (IFI6) significantly reduces the radiation sensitivity of HaCaT cells. Sodium alginate (SA) has substantial moisturizing properties. Graphene oxide (GO) is a suitable substrate with physical antibacterial properties. Therefore, we designed materials to modify IFI6 using the biogule of polydopamine (PDA) connected to GO/SA. The structure, size, morphology, and elemental compositions of IFI6-PDA@GO/SA were analyzed. Cytological studies suggested that IFI6-PDA@GO/SA is non-toxic to HaCaT cells, with antibacterial properties. It promotes migration and vascularization and inhibits apoptosis. These cells express IFI6 after irradiation. The mouse model suggested that IFI6-PDA@GO/SA promotes wound healing and reduces reactive oxygen species expression. IFI6-PDA@GO/SA accelerates RISI healing, possibly by initiating the SSBP1/HSF1 signaling pathway. In addition, IFI6-PDA@GO/SA improves the immune microenvironment. This study constitutes the first use of IFI6 as a RISI wound-healing material.
Collapse
Affiliation(s)
- Jie Hao
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mengyi Sun
- Department of Rehabilitation, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830092, China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Daijun Zhou
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China. .,Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| |
Collapse
|
27
|
Sunitha P, Arya KR, Nair AS, Oommen OV, Sudhakaran PR. Metabolite Effect on Angiogenesis: Insights from Transcriptome Analysis. Cell Biochem Biophys 2022; 80:519-536. [PMID: 35701692 DOI: 10.1007/s12013-022-01078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
Metabolic status of the cells is important in the expression of the angiogenic phenotype in endothelial cells. Our earlier studies demonstrated the effects of metabolites such as lactate, citrate and lipoxygenase products, on VEGFA-VEGFR2 signaling pathway. Though this link between metabolite status and molecular mechanisms of angiogenesis is becoming evident, it is not clear how it affects genome-level expression in endothelial cells, critical to angiogenesis. In the present study, computational analysis was carried out on the transcriptome data of 4 different datasets where HUVECs were exposed to low and high glucose, both in vitro and in vivo, and the expression of a key enzyme involved in glucose metabolism is altered. The differentially expressed genes belonging to both VEGFA-VEGFR2 signaling pathway, as well as several VEGF signature genes as hub genes were also identified. These findings suggest the metabolite dependence, particularly glucose dependence, of angiogenesis, involving modulation of genome-level expression of angiogenesis- functional genome. This is important in tumor angiogenesis where reprogramming of metabolism is critical.
Collapse
Affiliation(s)
- P Sunitha
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Kesavan R Arya
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Oommen V Oommen
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
28
|
Identification of hub biomarkers and immune cell infiltration in polymyositis and dermatomyositis. Aging (Albany NY) 2022; 14:4530-4555. [PMID: 35609018 PMCID: PMC9186768 DOI: 10.18632/aging.204098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
Objective: Polymyositis (PM) and dermatomyositis (DM) are heterogeneous disorders. However, the etiology of PM/DM development has not been thoroughly clarified. Methods: Gene expression data of PM/DM were obtained from Gene Expression Omnibus. We used robust rank aggregation (RRA) to identify differentially expressed genes (DEGs). Gene Ontology functional enrichment and pathway analyses were used to investigate potential functions of the DEGs. Weighted gene co-expression network analysis (WGCNA) was used to establish a gene co-expression network. CIBERSORT was utilized to analyze the pattern of immune cell infiltration in PM/DM. Protein–protein interaction (PPI) network, Venn, and association analyses between core genes and muscle injury were performed to identify hub genes. Receiver operating characteristic analyses were executed to investigate the value of hub genes in the diagnosis of PM/DM, and the results were verified using the microarray dataset GSE48280. Results: Five datasets were included. The RRA integrated analysis identified 82 significant DEGs. Functional enrichment analysis revealed that immune function and the interferon signaling pathway were enriched in PM/DM. WGCNA outcomes identified MEblue and MEturquoise as key target modules in PM/DM. Immune cell infiltration analysis revealed greater macrophage infiltration and lower regulatory T-cell infiltration in PM/DM patients than in healthy controls. PPI network, Venn, and association analyses of muscle injury identified five putative hub genes: TRIM22, IFI6, IFITM1, IFI35, and IRF9. Conclusions: Our bioinformatics analysis identified new genetic biomarkers of the pathogenesis of PM/DM. We demonstrated that immune cell infiltration plays a pivotal part in the occurrence of PM/DM.
Collapse
|
29
|
Lǚ K, Li H, Wang S, Li A, Weng S, He J, Li C. Interferon-Induced Protein 6-16 (IFI6-16) from Litopenaeus vannamei Regulate Antiviral Immunity via Apoptosis-Related Genes. Viruses 2022; 14:1062. [PMID: 35632802 PMCID: PMC9144789 DOI: 10.3390/v14051062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
A growing number of evidence shows that some invertebrates possess an antiviral immunity parallel to the interferon (IFN) system of higher vertebrates. For example, the IRF (interferon regulatory factor)-Vago-JAK/STAT regulatory axis in an arthropod, shrimp Litopenaeus vannamei (whiteleg shrimp) is functionally similar to the IRF-IFN-JAK/STAT axis of mammals. IFNs perform their cellular immunity by regulating the expression of target genes collectively referred to as IFN-stimulated genes (ISGs). However, the function of invertebrate ISGs in immune responses is almost completely unclear. In this study, a potential ISG gene homologous to the interferon-induced protein 6-16 (IFI6-16) was cloned and identified from L. vannamei, designated as LvIFI6-16. LvIFI6-16 contained a putative signal peptide in the N-terminal, and a classic IFI6-16-superfamily domain in the C-terminal that showed high conservation to other homologs in various species. The mRNA levels of LvIFI6-16 were significantly upregulated after the stimulation of poly (I:C) and challenges of white spot syndrome virus (WSSV). Moreover, silencing of LvIFI6-16 caused a higher mortality rate and heightened virus loads, suggesting that LvIFI6-16 could play a crucial role in defense against WSSV. Interestingly, we found that the transcription levels of several caspases were regulated by LvIFI6-16; meanwhile, the transcription level of LvIFI6-16 self was regulated by the JAK/STAT cascade, suggesting there could be a JAK/STAT-IFI6-16-caspase regulatory axis in shrimp. Taken together, we identified a crustacean IFI6-16 gene (LvIFI6-16) for the first time, and provided evidence that the IFI6-16 participated in antiviral immunity in shrimp.
Collapse
Affiliation(s)
- Kai Lǚ
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haoyang Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Anxing Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
30
|
Zhao X, Miao G, Zhang L, Zhang Y, Zhao H, Xu Z, Wang B, Zhang L. Chlamydia pneumoniae Infection Induces Vascular Smooth Muscle Cell Migration and Atherosclerosis Through Mitochondrial Reactive Oxygen Species-Mediated JunB-Fra-1 Activation. Front Cell Dev Biol 2022; 10:879023. [PMID: 35493076 PMCID: PMC9039263 DOI: 10.3389/fcell.2022.879023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Infection is closely related to atherosclerosis, which is a major pathological basis for cardiovascular diseases. Vascular smooth muscle cell (VSMC) migration is an important trigger in development of atherosclerosis that is associated with Chlamydia pneumoniae (C. pneumoniae) infection. However, the mechanism of VSMC migration remains unclear, and whether antioxidant could be a therapeutic target for C. pneumoniae infection-induced atherosclerosis also remains unknown. The results showed that C. pneumoniae infection mainly impaired mitochondrial function and increased the level of mitochondrial reactive oxygen species (mtROS). The expressions of protein JunB, Fra-1 and Matrix metalloproteinase 2 (MMP) evidently increased after C. pneumoniae infection, and the interaction between JunB and Fra-1 was also enhanced. After scavenging mtROS by antioxidant Mito-TEMPO, the increasing expressions of JunB, Fra-1, MMP2 and the capacity of VSMC migration induced by C. pneumoniae infection were all inhibited. In comparison with infected ApoE-/- mice, the level of ROS in atherosclerotic lesion in ApoE-/-TLR2-/- mice with C. pneumoniae infection decreased. Knocking out TLR2 suppressed the expressions of JunB, Fra-1 and MMP2 in VSMCs and the formation of atherosclerotic lesion after C. pneumoniae infection. Furthermore, after using small interfering RNA to inhibit the expression of TLR2, the level of mtROS and the expressions of JunB, Fra-1 and MMP2 apparently decreased. Taken together, C. pneumoniae infection may promote VSMC migration and atherosclerosis development by increasing the level of mtROS through TLR2 to activate the JunB-Fra-1/MMP2 signaling pathway. The data provide the first evidence that antioxidant could reduce C. pneumoniae infection-induced VSMC migration and atherosclerosis.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuke Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH. Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 2022; 23:19. [PMID: 35354498 PMCID: PMC8969249 DOI: 10.1186/s40360-022-00559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Myeong Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Department, Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea.
| |
Collapse
|
32
|
Zou L, Liu Z, Li X, Liu L, Zhu Y. Knockdown of G1P3 inhibits cell proliferation and enhances the cytotoxicity of dexamethasone in acute lymphoblastic leukemia. Open Life Sci 2022. [DOI: 10.1515/biol-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Drug resistance contributes to treatment failure and relapse in acute lymphoblastic leukemia (ALL). G1P3 (also known as IFI6, interferon, alpha-inducible protein 6) has been regarded as an antiapoptotic protein in myeloma cells and contributes to chemoresistance in breast cancer. However, the role of G1P3 in the proliferation and chemosensitivity of ALL is largely unknown. Data from colony formation and bromo-deoxyuridine (BrdU) incorporation assays showed that siRNA-mediated downregulation of G1P3 repressed cell proliferation of glucocorticoids-resistant human leukemic cells (CEM-C1), while overexpression of G1P3 promoted the cell proliferation. Cell apoptosis of CEM-C1 was suppressed by G1P3 overexpression accompanied by a decrease in cleaved caspase-3 and caspase-9. Knockdown of G1P3 increased protein expression of cleaved caspase-3 and caspase-9 to promote the cell apoptosis of CEM-C1. Moreover, silencing of G1P3 reduced cell viability and promoted cell apoptosis of CEM-C1 exposed to dexamethasone. The proapoptotic protein B-cell lymphoma 2 interacting mediator of cell death (Bim) was enhanced by the interference of G1P3 in CEM-C1. Silencing of Bim attenuated G1P3 interference-induced decrease in cell viability and increase in cell apoptosis in CEM-C1 exposed to dexamethasone. Conclusively, knockdown of G1P3 inhibited cell proliferation of ALL and sensitized glucocorticoid-resistant ALL cells to dexamethasone through upregulation of Bim-mediated cell apoptosis.
Collapse
Affiliation(s)
- Liping Zou
- Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China
| | - Zhirui Liu
- Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| | - Xueer Li
- Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| | - Liping Liu
- Department of Hematology, First Affiliated Hospital of Gannan Medical University , Ganzhou , Jiangxi Province, 341000 , China
| | - Ying Zhu
- Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| |
Collapse
|
33
|
Tai J, Wang L, Guo H, Yan Z, Liu J. Prognostic implications of N 6-methyladenosine RNA regulators in breast cancer. Sci Rep 2022; 12:1222. [PMID: 35075167 PMCID: PMC8786853 DOI: 10.1038/s41598-022-05125-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
Collapse
Affiliation(s)
- Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| |
Collapse
|
34
|
Chen MZ, Su LY, Ko PH, Hsu MH, Chuang LL, Chen LH, Lu TP, Chuang EY, Chow LP, Tsai MH, Hsu HH, Lai LC. Extracellular domain of semaphorin 5A serves a tumor‑suppressing role by activating interferon signaling pathways in lung adenocarcinoma cells. Int J Oncol 2022; 60:21. [PMID: 35059729 DOI: 10.3892/ijo.2022.5311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Semaphorin 5A (SEMA5A), which was originally identified as an axon guidance molecule in the nervous system, has been subsequently identified as a prognostic biomarker for lung cancer in nonsmoking women. SEMA5A acts as a tumor suppressor by inhibiting the proliferation and migration of lung cancer cells. However, the regulatory mechanism of SEMA5A is not clear. Therefore, the purpose of the present study was to explore the roles of different domains of SEMA5A in its tumor‑suppressive effects in lung adenocarcinoma cell lines. First, it was revealed that overexpression of full length SEMA5A or its extracellular domain significantly inhibited the proliferation and migration of both A549 and H1299 cells using MTT, colony formation and gap closure assays. Next, microarray analyses were performed to identify genes regulated by different domains of SEMA5A. Among the differentially expressed genes, the most significant function of these genes that were enriched was the 'Interferon Signaling' pathway according to Ingenuity Pathway Analysis. The activation of the 'Interferon Signaling' pathway was validated by reverse transcription‑quantitative PCR and western blotting. In summary, the present study demonstrated that the extracellular domain of SEMA5A could upregulate genes in interferon signaling pathways, resulting in suppressive effects in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Ming-Zhen Chen
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Li-Yu Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Pin-Hao Ko
- Department of Traditional Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan, R.O.C
| | - Ming-Hsuan Hsu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Li-Ling Chuang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Hsao-Hsun Hsu
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan, R.O.C
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| |
Collapse
|
35
|
Kirby EN, Shue B, Thomas PQ, Beard MR. CRISPR Tackles Emerging Viral Pathogens. Viruses 2021; 13:2157. [PMID: 34834963 PMCID: PMC8624524 DOI: 10.3390/v13112157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.
Collapse
Affiliation(s)
- Emily N. Kirby
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| | - Byron Shue
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| | - Paul Q. Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
- Genome Editing Program, South Australian Health & Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Michael R. Beard
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; (E.N.K.); (B.S.)
| |
Collapse
|
36
|
Zhao H, Li Z, Gao Y, Li J, Zhao X, Yue W. Single-Cell RNA-Sequencing Portraying Functional Diversity and Clinical Implications of IFI6 in Ovarian Cancer. Front Cell Dev Biol 2021; 9:677697. [PMID: 34513825 PMCID: PMC8425592 DOI: 10.3389/fcell.2021.677697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies. Most patients die of metastasis due to a lack of other treatments aimed at improving the prognosis of OC patients. In the present study, we use multiple methods to identify prognostic S1 as the dominant subtype in OC, possessing the most ligand-receptor pairs with other cell types. Based on markers of S1, the consensus clustering algorithm is used to explore the clinical treatment subtype in OC. As a result, we identify two clusters associated with distinct survival and drug response. Notably, IFI6 contributes to the cluster classification and seems to be a vital gene in OC carcinogenesis. Functional enrichment analysis demonstrates that its functions involve G2M and cisplatin resistance, and downregulation of IFI6 suppresses proliferation capabilities and significantly potentiates cisplatin-induced apoptosis of OC cells in vitro. To explore possible mechanisms of IFI6 influencing OC proliferation and cisplatin resistance, GSEA is conducted and shows that IFI6 is positively correlated with the NF-κB pathway, which is validated by RT-qPCR. Significantly, we develop a prognostic model including IFI6, RiskScore, which is an independent prognostic factor and presents encouraging prognostic values. Our findings provide novel insights into elucidating the biology of OC based on single-cell RNA-sequencing. Moreover, this approach is potentially helpful for personalized anti-cancer strategies and predicting outcomes in the setting of OC.
Collapse
Affiliation(s)
- Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Yin X, Yang J, Chen J, Ni R, Zhou Y, Song H, Jin L, Tang T, Pan Y. LncRNA CTD-3252C9.4 modulates pancreatic cancer cell survival and apoptosis through regulating IFI6 transcription. Cancer Cell Int 2021; 21:433. [PMID: 34399768 PMCID: PMC8365976 DOI: 10.1186/s12935-021-02142-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal cancer types with high degree of malignancy and poor prognosis. Recent studies have shown that long non-coding RNAs (lncRNAs) were associated with the initiation and progression of pancreatic cancer. In the current study, we have investigated the expression, biological function and mechanism of a lncRNA CTD-3252C9.4 in pancreatic cancer. METHODS The expression of CTD-3252C9.4 in pancreatic cancer cells and tissues was measured by qRT-PCR. In vitro and in vivo functional experiments assays were implemented for identifying CTD-3252C9.4 function in pancreatic cancer. Molecular relationships among CTD-3252C9.4, IRF1 and IFI6 were investigated via luciferase reporter assay, pulldown assay and ChIP assays. RESULTS CTD-3252C9.4 was found remarkably decreased in pancreatic cancer cells and tissues. Overexpression of CTD-3252C9.4 suppressed migration, invasion and proliferation, yet facilitated apoptosis of pancreatic cancer cells both in vitro and in vivo. Then, IFI6 was identified as a downstream target that could be down-regulated by CTD-3252C9.4 and IFI6 overexpression could counteract the effects of CTD-3252C9.4 upregulation on the survival and apoptosis of pancreatic cancer cells. Furthermore, mechanism experiments revealed that IRF1 was a transcriptional factor of IFI6 that can be blocked by CTD-3252C9.4 to inhibit IFI6 transcription. CONCLUSION Our data indicated that CTD-3252C9.4 could promote pancreatic cancer cell apoptosis and restrain cell growth via binding IRF1 and preventing the transcription of IFI6, which may become a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Xin Yin
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, 46 Heping Road, Xuzhou, Jiangsu, China
| | - Jingyan Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China
| | - Jintian Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China
| | - Ruiqi Ni
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China
| | - Yanhao Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China
| | - Hao Song
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China.
| | - Tingting Tang
- Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, China.
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Survival-Based Biomarker Module Identification Associated with Oral Squamous Cell Carcinoma (OSCC). BIOLOGY 2021; 10:biology10080760. [PMID: 34439992 PMCID: PMC8389591 DOI: 10.3390/biology10080760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary In this study, four OSCC-specific hub genes were identified using high-throughput RNA-Seq data from TCGA cohort. The significant genes within tumor and normal samples were used for weighted PPI network construction based on survival of patients along with their expression profiles. The analysis revealed the most significant module in the training and test datasets. The genes from this module were used for pathway enrichment analysis followed by hub gene selection. These novel biomarkers might have clinical utility for diagnosis and prognosis prediction in OSCC, providing diagnosis at a very early stage. Moreover, a combination of all these biomarkers might distinguish the OSCC patients with low risk and high risk for cancer progression and recurrence, which will provide useful guidance for personalized and precision therapy. However, the results in the present study were obtained by integrative theoretical analysis, and the findings remain to be confirmed by further experimental validations. Abstract Head and neck squamous cell carcinoma (HNSC) is one of the most common malignant tumors worldwide with a high rate of morbidity and mortality, with 90% of predilections occurring for oral squamous cell carcinoma (OSCC). Cancers of the mouth account for 40% of head and neck cancers, including squamous cell carcinomas of the tongue, floor of the mouth, buccal mucosa, lips, hard and soft palate, and gingival. OSCC is the most devastating and commonly occurring oral malignancy, with a mortality rate of 500,000 deaths per year. This has imposed a strong necessity to discover driver genes responsible for its progression and malignancy. In the present study we filtered oral squamous cell carcinoma tissue samples from TCGA-HNSC cohort, which we followed by constructing a weighted PPI network based on the survival of patients and the expression profiles of samples collected from them. We found a total of 46 modules, with 18 modules having more than five edges. The KM and ME analyses revealed a single module (with 12 genes) as significant in the training and test datasets. The genes from this significant module were subjected to pathway enrichment analysis for identification of significant pathways and involved genes. Finally, the overlapping genes between gene sets ranked on the basis of weighted PPI module centralities (i.e., degree and eigenvector), significant pathway genes, and DEGs from a microarray OSCC dataset were considered as OSCC-specific hub genes. These hub genes were clinically validated using the IHC images available from the Human Protein Atlas (HPA) database.
Collapse
|
39
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
40
|
Drzewiecka EM, Kozlowska W, Paukszto L, Zmijewska A, Wydorski PJ, Jastrzebski JP, Franczak A. Effect of the Electromagnetic Field (EMF) Radiation on Transcriptomic Profile of Pig Myometrium during the Peri-Implantation Period-An In Vitro Study. Int J Mol Sci 2021; 22:7322. [PMID: 34298942 PMCID: PMC8305477 DOI: 10.3390/ijms22147322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
The electromagnetic field (EMF) affects the physiological processes in mammals, but the molecular background of the observed alterations remains not well established. In this study was tested the effect of short duration (2 h) of the EMF treatment (50 Hz, 8 mT) on global transcriptomic alterations in the myometrium of pigs during the peri-implantation period using next-generation sequencing. As a result, the EMF treatment affected the expression of 215 transcript active regions (TARs), and among them, the assigned gene protein-coding biotype possessed 90 ones (differentially expressed genes, DEGs), categorized mostly to gene ontology terms connected with defense and immune responses, and secretion and export. Evaluated DEGs enrich the KEGG TNF signaling pathway, and regulation of IFNA signaling and interferon-alpha/beta signaling REACTOME pathways. There were evaluated 12 differentially expressed long non-coding RNAs (DE-lnc-RNAs) and 182 predicted single nucleotide variants (SNVs) substitutions within RNA editing sites. In conclusion, the EMF treatment in the myometrium collected during the peri-implantation period affects the expression of genes involved in defense and immune responses. The study also gives new insight into the mechanisms of the EMF action in the regulation of the transcriptomic profile through lnc-RNAs and SNVs.
Collapse
Affiliation(s)
- Ewa Monika Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Wiktoria Kozlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (L.P.); (J.P.J.)
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Pawel Jozef Wydorski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (L.P.); (J.P.J.)
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.M.D.); (W.K.); (A.Z.); (P.J.W.)
| |
Collapse
|
41
|
IFI35 is involved in the regulation of the radiosensitivity of colorectal cancer cells. Cancer Cell Int 2021; 21:290. [PMID: 34082779 PMCID: PMC8176734 DOI: 10.1186/s12935-021-01997-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Background Interferon regulatory factor-1 (IRF1) affects the proliferation of colorectal cancer (CRC). Recombinant interferon inducible protein 35 (IFI35) participates in immune regulation and cell proliferation. The aim of the study was to examine whether IRF1 affects the radiation sensitivity of CRC by regulating IFI35. Methods CCL244 and SW480 cells were divided into five groups: blank control, IFI35 upregulation, IFI35 upregulation control, IFI35 downregulation, and IFI35 downregulation control. All groups were treated with X-rays (6 Gy). IFI35 activation by IRF1 was detected by luciferase reporter assay. The GEPIA database was used to examine IRF1 and IFI35 in CRC. The cells were characterized using CCK-8, EdU, cell cycle, clone formation, flow cytometry, reactive oxygen species (ROS), and mitochondrial membrane potential. Nude mouse animal models were used to detect the effect of IFI35 on CRC. Results IRF1 can bind to the IFI35 promoter and promote the expression of IFI35. The expression consistency of IRF1 and IFI35 in CRC, according to GEPIA (R = 0.68, p < 0.0001). After irradiation, the upregulation of IFI35 inhibited cell proliferation and colony formation and promoted apoptosis and ROS, while IFI35 downregulation promoted proliferation and colony formation and reduced apoptosis, ROS, and mitochondrial membrane potential were also reduced. The in vivo experiments supported the in vitro ones, with smaller tumors and fewer liver metastases with IFI35 upregulation. Conclusions IRF1 can promote IFI35 expression in CRC cells. IFI35 is involved in the regulation of radiosensitivity of CRC cells and might be a target for CRC radiosensitization.
Collapse
|
42
|
Xu X, Wu Y, Yi K, Hu Y, Ding W, Xing C. IRF1 regulates the progression of colorectal cancer via interferon‑induced proteins. Int J Mol Med 2021; 47:104. [PMID: 33907823 PMCID: PMC8054637 DOI: 10.3892/ijmm.2021.4937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Radiation is one of the main methods for the treatment of colorectal cancer (CRC) before or after surgery. However, radiotherapy tolerance of patients with CRC is often a major concern. Interferon regulatory factor 1 (IRF1) is a member of the IRF family and is involved in the development of multiple diseases, including tumors. The present study investigated the role of IRF1 in the development and radiation sensitivity of CRC. Immunohistochemistry was performed to examine the expression levels of IRF1 in tissue samples from patients with CRC, as well as in nude mice. MTT, 5‑ethynyl‑20‑deoxyuridine, colony formation, cell cycle alteration and apoptosis assays were performed in CRC cell lines. Western blotting and immunofluorescence were used to detect the expression levels of a series of proteins. RNA sequencing was applied to identify genes whose expression was upregulated by IRF1 overexpression. Xenograft nude mouse models and hematoxylin and eosin staining were used to validate the present findings in vivo. It was revealed that the expression levels of IRF1 were significantly lower in CRC tissues than in adjacent tissues. IRF1 upregulation inhibited cell proliferation and colony formation, caused G1 cell arrest, promoted cell apoptosis, and enhanced the sensitivity of CRC cells to X‑ray irradiation. The role of IRF1 in promoting the radiosensitivity of CRC was further demonstrated in nude mice with CRC xenografts. In addition, RNA sequencing revealed that overexpression of IRF1 in CRC cells significantly increased the expression levels of interferon‑induced protein family members interferon α inducible protein 6, interferon induced transmembrane protein 1 and interferon induced protein 35 (fold change >2.0). In summary, the present study demonstrated that the upregulation of IRF1 inhibited the progression and promoted the radiosensitivity of CRC, likely by regulating interferon‑induced proteins.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
43
|
Peng Y, Dong S, Yang Z, Song Y, Ding J, Hou D, Wang L, Zhang Z, Li N, Wang H. Identification of docetaxel-related biomarkers for prostate cancer. Andrologia 2021; 53:e14079. [PMID: 34021502 DOI: 10.1111/and.14079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) which was the second commonly diagnosed malignancy, contributed to the top fifth carcinoma death in men. Nevertheless, the main chemotherapeutic agent docetaxel came to failure due to chemoresistance. Recently, increasing evidence suggested the importance of tumour microenvironment (TME) in PCa. The present study aimed to explore the specific TME in PCa and find biomarkers related to both immune infiltration and docetaxel. The docetaxel-specific genes and differential expression genes comparing PCa with normal control samples were derived using DESeq2 and zinbwave with GSE140440, TCGA and GTEx datasets. Immune-infiltration-related genes were identified using CIBERSORT and co-expression network analysis. Key genes related to both docetaxel and immune infiltrating in PCa, including nine genes, namely ZNF486, IFI6, TMOD2, HSPA4L, ITPR1, LRRC37A7P, APOC1, APOBEC3G, and ITGA2, were determined by overlapping above three gene sets. ITGA2 was then defined as the hub gene for its significant prognostic implications. Further validations conducted on Oncomine, GEO, TISIDB, MSigDB, and The Human Protein Atlas confirmed the docetaxel-specific and immune infiltrating characteristics of ITGA2. To sum up, our findings could provide a better understanding of immune infiltrating and docetaxel-resistance in PCa, mostly, ITGA2 could serve as potential prognosis biomarkers and targets for the combination of docetaxel.
Collapse
Affiliation(s)
- Yun Peng
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shiqiang Dong
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zhikai Yang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Ding
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingkun Hou
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zheyu Zhang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Li
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Identification of Hub Genes to Regulate Breast Cancer Spinal Metastases by Bioinformatics Analyses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5548918. [PMID: 34055036 PMCID: PMC8133842 DOI: 10.1155/2021/5548918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) had been one of the deadliest types of cancers in women worldwide. More than 65% of advanced-stage BC patients were identified to have bone metastasis. However, the molecular mechanisms involved in the BC spinal metastases remained largely unclear. This study screened dysregulated genes in the progression of BC spinal metastases by analyzing GSE22358. Moreover, we constructed PPI networks to identify key regulators in this progression. Bioinformatics analysis showed that these key regulators were involved in regulating the metabolic process, cell proliferation, Toll-like receptor and RIG-I-like receptor signaling, and mRNA surveillance. Furthermore, our analysis revealed that key regulators, including C1QB, CEP55, HIST1H2BO, IFI6, KIAA0101, PBK, SPAG5, SPP1, DCN, FZD7, KRT5, and TGFBR3, were correlated to the OS time in BC patients. In addition, we analyzed TCGA database to further confirm the expression levels of these hub genes in breast cancer. Our results showed that these regulators were significantly differentially expressed in breast cancer, which were consistent with GSE22358 dataset analysis. Furthermore, our analysis demonstrated that CEP55 was remarkably upregulated in the advanced stage of breast cancer compared to the stage I breast cancer sample and was significantly upregulated in triple-negative breast cancers (TNBC) compared to other types of breast cancers, including luminal and HER2-positive cancers, demonstrating CEP55 may have a regulatory role in TNBC. Finally, our results showed that CEP55 was the most highly expressed in Basal-like 1 TNBC and Basal-like 2 TNBC samples but the most lowly expressed in mesenchymal stem-like TNBC samples. Although more studies are still needed to understand the functions of key regulators in BC, this study provides useful information to understand the mechanisms underlying BC spinal metastases.
Collapse
|
45
|
Sajid M, Ullah H, Yan K, He M, Feng J, Shereen MA, Hao R, Li Q, Guo D, Chen Y, Zhou L. The Functional and Antiviral Activity of Interferon Alpha-Inducible IFI6 Against Hepatitis B Virus Replication and Gene Expression. Front Immunol 2021; 12:634937. [PMID: 33868257 PMCID: PMC8047077 DOI: 10.3389/fimmu.2021.634937] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus is an enveloped DNA virus, that infects more than three hundred and sixty million people worldwide and leads to severe chronic liver diseases. Interferon-alpha inducible protein 6 (IFI6) is an IFN-stimulated gene (ISG) whose expression is highly regulated by the stimulation of type I IFN-alpha that restricts various kinds of virus infections by targeting different stages of the viral life cycle. This study aims to investigate the antiviral activity of IFI6 against HBV replication and gene expression. The IFI6 was highly induced by the stimulation of IFN-α in hepatoma cells. The overexpression of IFI6 inhibited while knockdown of IFI6 elevated replication and gene expression of HBV in HepG2 cells. Further study determined that IFI6 inhibited HBV replication by reducing EnhII/Cp of the HBV without affecting liver enriched transcription factors that have significant importance in regulating HBV enhancer activity. Furthermore, deletion mutation of EnhII/Cp and CHIP analysis revealed 100 bps (1715-1815 nt) putative sites involved in IFI6 mediated inhibition of HBV. Detailed analysis with EMSA demonstrated that 1715-1770 nt of EnhII/Cp was specifically involved in binding with IFI6 and restricted EnhII/Cp promoter activity. Moreover, IFI6 was localized mainly inside the nucleus to involve in the anti-HBV activity of IFI6. In vivo analysis based on the hydrodynamic injection of IFI6 expression plasmid along with HBV revealed significant inhibition of HBV DNA replication and gene expression. Overall, our results suggested a novel mechanism of IFI6 mediated HBV regulation that could develop potential therapeutics for efficient HBV infection treatment.
Collapse
Affiliation(s)
- Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hafiz Ullah
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Miao He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- Ministry of Education Key Laboratory of Tropical Disease Control, The Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruidong Hao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiaohong Li
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan, China
| | - Deyin Guo
- Ministry of Education Key Laboratory of Tropical Disease Control, The Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Xu L, Zu T, Li T, Li M, Mi J, Bai F, Liu G, Wen J, Li H, Brakebusch C, Wang X, Wu X. ATF3 downmodulates its new targets IFI6 and IFI27 to suppress the growth and migration of tongue squamous cell carcinoma cells. PLoS Genet 2021; 17:e1009283. [PMID: 33539340 PMCID: PMC7888615 DOI: 10.1371/journal.pgen.1009283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 02/17/2021] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
Activating transcription factor 3 (ATF3) is a key transcription factor involved in regulating cellular stress responses, with different expression levels and functions in different tissues. ATF3 has also been shown to play crucial roles in regulating tumor development and progression, however its potential role in oral squamous cell carcinomas has not been fully explored. In this study, we examined biopsies of tongue squamous cell carcinomas (TSCCs) and found that the nuclear expression level of ATF3 correlated negatively with the differentiation status of TSCCs, which was validated by analysis of the ATGC database. By using gain- or loss- of function analyses of ATF3 in four different TSCC cell lines, we demonstrated that ATF3 negatively regulates the growth and migration of human TSCC cells in vitro. RNA-seq analysis identified two new downstream targets of ATF3, interferon alpha inducible proteins 6 (IFI6) and 27 (IFI27), which were upregulated in ATF3-deleted cells and were downregulated in ATF3-overexpressing cells. Chromatin immunoprecipitation assays showed that ATF3 binds the promoter regions of the IFI6 and IFI27 genes. Both IFI6 and IFI27 were highly expressed in TSCC biopsies and knockdown of either IFI6 or IFI27 in TSCC cells blocked the cell growth and migration induced by the deletion of ATF3. Conversely, overexpression of either IFI6 or IFI27 counteracted the inhibition of TSCC cell growth and migration induced by the overexpression of ATF3. Finally, an in vivo study in mice confirmed those in vitro findings. Our study suggests that ATF3 plays an anti-tumor function in TSCCs through the negative regulation of its downstream targets, IFI6 and IFI27. Activating transcription factor 3 (ATF3), a stress response gene, has been shown to play either tumor promoting or tumor suppressing functions depending on the type of tumor cell and the stromal context. Here we discovered that ATF3 plays an anti-tumor role in tongue squamous cell carcinoma (TSCC) cells through the transcriptional suppression of its new downstream targets interferon alpha inducible proteins 6 (IFI6) and 27 (IFI27). This finding contributes to understanding how ATF3, a transcriptional repressor, can target specific downstream genes in different tumor cells to play anti-tumor or pro-tumor functions. A thorough understanding of ATF3 functions and its downstream signaling pathways provides a potential approach to develop new therapeutics for the treatment of tumors such as TSCCs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Department of Orthodontics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Precision Biomedical Key Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Tao Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
| | - Min Li
- Precision Biomedical Key Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- * E-mail: (XW); (XW)
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- * E-mail: (XW); (XW)
| |
Collapse
|
47
|
Kohsaka S, Hirata M, Ikegami M, Ueno T, Kojima S, Sakai T, Ito K, Naka N, Ogura K, Kawai A, Iwata S, Okuma T, Yonemoto T, Kobayashi H, Suehara Y, Hiraga H, Kawamoto T, Motoi T, Oda Y, Matsubara D, Matsuda K, Nishida Y, Mano H. Comprehensive molecular and clinicopathological profiling of desmoid tumours. Eur J Cancer 2021; 145:109-120. [PMID: 33444924 DOI: 10.1016/j.ejca.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Previous studies have not clearly identified a prognostic factor for desmoid tumours (DT). Whole-exome sequencing (WES) and/or RNA sequencing (RNA-seq) were performed in 64 cases of DT to investigate the molecular profiles in combination with the clinicopathological characteristics. CTNNB1 mutations with specific hotspots were identified in 56 cases (87.5%). A copy number loss in chromosome 6 (chr6) was identified in 14 cases (21.9%). Clustering based on the mRNA expression profiles was predictive of the patients' prognoses. The risk score generated by the expression of a three-gene set (IFI6, LGMN, and CKLF) was a strong prognostic marker for recurrence-free survival (RFS) in our cohort. In risk groups stratified by the expression of IFI6, the hazard ratio for recurrence-free survival in the high-risk group relative to the low-risk group was 12.12 (95% confidence interval: 1.56-94.2; p = 8.0 × 106). In conclusion, CTNNB1 mutations and a chr6 copy number loss are likely the causative mutations underlying the tumorigenesis of DT while the gene expression profiles may help to differentiate patients who would be good candidates for wait-and-see management and those who might benefit from additional systemic or radiation therapies.
Collapse
Affiliation(s)
- Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomohisa Sakai
- Department of Orthopaedic Surgery, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Kan Ito
- Department of Orthopaedic Surgery, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Norifumi Naka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Division of Orthopaedic Surgery, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Tomotake Okuma
- Department of Muscloskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, 113-0021, Japan
| | - Tsukasa Yonemoto
- Division of Orthopaedic Surgery, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Hiroshi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Hiroaki Hiraga
- Department of Orthopaedic Surgery, Hokkaido Cancer Center, Sapporo, 003-0804, Japan
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Toru Motoi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, 113-0021, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University Hospital, Nagoya, 466-8550, Japan.
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
48
|
Jia H, Mo W, Hong M, Jiang S, Zhang YY, He D, Yu D, Shi Y, Cao J, Xu X, Zhang S. Interferon-α inducible protein 6 (IFI6) confers protection against ionizing radiation in skin cells. J Dermatol Sci 2020; 100:139-147. [PMID: 33059972 DOI: 10.1016/j.jdermsci.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Radiation-induced skin injury is one of the main adverse effects and a dose-limiting factor of radiotherapy without feasible treatment. The underlying mechanism of this disease is still limited. OBJECTIVE To investigate the potential molecular pathways and mechanisms of radiation-induced skin injury. METHODS mRNA expression profiles were determined by Affymetrix Human HTA2.0 microarray.IFI6 overexpression and knockdown were mediated by lentivirus. The functional changes of skin cells were measured by flow cytometry, ROS probe and Edu probe. Protein distribution was detected by immunofluorescence experiment, and IFI6-interacting proteins were detected by immunoprecipitation (IP) combined with mass spectrometry. The global gene changes in IFI6-overexpressed skin cells after irradiation were detected by RNA-seq. RESULTS mRNA expression profiling showed 50 upregulated and 13 down regulated genes and interferon alpha inducible protein 6 (IFI6) was top upregulated. Overexpression of IFI6 promoted cell proliferation and reduced cell apoptosis as well as ROS production following radiation, and conversely, increased the radiosensitivity of HaCaT and human skin fibroblast (WS1). IFI6 was translocated into nucleus in irradiated skin cells and the interacting relationship with mitochondrial single-stranded DNA-binding protein 1 (SSBP1), which could enhance the transcriptional activity of heat shock transcription factor 1 (HSF1).IFI6 augmented HSF1 activity following radiation in HaCaT and WS1 cells. RNA-seq analysis showed IFI6 modulated virus infection and cellular response to stress pathways, which may help to further explore how IFI6 regulate the transcriptional activity of HSF1. CONCLUSION This study reveals that IFI6 is induced by ionizing radiation and confers radioprotection in skin cells.
Collapse
Affiliation(s)
- Huimin Jia
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Mo
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Min Hong
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Sheng Jiang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Dan He
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Daojiang Yu
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuhong Shi
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China.
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Ji J, Xu MX, Qian TY, Zhu SZ, Jiang F, Liu ZX, Xu WS, Zhou J, Xiao MB. The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer. Mol Biol Rep 2020; 47:6091-6103. [PMID: 32761301 DOI: 10.1007/s11033-020-05685-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer is the leading cause of cancer-related death among women worldwide. Identifying an effective treatment with fewer side effects is imperative, because all of the current treatments have unique disadvantages. Aldo-keto reductase family 1 member B1 (AKR1B1) is highly expressed in various cancers and is associated with tumor development, but has not been studied in cervical cancer. In the current study, we used CRISPR/Cas9 technology to establish a stable HeLa cell line with AKR1B1 knockout. In vitro, AKR1B1 knockout inhibited the proliferation, migration and invasion of HeLa cells, providing evidence that AKR1B1 is an innovative therapeutic target. Notably, the clinically used epalrestat, an inhibitor of aldose reductases, including AKR1B1, had the same effect as AKR1B1 knockout on HeLa cells. This result suggests that epalrestat could be used in the clinical treatment of cervical cancer, a prospect that undoubtedly requires further research. Moreover, aiming to determine the underlying regulatory mechanism of AKR1B1, we screened a series of differentially regulated genes (DEGs) by RNA sequencing and verified selected DEGs by quantitative RT-PCR. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs revealed a correlation between AKR1B1 and cancer. In summary, epalrestat inhibits the progression of cervical cancer by inhibiting AKR1B1, and thus may be a new drug for the clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Jie Ji
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Min-Xue Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tian-Yang Qian
- Chinese Medicine 193, First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Sheng-Ze Zhu
- Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, People's Republic of China
| | - Zhao-Xiu Liu
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, People's Republic of China
| | - Wei-Song Xu
- Department of Gastroenterology, Second People's Hospital of Nantong, Nantong, 226001, Jiangsu, People's Republic of China
| | - Juan Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Ming-Bing Xiao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Department of Gastroenterology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
50
|
Liu Z, Gu S, Lu T, Wu K, Li L, Dong C, Zhou Y. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res 2020; 39:144. [PMID: 32727517 PMCID: PMC7388476 DOI: 10.1186/s13046-020-01646-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal forms of adult cancer with poor prognosis. Substantial evidence indicates that reactive oxygen species (ROS) are important modulators of aggressive cancer behavior. However, the mechanism by which ESCC cells integrate redox signals to modulate carcinoma progression remains elusive. METHODS The expression of interferon alpha inducible protein 6 (IFI6) in clinical ESCC tissues and cell lines was detected by RT-PCR and Western blotting. The correlation between IFI6 expression levels and aggressive ESCC disease stage was examined by immunohistochemistry. Bioinformatic analysis was conducted to explore the potential function of IFI6 in ESCC. ESCC cell lines stably depleted of IFI6 and ectopically expressing IFI6 were established using lentiviruses expressing shRNAs and an IFI6 expression plasmid, respectively. The effects of IFI6 on ESCC cells were determined by cell-based analyses, including EdU assay, apoptotic assay, cellular and mitochondria-specific ROS detection, seahorse extracellular flux, and mitochondrial calcium flux assays. Blue native-polyacrylamide gel electrophoresis was used to determine mitochondrial supercomplex assembly. Transcriptional activation of NADPH oxidase 4 (NOX4) via ATF3 was confirmed by dual luciferase assay. In vivo tumor growth was determined in mouse xenograft models. RESULTS We find that the expression of IFI6, an IFN-stimulated gene localized in the inner mitochondrial membrane, is markedly elevated in ESCC patients and a panel of ESCC cell lines. High IFI6 expression correlates with aggressive disease phenotype and poor prognosis in ESCC patients. IFI6 depletion suppresses proliferation and induces apoptosis by increasing ROS accumulation. Mechanistically, IFI6 ablation induces mitochondrial calcium overload by activating mitochondrial Ca2+ uniporter and subsequently ROS production. Following IFI6 ablation, mitochondrial ROS accumulation is also induced by mitochondrial supercomplex assembly suppression and oxidative phosphorylation dysfunction, while IFI6 overexpression produces the opposite effects. Furthermore, energy starvation induced by IFI6 inhibition drives endoplasmic reticulum stress through disrupting endoplasmic reticulum calcium uptake, which upregulates NOX4-derived ROS production in an ATF3-dependent manner. Finally, the results in xenograft models of ESCC further corroborate the in vitro findings. CONCLUSION Our study unveils a novel redox homeostasis signaling pathway that regulates ESCC pathobiology and identifies IFI6 as a potential druggable target in ESCC.
Collapse
Affiliation(s)
- Zhenchuan Liu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Tiancheng Lu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Kaiqing Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Lei Li
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated with Tongji University, Shanghai, 200065, P. R. China.
| |
Collapse
|