1
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
2
|
Yang Z, Li X, Zhou L, Luo Y, Zhan N, Ye Y, Liu Z, Zhang X, Qiu T, Lin L, Peng L, Hu Y, Pan C, Sun M, Zhang Y. Ferroptosis-related lncRNAs: Distinguishing heterogeneity of the tumour microenvironment and predicting immunotherapy response in bladder cancer. Heliyon 2024; 10:e32018. [PMID: 38867969 PMCID: PMC11168393 DOI: 10.1016/j.heliyon.2024.e32018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis, a cell death pathway dependent on iron, has been shown in research to play a role in the development, advancement, and outlook of tumours through ferroptosis-related lncRNAs (FRLRs). However, the value of the FRLRs in bladder cancer (BLCA) has not been thoroughly investigated. This research project involved developing a predictive model using ten specific FRLRs (AC099850.4, AL731567.1, AL133415.1, AC021321.1, SPAG5-AS1, HMGA2-AS1, RBMS3-AS3, AC006160.1, AL583785.1, and AL662844.4) through univariate COX and LASSO regression techniques. The validation of this signature as a standalone predictor was confirmed in a group of 65 patients from the urology bladder tumour database at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, China. Patients were categorized based on their median risk score into either a low-risk group or a high-risk group. Enrichment analysis identified possible molecular mechanisms that could explain the variations in clinical outcomes observed in high-risk and low-risk groups. Moreover, we explored the correlation between FLPS and immunotherapy-related indicators. The ability of FLPS to forecast the effectiveness of immunotherapy was validated by the elevated levels of immune checkpoint genes (PD-L1, CTLA4, and PD-1) in the group at high risk. We also screened the crucial FRLR (HMGA2-AS1) through congruent expression and prognostic conditions and established a ceRNA network, indicating that HMGA2-AS1 may affect epithelial-mesenchymal transition by modulating the Wnt signalling pathway through the ceRNA mechanism. We identified the top five mRNAs (NFIB, NEGR1, JAZF1, JCAD, and ESM1) based on random forest algorithm and analysed the relationship between HMGA2-AS1, the top five mRNAs, and immunotherapy, and their interactions with drug sensitivities. Our results suggest that patients with BLCA have a greater sensitivity to four drugs (dasatinib, pazopanib, erismodegib and olaparib). Our study provides new insights into the TME, key signalling pathways, genome, and potential therapeutic targets of BLCA, with future guidance for immunotherapy and targeted precision drugs.
Collapse
Affiliation(s)
- Zhan Yang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoqi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lijun Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Zhan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yifan Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaoting Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yiming Hu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoran Pan
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
3
|
Klotz LV, Casjens S, Johnen G, Taeger D, Brik A, Eichhorn F, Förster L, Kaiser N, Muley T, Stolp C, Schneider M, Gleichenhagen J, Brüning T, Winter H, Eichhorn M, Weber DG. Combination of calretinin, MALAT1, and GAS5 as a potential prognostic biomarker to predict disease progression in surgically treated mesothelioma patients. Lung Cancer 2024; 192:107802. [PMID: 38692217 DOI: 10.1016/j.lungcan.2024.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The role of cytoreductive surgery for epithelioid pleural mesothelioma within a multimodal treatment approach remains controversial. Carefully selected patients benefit from cytoreductive surgery and adjuvant chemotherapy, but there is no established biomarker to predict tumor recurrence or progression during the course of the disease. The aim of this study was to identify potential biomarkers to predict therapeutic response in terms of progression-free survival. METHODS Between 03/2014 and 08/2022, preoperative blood samples were collected from 76 patients with epithelioid pleural mesothelioma who underwent cytoreductive surgery as part of a multimodal treatment approach. Identification of potential biomarkers was performed by determination of mesothelin and calretinin, as well as specific long non-coding RNAs and microRNAs. Receiver operating characteristic analysis, Kaplan-Meier survival analysis, and Cox regression were used to assess the association between biomarker concentrations and patient recurrence status and survival. RESULTS MALAT1, GAS5, and calretinin showed statistically significant increased biomarker levels in patients with recurrence in contrast to recurrence-free patients after surgical treatment (p < 0.0001, p = 0.0190, and p = 0.0068, respectively). The combination of the three biomarkers resulted in a sensitivity of 68 % and a specificity of 89 %. CONCLUSION MALAT1, GAS5, and calretinin could be potential biomarkers for the prediction of tumor recurrence, improving the benefit from multimodal treatment including cytoreductive surgery.
Collapse
Affiliation(s)
- Laura V Klotz
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany; Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany
| | - Laura Förster
- Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Nina Kaiser
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Thomas Muley
- German Center for Lung Research (TLRC), Germany; Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Christa Stolp
- Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Marc Schneider
- German Center for Lung Research (TLRC), Germany; Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Jan Gleichenhagen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany
| | - Martin Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany
| | - Daniel G Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| |
Collapse
|
4
|
Sun CX, Han LY, Wang K, Gao S. Serum Exosomal Long Noncoding RNA Growth Arrest-Specific 5 Predicts 3-Month Mortality in Acute-on-Chronic Hepatitis B Liver Failure. J Inflamm Res 2023; 16:4603-4616. [PMID: 37868833 PMCID: PMC10590074 DOI: 10.2147/jir.s423321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Background Acute-on-chronic hepatitis B liver failure (ACHBLF) is a clinical syndrome with an extremely high mortality. In this study, we aim to evaluate the potential role of serum exosomal long noncoding RNA (lncRNA) growth arrest-specific 5 (GAS5) in ACHBLF and its predictive value for 3-month mortality. Methods From December 2017 to June 2022, we enrolled 110 patients with ACHBLF and 42 healthy controls (HCs). Exosomes were isolated from the serum of the participants. Serum exosomal lncRNA GAS5 was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The functional role of lncRNA GAS5 on hepatocyte phenotypes was investigated through loss-of-function and gain-of-function assays. Exosomal labeling and cell uptake assay were used to determine the exosomes-mediated transmission of lncRNA GAS5 in hepatocytes in vitro. Results The serum exosomal lncRNA GAS5 was identified to be an independent predictor for 3-month mortality of ACHBLF. It yielded an area under the receiver operating characteristic curve (AUC) of 0.88, which was significantly higher than MELD score (AUC 0.73; P < 0.01). Further study found that lncRNA GAS5 could inhibit hepatocytes proliferation and increase hepatocytes apoptosis. Exosomes-mediated lncRNA GAS5 transfer promoted hepatocytes injury. The knocked down of lncRNA GAS5 weakened H2O2-induced hepatocytes injury. Conclusion We revealed that serum exosomal lncRNA GAS5 might promote hepatocytes injury and showed high predictive value for 3-month mortality in ACHBLF.
Collapse
Affiliation(s)
- Cheng-Xi Sun
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Li-Yan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Hepatology, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Hepatology, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Institute of Hepatology, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
5
|
Gao X, Lu C, Liu Z, Lin Y, Huang J, Lu L, Li S, Huang X, Tang M, Huang S, He Z, She X, Liang R, Ye J. RBM38 Reverses Sorafenib Resistance in Hepatocellular Carcinoma Cells by Combining and Promoting lncRNA-GAS5. Cancers (Basel) 2023; 15:cancers15112897. [PMID: 37296859 DOI: 10.3390/cancers15112897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a life-threatening human malignancy and the fourth leading cause of cancer-related deaths worldwide. Patients with HCC are often diagnosed at an advanced stage with a poor prognosis. Sorafenib is a multikinase inhibitor used as the first-line treatment for patients with advanced HCC. However, acquired resistance to sorafenib in HCC leads to tumor aggression and limits the drug's survival benefits; the underlying molecular mechanisms for this resistance remain unclear. METHODS This study aimed to examine the role of the tumor suppressor RBM38 in HCC, and its potential to reverse sorafenib resistance. In addition, the molecular mechanisms underlying the binding of RBM38 and the lncRNA GAS5 were examined. The potential involvement of RBM38 in sorafenib resistance was examined using both in vitro and in vivo models. Functional assays were performed to assess whether RBM38: binds to and promotes the stability of the lncRNA GAS5; reverses the resistance of HCC to sorafenib in vitro; and suppresses the tumorigenicity of sorafenib-resistant HCC cells in vivo. RESULTS RBM38 expression was lower in HCC cells. The IC50 value of sorafenib was significantly lower in cells with RBM38 overexpression than in control cells. RBM38 overexpression improved sorafenib sensitivity in ectopic transplanted tumors and suppressed the growth rate of tumor cells. RBM38 could bind to and stabilize GAS5 in sorafenib-resistant HCC cells. In addition, functional assays revealed that RBM38 reversed sorafenib resistance both in vivo and in vitro in a GAS5-dependent manner. CONCLUSIONS RBM38 is a novel therapeutic target that can reverse sorafenib resistance in HCC by combining and promoting the lncRNA GAS5.
Collapse
Affiliation(s)
- Xing Gao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Ziyu Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Lu Lu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shuanghang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xi Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Minchao Tang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shilin Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Ziqin He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xiaomin She
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
6
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Jiang L, Sun G, Zou L, Guan Y, Hang Y, Liu Y, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:325-334. [PMID: 36970945 DOI: 10.1080/14737159.2023.2195554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The relationship between noncoding RNAs and the prognosis of bladder cancer (BC) is still controversial. The purpose of this study is to evaluate the relationship between noncoding RNAs and prognosis by meta-analysis. METHODS Comprehensive retrieval of PubMed, Embase, the Cochrane Library, the Web of Science, CNKI, and WanFang databases is related to the correlation between noncoding RNAs and the prognosis of BC. Data were extracted, and the literature quality was evaluated. STATA16.0 served for the meta-analysis. RESULTS 1. CircRNAs: High circ-ZFR expression led to poor overall survival (OS) of BC. 2. LncRNAs: Low lnc-GAS5 expression predicted poor OS of BC, high lnc-TUG1 expression predicted poor OS of BC. 3. MiRNAs: High miR-21 expression predicted poor OS of BC, high miR-222 expression led to poor OS of BC, high miR-155 expression predicted poor progression-free survival (PFS) of BC, high miR-143 expression caused poor PFS of BC, low miR-214 expression could result in poor recurrence-free survival (RFS) of BC. CONCLUSIONS High circ-ZFR, lnc-TUG1, miR-222, and miR-21 expressions were correlated with poor OS of BC; high miR-155 and miR-143 expression predicted poor PFS of BC; low lnc-GAS5 expression predicted poor OS of BC; low miR-214 expression predicted poor RFS of BC.
Collapse
|
8
|
Identification of Long Non-Coding RNA MIR4435-2HG as a Prognostic Biomarker in Bladder Cancer. Genes (Basel) 2022; 13:genes13081462. [PMID: 36011373 PMCID: PMC9408477 DOI: 10.3390/genes13081462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
The abnormal expression of long non-coding RNAs(lncRNAs) is closely related to the prognosis of patients. This finding may indicate a new target for the treatment of malignant tumors. Non-muscle invasive bladder cancer (NMIBC) is the most common subtype of bladder cancer, and BCG intravesical therapy is the first-line treatment for NMIBC, but about half of NMIBC patients relapse within two years after BCG treatment. Therefore, it is necessary to screen out lncRNAs related to the prognosis and treatment of BGC-resistant patients. Here, we performed differential expression analysis of lncRNAs in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and screened MIR4435-2HG as the only BCG-response-related lncRNA. Then, the prognosis value of MIR4435-2HG was validated in several publicly available cohorts, and confirmed its prognostic value in bladder cancer of different stages. In addition, we also analyzed its genetic alterations, clinical relevance, function enrichment, and association with other biomarkers. Further validation of the expression of MIR4435-2HG might be helpful to instruct NMIBC prognosis and treatment.
Collapse
|
9
|
Lin G, Wu T, Gao X, He Z, Nong W. Research Progress of Long Non-Coding RNA GAS5 in Malignant Tumors. Front Oncol 2022; 12:846497. [PMID: 35837102 PMCID: PMC9273967 DOI: 10.3389/fonc.2022.846497] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With completing the whole genome sequencing project, awareness of lncRNA further deepened. The growth arrest-specific transcript 5 (GAS5) was initially identified in growth-inhibiting cells. GAS5 is a lncRNA (long non-coding RNA), and it plays a crucial role in various human cancers. There are small ORFs (open reading frames) in the exons of the GAS5 gene sequence, but they do not encode functional proteins. In addition, GAS5 is also the host gene of several small nucleolar RNAs (snoRNA). These snoRNAs are believed to play a suppressive role during tumor progression by methylating ribosomal RNA (rRNA). As a result, GAS5 expression levels in tumor tissues are significantly reduced, leading to increased malignancy, poor prognosis, and drug resistance. Recent studies have demonstrated that GAS5 can interact with miRNAs by base-pairing and other functional proteins to inhibit their biological functions, impacting signaling pathways and changing the level of intracellular autophagy, oxidative stress, and immune cell function in vivo. In addition, GAS5 participates in regulating proliferation, invasion, and apoptosis through the above molecular mechanisms. This article reviews the recent discoveries on GAS5, including its expression levels in different tumors, its biological behavior, and its molecular regulation mechanism in human cancers. The value of GAS5 as a molecular marker in the prevention and treatment of cancers is also discussed.
Collapse
Affiliation(s)
- Guohong Lin
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Tianzhun Wu
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Xing Gao
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Ziqin He
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Wenwei Nong
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Wenwei Nong,
| |
Collapse
|
10
|
Zhong W, Qu H, Yao B, Wang D, Qiu J. Analysis of a Long Non-coding RNA associated Signature to Predict Survival in Patients with Bladder Cancer. Cureus 2022; 14:e24818. [PMID: 35693359 PMCID: PMC9172899 DOI: 10.7759/cureus.24818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
|
11
|
Hu Y, Li H, Zhang H, Tang Q, Zhang G, Li X, Xue F. The long non-coding RNA LIMT inhibits metastasis of hepatocellular carcinoma and is suppressed by EGF signaling. Mol Biol Rep 2022; 49:4749-4757. [PMID: 35526240 PMCID: PMC9262785 DOI: 10.1007/s11033-022-07325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/06/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
Background The long non-coding RNA LIMT (lncRNA inhibiting metastasis) acts as a tumor suppressor factor in some cancers. However, the biological role of LIMT in hepatocellular carcinoma (HCC) has not been explored. Methods and Results Quantitative real-time PCR was performed to evaluate the expression of LIMT in HCC tissue. The effects of LIMT on tumor growth and metastasis were assessed by in vitro experiments, including colony formation and transwell assays, and in vivo in nude mouse models. Western blot analysis was used to evaluate the expression levels of proteins associated with epithelial-mesenchymal transition (EMT). LIMT expression was significantly lower in HCC than in normal liver tissue. Functionally, overexpression of LIMT repressed the proliferation, invasion, and EMT of HCC cells, while LIMT knockdown increased proliferation, invasion, and EMT of HCC cells in vitro. Furthermore, LIMT overexpression suppressed HCC growth and metastasis while silencing of LIMT had an opposite effect in vivo. Finally, LIMT overexpression reversed EGF-induced EMT. Conclusions Our results suggest that LIMT could play an anti-cancer effect in HCC and might be a potential novel therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07325-0.
Collapse
Affiliation(s)
- Yu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Qiang Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Guangtan Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
12
|
Musat MG, Kwon CS, Masters E, Sikirica S, Pijush DB, Forsythe A. Treatment Outcomes of High-Risk Non-Muscle Invasive Bladder Cancer (HR-NMIBC) in Real-World Evidence (RWE) Studies: Systematic Literature Review (SLR). Clinicoecon Outcomes Res 2022; 14:35-48. [PMID: 35046678 PMCID: PMC8759992 DOI: 10.2147/ceor.s341896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
Background To date, there has been limited synthesis of RWE studies in high-risk non-muscle invasive bladder cancer (HR-NMIBC). The objective of this research was to conduct a systematic review of published real-world evidence to better understand the real-world burden and treatment patterns in HR-NMIBC. Methods An SLR was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines with the scope defined by the Population, Intervention Comparators, Outcomes, and Study design (PICOS) criteria. EMBASE, MEDLINE, and Cochrane databases (Jan 2015–Jul 2020) were searched, and relevant congress abstracts (Jan 2018–Jul 2020) identified. The final analysis only included studies that enrolled ≥100 patients with HR-NMIBC from the US, Europe, Canada, and Australia. Results The SLR identified 634 RWE publications in NMIBC, of which 160 studies reported data in HR-NMIBC. The average age of patients in the studies was 71 years, and 79% were males. The rates of BCG intravesical instillations ranged from 3% to 86% (29–95% for induction and 8–83% for maintenance treatment). Five-year outcomes were 17–89% recurrence-free survival (longest survival in patients completing BCG maintenance), 58–89% progression-free survival, 71–96% cancer-specific survival (lowest survival in BCG-unresponsive patients), and 28–90% overall survival (lowest survival in patients who did not receive BCG or instillation therapy). Conclusion BCG treatment rates and survival outcomes in patients with HR-NMIBC vary in the real world, with better survival seen in patients completing maintenance BCG, responding to treatment, and not progressing to muscle-invasive disease. There is a need to better understand the factors associated with BCG use and discontinuation and for an effective treatment that improves outcomes in HR-NMIBC. Generalization of these results is limited by variations in data collection, reporting, and methodologies used across RWE studies.
Collapse
Affiliation(s)
- Mihaela Georgiana Musat
- Evidence Generation, Purple Squirrel Economics, a Wholly Owned Subsidiary of Cytel, Inc., Waltham, MA, USA
| | - Christina Soeun Kwon
- Evidence Generation, Purple Squirrel Economics, a Wholly Owned Subsidiary of Cytel, Inc., Waltham, MA, USA
| | | | - Slaven Sikirica
- Global Health Economics and Outcomes Research, Pfizer, New York, NY, USA
| | - Debduth B Pijush
- Global Health Economics and Outcomes Research, Pfizer, New York, NY, USA
| | - Anna Forsythe
- Value and Access, Purple Squirrel Economics, a Wholly Owned Subsidiary of Cytel, Inc., Waltham, MA, USA
| |
Collapse
|
13
|
Expression Profiles of Long Non-Coding RNA GAS5 and MicroRNA-222 in Younger AML Patients. Diagnostics (Basel) 2021; 12:diagnostics12010086. [PMID: 35054253 PMCID: PMC8774494 DOI: 10.3390/diagnostics12010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignant disease both on clinical and genetic levels. AML has poor prognosis and, therefore, there is a constant need to find new prognostic markers, as well as markers that can be used as targets for innovative therapeutics. Recently, the search for new biomarkers has turned researchers’ attention towards non-coding RNAs, especially long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). We investigated the expression level of growth arrest-specific transcript 5 (GAS5) lncRNA in 94 younger AML patients, and also the expression level of miR-222 in a cohort of 39 AML patients with normal karyotype (AML-NK), in order to examine their prognostic potential. Our results showed that GAS5 expression level in AML patients was lower compared to healthy controls. Lower GAS5 expression on diagnosis was related to an adverse prognosis. In the AML-NK group patients had higher expression of miR-222 compared to healthy controls. A synergistic effect of GAS5low/miR-222high status on disease prognosis was not established. This is the first study focused on examining the GAS5 and miR-222 expression pattern in AML patients. Its initial findings indicate the need for further investigation of these two non-coding RNAs, their potential roles in leukemogenesis, and the prognosis of AML patients.
Collapse
|
14
|
Xagorari M, Marmarinos A, Kossiva L, Baka M, Doganis D, Servitzoglou M, Tsolia M, Scorilas A, Avgeris M, Gourgiotis D. Overexpression of the GR Riborepressor LncRNA GAS5 Results in Poor Treatment Response and Early Relapse in Childhood B-ALL. Cancers (Basel) 2021; 13:6064. [PMID: 34885174 PMCID: PMC8656629 DOI: 10.3390/cancers13236064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoids (GCs) remain the cornerstone of childhood acute lymphoblastic leukemia (chALL) therapy, exerting their cytotoxic effects through binding and activating of the glucocorticoid receptor (GR). GAS5 lncRNA acts as a potent riborepressor of GR transcriptional activity, and thus targeting GAS5 in GC-treated chALL could provide further insights into GC resistance and support personalized treatment decisions. Herein, to study the clinical utility of GAS5 in chALL prognosis and chemotherapy response, GAS5 expression was quantified by RT-qPCR in bone marrow samples of chB-ALL patients at diagnosis (n = 164) and at end-of-induction (n = 109), treated with ALL-BFM protocol. Patients' relapse and death were used as clinical end-points for survival analysis. Bootstrap analysis was performed for internal validation, and decision curve analysis assessed the clinical net benefit for chALL prognosis. Our findings demonstrated the elevated GAS5 levels in blasts of chALL patients compared to controls and the significantly higher risk for short-term relapse and poor treatment outcome of patients overexpressing GAS5, independently of their clinicopathological data. The unfavorable prognostic value of GAS5 overexpression was strongly validated in the high-risk/stem-cell transplantation subgroup. Finally, multivariate models incorporating GAS5 levels resulted in superior risk stratification and clinical benefit for chALL prognostication, supporting personalized prognosis and precision medicine decisions in chALL.
Collapse
Affiliation(s)
- Marieta Xagorari
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
| | - Lydia Kossiva
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (L.K.); (M.T.)
| | - Margarita Baka
- Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.B.); (D.D.); (M.S.)
| | - Dimitrios Doganis
- Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.B.); (D.D.); (M.S.)
| | - Marina Servitzoglou
- Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.B.); (D.D.); (M.S.)
| | - Maria Tsolia
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (L.K.); (M.T.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
| |
Collapse
|
15
|
Biological functions and clinical significance of long noncoding RNAs in bladder cancer. Cell Death Discov 2021; 7:278. [PMID: 34611133 PMCID: PMC8492632 DOI: 10.1038/s41420-021-00665-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients' clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.
Collapse
|
16
|
He Y, Wu Y, Liu Z, Li B, Jiang N, Xu P, Xu A. Identification of Signature Genes Associated With Invasiveness and the Construction of a Prognostic Model That Predicts the Overall Survival of Bladder Cancer. Front Genet 2021; 12:694777. [PMID: 34589112 PMCID: PMC8473900 DOI: 10.3389/fgene.2021.694777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Bladder cancer has become the tenth most diagnosed cancer worldwide. The prognosis has been shown to differ between non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). We aimed to identify signature genes that are associated with the invasiveness and survival of bladder cancer and to identify potential treatments. Methods: We downloaded gene expression profiles of bladder cancer from the Gene Expression Omnibus database to identify differentially expressed genes and perform weighted gene co-expression network analysis. Functional enrichment was analyzed by GO and KEGG analyses. Hub genes were identified from the significant module. Another dataset was also acquired to verify the expression of hub genes. Univariate and multivariate Cox regression analyses were applied to the dataset downloaded from The Cancer Genome Atlas database. Risk scores were calculated and the effect was evaluated by Kaplan-Meier survival analysis. A nomogram was constructed and validated using training and testing samples, respectively. Analysis of the tumor immune microenvironment was conducted with the CIBERSORT algorithm. Results: In total, 1,245 differentially expressed genes (DEGs) were identified. A distinct module was identified that was significantly correlated to invasiveness. The genes within this module were found to be significantly associated with extracellular exosomes, GTPase activity, metabolic pathways, etc. Three hub genes (VSIG2, PPFIBP2, and DENND2D) were identified as biomarkers of invasiveness; two of these (PPFIBP2 and DENND2D) were closely associated with prognosis. The risk score was regarded as an independent prognostic factor. The nomogram was associated with acceptable accuracy for predicting 1- and 5-year overall survival. The infiltrating levels of resting NK cells, activated natural killer (NK) cells, CD8+ T cells, activated memory CD4+ T cells, and T follicular helper cells, were significantly higher in the group with lower risk scores. The group with higher risk scores showed predominant infiltration by regulatory T cells (Tregs). Conclusion: We successfully identified three signature genes related to invasiveness and constructed a nomogram of bladder cancer with acceptable performance. Differences suggested by risk scores between groups of patients showing diverse patterns of immune cell infiltration may be beneficial for selecting therapeutic approaches and predicting prognosis.
Collapse
Affiliation(s)
- Yang He
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongxin Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boping Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The First People's Hospital of Kashgar Prefecture, Kashgar, China
| |
Collapse
|
17
|
Li M, Zhang X, Ding X, Zheng Y, Du H, Li H, Ji H, Wang Z, Jiao P, Song X, Zhong Y, Wu H. Long Noncoding RNA LINC00460 Promotes Cell Progression by Sponging miR-4443 in Head and Neck Squamous Cell Carcinoma. Cell Transplant 2021; 29:963689720927405. [PMID: 32478564 PMCID: PMC7563806 DOI: 10.1177/0963689720927405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. Long noncoding RNAs were proved to be associated with the development and progression in HNSCC. However, the mechanism of LINC00460 in HNSCC needs to be further investigated. The study used quantitative real-time polymerase chain reaction assay to detect the expression of LINC00460 in cancer tissues and cell lines. Gain and loss of function experiments were conducted to analyze the effects of LINC00460 and miR-4443 on cell proliferation, invasion, and apoptosis of HNSCC cells in vitro. The interactions among miR-4443 and LINC00460 were detected by dual-luciferase reporter assay. Here, the study showed that LINC00460 was highly expressed in HNSCC tissues and cell lines. Functionally, knockdown of LINC00460 inhibited HNSCC cell proliferation and migration in vitro. Besides, LINC00460 promoted cell progression by sponging miR-4443, and miR-4443 inhibitor could reverse the effects of si-LINC00460 on cell proliferation and migration. In summary, LINC00460 could potentially promote cell progression and epithelial mesenchymal transition by sponging miR-4443 in HNSCC. LINC00460 could be used as a potential therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China.,Both the authors contributed equally to this article
| | - Xiaomin Zhang
- Paediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China.,Both the authors contributed equally to this article
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Huaiqi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Zeyu Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Pengfei Jiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Yi Zhong
- Department of Oral Pathology, Institute of Stomatology, Nanjing Medical University, Jiangsu, China
| | - HeMing Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
18
|
Chen YS, Xu YP, Liu WH, Li DC, Wang H, Li CF. Long Noncoding RNA KCNMB2-AS1 Promotes SMAD5 by Targeting miR-3194-3p to Induce Bladder Cancer Progression. Front Oncol 2021; 11:649778. [PMID: 34026626 PMCID: PMC8138055 DOI: 10.3389/fonc.2021.649778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Bladder cancer is a common malignant tumor of the urinary system, with the fourth-highest incidence of male malignant tumors in Europe and the United States. So far, the mechanism of bladder cancer progression and metastasis has not been clarified. The aim of our study was to validate the way of long noncoding RNA (lncRNA) KCNMB2-AS1 on the metabolism and growth of bladder cancer cells by miR-3194-3p/SMAD5. Patients and Methods The Gene Expression was analyzed by qRT-PCR in bladder cancer tissues and cell lines, with the highly expressed KCNMB2-AS1 screened out. Cell proliferation was detected by Edu staining and clone formation assay, cell migration, and invasion by wound healing and transwell assays. Cell stemness was determined by assessing sphere-forming ability and stemness marker. Correlation between miRNA and lncRNA/gene was verified by dual‐luciferase assay and RIP, and the effect of KCNMB2-AS1 on bladder cancer growth by nude mice tumor formation experiment. Results Here, we revealed the increased level of KCNMB2-AS1 in bladder cancer for the first time. Knockdown of KCNMB2-AS1 in vitro prevented the ability of proliferation, metastasis, and stemness of cancer cells. In vivo, the silencing of KCNMB2-AS1 also prevented tumor growth in vivo. Next, we revealed that KCNMB2-AS1 could interact with miR-3194-3p and uncovered that SAMD5 was a downstream target of miR-3194-3p. Conclusion In conclusion, KCNMB2-AS1 mediated the bladder cancer cells progress by regulating the miR-3194-3p/SAMD5 signal pathway, which would provide a new target for bladder cancer research.
Collapse
Affiliation(s)
- Yong-Sheng Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yong-Peng Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen-Hua Liu
- Intensive Care Unit (ICU) Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - De-Chao Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huan Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang-Fu Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
19
|
Huang H, Du J, Jin B, Pang L, Duan N, Huang C, Hou J, Yu W, Hao H, Li H. Combination of Urine Exosomal mRNAs and lncRNAs as Novel Diagnostic Biomarkers for Bladder Cancer. Front Oncol 2021; 11:667212. [PMID: 33987102 PMCID: PMC8111292 DOI: 10.3389/fonc.2021.667212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background The recent discovery of miRNAs and lncRNAs in urine exosomes has emerged as promising diagnostic biomarkers for bladder cancer (BCa). However, mRNAs as the direct products of transcription has not been well evaluated in exosomes as biomarkers for BCa diagnosis. The purpose of this study was to identify tumor progression-related mRNAs and lncRNAs in urine exosomes that could be used for detection of BCa. Methods RNA-sequencing was performed to identify tumor progression-related biomarkers in three matched superficial tumor and deep infiltrating tumor regions of muscle-invasive bladder cancer (MIBC) specimens, differently expressed mRNAs and lncRNAs were validated in TCGA dataset (n = 391) in the discovery stage. Then candidate RNAs were chosen for evaluation in urine exosomes of a training cohort (10 BCa and 10 healthy controls) and a validation cohort (80 BCa and 80 healthy controls) using RT-qPCR. The diagnostic potential of the candidates were evaluated by receiver operating characteristic (ROC) curves. Results RNA sequencing revealed 8 mRNAs and 32 lncRNAs that were significantly upregulated in deep infiltrating tumor region. After validation in TCGA database, 10 markedly dysregulated RNAs were selected for further investigation in urine exosomes, of which five (mRNAs: KLHDC7B, CASP14, and PRSS1; lncRNAs: MIR205HG and GAS5) were verified to be significantly dysregulated. The combination of the five RNAs had the highest AUC to disguising the BCa (0.924, 95% CI, 0.875–0.974) or early stage BCa patients (0.910, 95% CI, 0.850 to 0.971) from HCs. The expression levels of these five RNAs were correlated with tumor stage, grade, and hematuria degrees. Conclusions These findings highlight the potential of urine exosomal mRNAs and lncRNAs profiling in the early diagnosis and provide new insights into the molecular mechanisms involved in BCa.
Collapse
Affiliation(s)
- Haiming Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jialin Du
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Lu Pang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Nan Duan
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chenwei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiayin Hou
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Han Hao
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
20
|
Yang Z, Li Q, Zheng X, Xie L. Long Noncoding RNA Small Nucleolar Host Gene: A Potential Therapeutic Target in Urological Cancers. Front Oncol 2021; 11:638721. [PMID: 33968736 PMCID: PMC8100577 DOI: 10.3389/fonc.2021.638721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of urological cancer has been gradually increasing in the last few decades. However, current diagnostic tools and treatment strategies continue to have limitations. Substantial evidence shows that long noncoding RNAs (lncRNAs) play essential roles in carcinogenesis and the progression, treatment response and prognosis of multiple human cancers, including urological cancers, gastrointestinal tumours, reproductive cancers and respiratory neoplasms. LncRNA small nucleolar RNA host genes (SNHGs), a subgroup of lncRNAs, have been found to be dysregulated in tumour cell biology. In this review, we summarize the impacts of lncRNA SNHGs in urological malignancies and the underlying mechanisms.
Collapse
Affiliation(s)
- Zitong Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinchen Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Yang L, Chen Y, Liu N, Shi Q, Han X, Gan W, Li D. Low expression of TRAF3IP2-AS1 promotes progression of NONO-TFE3 translocation renal cell carcinoma by stimulating N 6-methyladenosine of PARP1 mRNA and downregulating PTEN. J Hematol Oncol 2021; 14:46. [PMID: 33741027 PMCID: PMC7980631 DOI: 10.1186/s13045-021-01059-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background NONO-TFE3 translocation renal cell carcinoma (NONO-TFE3 tRCC) is one subtype of RCCs associated with Xp11.2 translocation/TFE3 gene fusions RCC (Xp11.2 tRCCs). Long non-coding RNA (lncRNA) has attracted great attention in cancer research. The function and mechanisms of TRAF3IP2 antisense RNA 1 (TRAF3IP2-AS1), a natural antisense lncRNA, in NONO-TFE3 tRCC remain poorly understood. Methods FISH and qRT-PCR were undertaken to study the expression, localization and clinical significance of TRAF3IP2-AS1 in Xp11.2 tRCC tissues and cells. The functions of TRAF3IP2-AS1 in tRCC were investigated by proliferation analysis, EdU staining, colony and sphere formation assay, Transwell assay and apoptosis analysis. The regulatory mechanisms among TRAF3IP2-AS1, PARP1, PTEN and miR-200a-3p/153-3p/141-3p were investigated by luciferase assay, RNA immunoprecipitation, Western blot and immunohistochemistry. Results The expression of TRAF3IP2-AS1 was suppressed by NONO-TFE3 fusion in NONO-TFE3 tRCC tissues and cells. Overexpression of TRAF3IP2-AS1 inhibited the proliferation, migration and invasion of UOK109 cells which were derived from cancer tissue of patient with NONO-TFE3 tRCC. Mechanistic studies revealed that TRAF3IP2-AS1 accelerated the decay of PARP1 mRNA by direct binding and recruitment of N6-methyladenosie methyltransferase complex. Meanwhile, TRAF3IP2-AS1 competitively bound to miR-200a-3p/153-3p/141-3p and prevented those from decreasing the level of PTEN. Conclusions TRAF3IP2-AS1 functions as a tumor suppressor in NONO-TFE3 tRCC progression and may serve as a novel target for NONO-TFE3 tRCC therapy. TRAF3IP2-AS1 expression has the potential to serve as a novel diagnostic and prognostic biomarker for NONO-TFE3 tRCC detection. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01059-5.
Collapse
Affiliation(s)
- Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ning Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - QianCheng Shi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
22
|
Chi Q, Xu H, Song D, Wang Z, Wang Z, Ma G. α-E-Catenin (CTNNA1) Inhibits Cell Proliferation, Invasion and EMT of Bladder Cancer. Cancer Manag Res 2020; 12:12747-12758. [PMID: 33364826 PMCID: PMC7751797 DOI: 10.2147/cmar.s259269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Aim Bladder cancer (BLCA) is an urogenital system tumor with a high morbidity. We aimed to explore the function and potential mechanism of α-E-catenin (CTNNA1) in BLCA. Methods The CTNNA1 expression in BLCA tissues was detected using qRT-PCR and immunohistochemistry. QRT-PCR and Western blot were performed to measure the CTNNA1 expression in BLCA cell lines. CTNNA1 expression was up-regulated in T24 and UMUC-2 cells by CTNNA1 overexpression plasmid transfection. Cell proliferation, apoptosis, migration and invasion were respectively assessed by CCK-8 assay, flow cytometry, wound healing assay and transwell assay. The expression levels of epithelial–mesenchymal transition (EMT)-related factors were tested by qRT-PCR and Western blot. BLCA nude mice models were constructed to explore the effects of CTNNA1 on BLCA in vivo. Gene set enrichment analysis (GSEA) was proceeded to identify the CTNNA1-related pathways in BLCA. Results The expressions of CTNNA1 were down-regulated in BLCA tissues and cell lines, and its low expression indicated poor prognosis of BLCA patients. CTNNA1 inhibited cell proliferation, migration, invasion and EMT and promoted cell apoptosis in BLCA cells. CTNNA1 enhanced E-cadherin expression and suppressed N-cadherin, snail, MMP2 and MMP9 expressions in BLCA cells, which suggested that CTNNA1 repressed EMT in BLCA cells. Moreover, CTNNA1 could inhibit tumor growth in vivo. CTNNA1 was positively associated with P53 and apoptosis pathways in BLCA cells. Conclusion CTNNA1 inhibited cell proliferation, migration, invasion and EMT and promoted cell apoptosis in BLCA via activating P53 and apoptosis pathways. CTNNA1 might be a novel target in BLCA therapy.
Collapse
Affiliation(s)
- Qiang Chi
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Hui Xu
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Dianbin Song
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Zhiyong Wang
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Zemin Wang
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Guang Ma
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| |
Collapse
|
23
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Immune-Related lncRNA Correlated with Transcription Factors Provide Strong Prognostic Prediction in Gliomas. JOURNAL OF ONCOLOGY 2020; 2020:2319194. [PMID: 33178271 PMCID: PMC7647786 DOI: 10.1155/2020/2319194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
Glioma is the most common and deadly tumor in central nervous system. According to previous studies, long noncoding RNAs (lncRNA) and transcription factors were significant factors of gliomas progression by regulating gliomas immune microenvironment. In our study, we built two independent cohorts from CGGA and TCGA. And we extracted 253 immune-related lncRNA correlated with prognosis. After LASSO analysis and multivariate Cox regression analysis, 8 immune-related lncRNA were used to construct classifier. The effectiveness of classifier was confirmed in both CGGA (AUC = 0.869) and TCGA (AUC = 0.902) cohorts. The correlation between transcription factors and immune-related lncRNA was calculated by WCGNA. Eventually, we built a network between 8 lncRNA and transcription factors. The function of core immune-related lncRNA in gliomas immune microenvironment was also investigated by CIBERTSORT. Our research provided a strong classifier of immune-related lncRNA to predict gliomas patient outcome. We also found the correlation between core immune-related lncRNA and transcription factors. These results may stimulate new strategy of immunotherapy in gliomas patients.
Collapse
|
25
|
Liu Z, Zhang Y, Han X, Li C, Yang X, Gao J, Xie G, Du N. Identifying Cancer-Related lncRNAs Based on a Convolutional Neural Network. Front Cell Dev Biol 2020; 8:637. [PMID: 32850792 PMCID: PMC7432192 DOI: 10.3389/fcell.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Millions of people are suffering from cancers, but accurate early diagnosis and effective treatment are still tough for all doctors. In recent years, long non-coding RNAs (lncRNAs) have been proven to play an important role in diseases, especially cancers. These lncRNAs execute their functions by regulating gene expression. Therefore, identifying lncRNAs which are related to cancers could help researchers gain a deeper understanding of cancer mechanisms and help them find treatment options. A large number of relationships between lncRNAs and cancers have been verified by biological experiments, which give us a chance to use computational methods to identify cancer-related lncRNAs. In this paper, we applied the convolutional neural network (CNN) to identify cancer-related lncRNAs by lncRNA's target genes and their tissue expression specificity. Since lncRNA regulates target gene expression and it has been reported to have tissue expression specificity, their target genes and expression in different tissues were used as features of lncRNAs. Then, the deep belief network (DBN) was used to unsupervised encode features of lncRNAs. Finally, CNN was used to predict cancer-related lncRNAs based on known relationships between lncRNAs and cancers. For each type of cancer, we built a CNN model to predict its related lncRNAs. We identified more related lncRNAs for 41 kinds of cancers. Ten-cross validation has been used to prove the performance of our method. The results showed that our method is better than several previous methods with area under the curve (AUC) 0.81 and area under the precision–recall curve (AUPR) 0.79. To verify the accuracy of our results, case studies have been done.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.,Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chenxi Li
- Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuhui Yang
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jie Gao
- Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Nan Du
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.,Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Du XH, Wei H, Qu GX, Tian ZC, Yao WT, Cai QQ. Gene expression regulations by long noncoding RNAs and their roles in cancer. Pathol Res Pract 2020; 216:152983. [DOI: 10.1016/j.prp.2020.152983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
|
27
|
Avgeris M, Tsilimantou A, Levis PK, Rampias T, Papadimitriou MA, Panoutsopoulou K, Stravodimos K, Scorilas A. Unraveling UCA1 lncRNA prognostic utility in urothelial bladder cancer. Carcinogenesis 2020; 40:965-974. [PMID: 30815670 DOI: 10.1093/carcin/bgz045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
In the era of precision oncology, bladder cancer (BlCa) is characterized by generic patient management and lack of personalized prognosis and surveillance. Herein, we have studied the clinical significance of urothelial cancer associated 1 (UCA1) lncRNA in improving patients' risk stratification and prognosis. A screening cohort of 176 BlCa patients was used for UCA1 quantification. The Hedegaard et al. (n = 476) and The Cancer Genome Atlas (TCGA) provisional (n = 413) were analyzed as validation cohorts for non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), respectively. Patients' survival outcome was assessed using recurrence and progression for NMIBC or death for MIBC as clinical endpoint events. Bootstrap analysis was performed for internal validation of Cox regression analysis, whereas the clinical benefit of disease prognosis was assessed by decision curve analysis. UCA1 was significantly overexpressed in bladder tumors compared with normal urothelium, which was confirmed only in the case of NMIBC. Interestingly, reduced expression of UCA1 was correlated with muscle-invasive disease as well as with tumors of higher stage and grade. UCA1 loss was strongly associated with higher risk of short-term relapse [hazard ratio (HR) = 1.974; P = 0.032] and progression to invasive stages (HR = 3.476; P = 0.023) in NMIBC. In this regard, Hedegaard et al. and TCGA validation cohorts confirmed the unfavorable prognostic nature of UCA1 loss in BlCa. Finally, prognosis prediction models integrating UCA1 underexpression and established clinical disease markers contributed to improved stratification specificity and superior clinical benefit for NMIBC prognosis. Underexpression of UCA1 correlates with worse disease outcome in NMIBC and contributes to superior prediction of disease early relapse and progression as well as improved patient stratification specificity.
Collapse
Affiliation(s)
- Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Tsilimantou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis K Levis
- First Department of Urology, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Rampias
- Biomedical Research Foundation Academy of Athens, Basic Research Center, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Ding Y, Wang J, Zhang H, Li H. Long noncoding RNA-GAS5 attenuates progression of glioma by eliminating microRNA-10b and Sirtuin 1 in U251 and A172 cells. Biofactors 2020; 46:487-496. [PMID: 31889362 DOI: 10.1002/biof.1604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) growth arrest-specific 5 (GAS5) is implicated in several cancers via modulating microRNAs (miRs). However, little information is available about the correlation between GAS5 and miR-10b. Therefore, we sought out to investigate the biological role of GAS5-miR-10b node mainly in glioma cells. We artificially modulated GAS5 to explore its roles in viability assayed by cell counting kit-8 (CCK-8), motile activities by 24-Transwell assay, as well as apoptosis by a flow cytometer and Western blot assay. miR-10b and Sirtuin 1 (Sirt1) were quantified by qRT-PCR. After co-transfection, we analyzed the viability, migration, invasion, apoptosis, and Sirt1 expression. Western blot was implemented to detect the phosphorylated forms of PTEN, PI3K, AKT, MEK, and ERK. GAS5 inhibited proliferation and motile behaviors, and fortified apoptosis. As for the viability and motile activities, the property of GAS5 was reversed in miR-10b-replenished U251 and A172 cells, while maintained in miR-10b-deficient cells. Additionally, GAS5-induced apoptosis was abolished by miR-10b overexpression while fortified by miR-10b silence. Besides, GAS5 negatively modulated Sirt1 via miR-10b. Moreover, Sirt1 negatively modulated PTEN and positively mediated the abovementioned regulators. GAS5 represses the process of glioma cells by decreasing miR-10b, which as accompanied by Sirt1 silence-induced inactivation of PTEN/PI3K/AKT and MEK/ERK cascades.
Collapse
Affiliation(s)
- Yingjie Ding
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongliang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanting Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Impact of Gene Polymorphisms in GAS5 on Urothelial Cell Carcinoma Development and Clinical Characteristics. Diagnostics (Basel) 2020; 10:diagnostics10050260. [PMID: 32354045 PMCID: PMC7277236 DOI: 10.3390/diagnostics10050260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
Urothelial cell carcinoma (UCC) is the commonest malignant tumor of the urinary tract and the second most common kidney cancer malignancy. Growth arrest-specific 5 (GAS5), a long noncoding RNA, is encoded by the GAS5 gene and plays a critical role in cellular growth arrest and apoptosis. In the current study, two single nucleotide polymorphisms (SNPs) in the GAS5 gene, rs145204276 and rs55829688, were selected to investigate correlations between these single SNPs and susceptibility to UCC. A total of 430 UCC cases and 860 ethnically matched healthy controls were included. SNP rs145204276 and SNP rs55829688 were determined using a TaqMan genotyping assay. Logistic regression models demonstrated that female patients with UCC carrying the rs145204276 GAS5 Ins/Del or Del/Del genotype had a 3.037-fold higher risk of larger tumor status (95% confidence interval 1.259–7.324) than did rs145204276 wild type (Ins/Ins) carriers (p = 0.011). The Cancer Genome Atlas validation cohort analysis demonstrated that the expression of GAS5 in female patients with bladder urothelial carcinoma (BLCA) with larger tumor size was much lower than that in patients with a smaller tumor size (p = 0.041). Kaplan-Meier curve analysis and the log–rank test revealed that female patients with BLCA and lower GAS5 expression had poorer overall survival than those with higher GAS5 expression. In conclusion, genetic variations in GAS5 rs145204276 may serve as a critical predictor of the clinical status of female patients with UCC.
Collapse
|
30
|
Hu Y, Gu X, Duan Y, Shen Y, Xie X. Bioinformatics analysis of prognosis-related long non-coding RNAs in invasive breast carcinoma. Oncol Lett 2020; 20:113-122. [PMID: 32565939 PMCID: PMC7285808 DOI: 10.3892/ol.2020.11558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women worldwide and needs more sensitive prognostic biomarkers to improve its treatment. In the present study, differentially expressed long non-coding RNAs (lncRNAs) in invasive breast carcinoma from The Cancer Genome Atlas and cBioPortal database were investigated, identifying 292 differentially expressed lncRNAs in 1,100 cases. By analyzing the overall survival rate, 10 lncRNAs were significantly correlated with poor prognosis. To explore the underlying molecular mechanisms of the 10 prognosis-related lncRNAs, bioinformatic methods were used to predict the potential target miRNAs, mRNAs and proteins, and to construct a lncRNA-miRNA-mRNA regulatory network and lncRNA-protein interaction network. Finally, the functions of the target genes and proteins were insvestigated using Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The results showed that these 10 lncRNAs could be novel prognostic markers for invasive breast carcinoma and the present study aimed to provide novel insight into the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Shen
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
31
|
Afferi L, Moschini M, Cumberbatch MG, Catto JW, Scarpa RM, Porpiglia F, Mattei A, Sanchez-Salas R, Esperto F. Biomarkers predicting oncological outcomes of high-risk non-muscle-invasive bladder cancer. MINERVA UROL NEFROL 2020; 72:265-278. [PMID: 32298067 DOI: 10.23736/s0393-2249.20.03786-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The European Organization for Research and Treatment of Cancer (EORTC) and the Spanish Urological Club for Oncological Treatment (CUETO) scoring systems show limited accuracy for the prediction of disease recurrence and progression of non-muscle-invasive bladder cancer (NMIBC). This aspect is even more relevant in the category of HR NMIBC. Biomarkers might potentially help to further categorize the outcomes of these patients. Therefore, we sought to review the evidence available on tissue-based, urinary, and serum biomarkers for the prediction of recurrence, progression, and survival in HR NMIBC. EVIDENCE ACQUISITION A systematic literature review without time restrictions was performed using PubMed/EMBASE, Web of Science, SCOPUS, and the Cochrane Libraries. The search was filtered for articles in the English, Italian, German, French, and Spanish languages, involving patients with more than 18 years of age. Relevant papers on tissue-based, serum and urinary biomarkers related to the prediction of oncological outcomes for high-risk bladder cancer patients were included in the analyses. EVIDENCE SYNTHESIS Overall, 71 studies were eligible for inclusion in this review. The majority of the investigations performed so far focused on immunohistochemical analyses on tumoral tissue. Overall, p53 was the most studied biomarker, but results regarding its prognostic and predictive role were contradictory. Ki67 seems to be a promising biomarker in the prediction of recurrence. Recently, PD-L1 has been associated with the prediction of recurrence free survival and of treatment-refractory disease. Markers developed un urine samples are focused on commercially available kits, which currently do not unequivocally show strongly superior levels of accuracy to cytology. However, they have demonstrated to be potentially helpful in the prediction of recurrence. Blood-based biomarkers represent an emerging reality with promising future applications. CONCLUSIONS Despite a long history of attempts to discover accurate biomarkers predicting oncological outcomes for HR NMIBC, contradictory or uncertain findings render the adoption of this ancillary techniques in clinical practice still unlikely. Future attempts should be directed to the development of prospective trials and the definition of standardized cut-off levels to render findings worthy of comparison.
Collapse
Affiliation(s)
- Luca Afferi
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Marco Moschini
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland - .,Department of Urology, Urological Research Institute, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | - James W Catto
- Unit of Academic Urology, University of Sheffield, Sheffield, UK
| | - Roberto M Scarpa
- Department of Urology, Campus Bio-Medico University, Rome, Italy
| | - Francesco Porpiglia
- Division of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Agostino Mattei
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Rafael Sanchez-Salas
- Department of Urology, Institut Mutualiste Montsouris and Universitè Paris Descartes, Paris, France
| | | | | |
Collapse
|
32
|
Cao Y, Tian T, Li W, Xu H, Zhan C, Wu X, Wang C, Wu X, Wu W, Zheng S, Xie K. Long non-coding RNA in bladder cancer. Clin Chim Acta 2020; 503:113-121. [PMID: 31940466 DOI: 10.1016/j.cca.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Bladder cancer (BC) is the ninth most common malignant disease and ranks fourteenth in cancer mortality worldwide. Moreover, among cancers, the incidence and mortality of BC in males increased to the 6th and 9th place, respectively. The overall survival (OS) declines dramatically as the cancer progresses, especially when urothelial cells transition from noninvasive to invasive. It is well known that epithelial cells can acquire invasive properties and a propensity to metastasize through the epithelial-to-mesenchymal transition (EMT) process in tumourigenesis and progression. However, the potential molecular mechanisms and key pathways are still unclear. As the sequencing technology advances, long non-coding RNAs (lncRNAs) have been proven to play an important role in regulating biological processes and cellular pathways. Here, we reviewed important lncRNAs, such as H19, UCA1 and MALAT1, that participate in the malignant phenotype of BC and regulate EMT signalling networks in the invasion-metastasis cascade during BC development. We further discuss MALAT1, PCAT-1 and SPRY4-IT1, and also urine and blood exosomal H19 and PTENP as potential noninvasive biomarkers. Moreover, antisense oligonucleotides (ASOs) and a double-stranded DNA plasmid (BC-819) have been designed for use in preclinical cancer models and clinical trials in patients. Therefore, the results of investigations have gradually prompted the utility of lncRNAs.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China; Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weijian Li
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chuanfei Zhan
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xuhong Wu
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chao Wang
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiaoli Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Wanke Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyun Zheng
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Ma H, Chang H, Yang W, Lu Y, Hu J, Jin S. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer 2020; 19:4. [PMID: 31907020 PMCID: PMC6943933 DOI: 10.1186/s12943-019-1123-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Interferon alpha (IFNα) is a well-established regulator of immunosuppression in head and neck squamous cell carcinoma (HNSCC), while the role of long noncoding RNAs (lncRNAs) in immunosuppression remains largely unknown. Methods Differentially expressed lncRNAs were screened under IFNα stimulation using lncRNA sequencing. The role and mechanism of lncRNA in immunosuppression were investigated in HNSCC in vitro and in vivo. Results We identified a novel IFNα-induced upregulated lncRNA, lncMX1–215, in HNSCC. LncMX1–215 was primarily located in the cell nucleus. Ectopic expression of lncMX1–215 markedly inhibited expression of the IFNα-induced, immunosuppression-related molecules programmed cell death 1 ligand 1 (PD-L1) and galectin-9, and vice versa. Subsequently, histone deacetylase (HDAC) inhibitors promoted the expression of PD-L1 and galectin-9. Binding sites for H3K27 acetylation were found on PD-L1 and galectin-9 promoters. Mechanistically, we found that lncMX1–215 directly interacted with GCN5, a known H3K27 acetylase, to interrupt its binding to H3K27 acetylation. Clinically, negative correlations between lncMX1–215 and PD-L1 and galectin-9 expression were observed. Finally, overexpression of lncMX1–215 suppressed HNSCC proliferation and metastasis capacity in vitro and in vivo. Conclusions Our results suggest that lncMX1–215 negatively regulates immunosuppression by interrupting GCN5/H3K27ac binding in HNSCC, thus providing novel insights into immune checkpoint blockade treatment.
Collapse
Affiliation(s)
- Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Hanyue Chang
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yusheng Lu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
34
|
Wu Y, Zhang Z, Ren S, Li K, Ning Q, Jiang X. Aberrant expression of long noncoding RNAs in the serum and myocardium of spontaneous hypertensive rats. Mol Biol Rep 2019; 46:6399-6404. [PMID: 31549370 DOI: 10.1007/s11033-019-05086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Circulating long noncoding RNAs as biomarkers of diseases have attracted increasing attention recently. However, circulating lncRNAs in hypertension is still unexplored niche. The levels of lncRNAs GAS5, NR024118, MRAK134679, AX765700 and MRNR026574 were measured in the serum and myocardium of hypertensive rats and normal controls with real time PCR. The levels of GAS5 were significantly higher both in the myocardium (P = 0.0067) and serum (P < 0.0001) of hypertensive rats compared with controls. The levels of NR024118 were remarkably higher in the myocardium of hypertensive rats (P = 0.0202) while the levels of serum NR024118 were not statistically significant in two groups (P = 0.6926). The levels of serum AX765700 (P = 0.0644) and cardiac AX765700 (P = 0.1938) were not statistically significant in hypertensive rats and controls. The levels of MRAK134679 were not different in the myocardium of two groups (P = 0.1692) and were too low in the serum to be detected. The levels of MRNR026574 were significantly higher in the myocardium of hypertensive rats compared with controls (P < 0.0001) and were too low in the serum to be detected. In conclusions, the levels of GAS5, NR024118 and MRNR026574 were increased in the myocardium of hypertensive rats, suggesting that they participate in the pathogenesis of hypertensive cardiac remodeling. Although, the levels of GAS5 in the serum and heart tissue were both significantly increased in SH rats, the potential biomarker capacity of GAS5 for HT needs to be further explored on larger human cohorts.
Collapse
Affiliation(s)
- Yuanjun Wu
- Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Zheng Zhang
- Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shufan Ren
- Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Kexin Li
- Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
35
|
Downregulation of LncRNA GAS5 promotes liver cancer proliferation and drug resistance by decreasing PTEN expression. Mol Genet Genomics 2019; 295:251-260. [PMID: 31705194 DOI: 10.1007/s00438-019-01620-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has shown that the long noncoding RNAs (lncRNAs) play a crucial role in the regulation of hepatocellular carcinoma (HCC) progression and drug resistance. In this study, we aimed to investigate the biological function roles of lncRNAs growth arrest-specific 5 (GAS5) and its underlying molecular mechanism in the development of HCC. qRT-PCR was used to detect GAS5, miR-21, and PTEN levels. MTT, cell counting assays, and xenograft mouse model were applied to measure cell proliferation rate in vitro and in vivo. The luciferase reporter assay and RNA immune-precipitation assay were introduced to evaluate the relationship between GAS5 and miR-21. We found that GAS5 was downregulated in HCC cell lines and tumor tissues. Knockdown of GAS5 enhanced HCC cell proliferation in vitro and in vivo and increased HCC cell resistance to doxorubicin. GAS5 acted as a sponge for miR-21 silencing and consequently led to the elevation of PTEN expression. Our data demonstrated that GAS5 functioned as a tumor suppressor role in HCC through regulation of miR-21-PTEN singling pathways, suggesting a potential application of GAS5 in HCC therapy.
Collapse
|
36
|
Wang TH, Leu YL, Chen CC, Shieh TM, Lian JH, Chen CY. Psorachromene Suppresses Oral Squamous Cell Carcinoma Progression by Inhibiting Long Non-coding RNA GAS5 Mediated Epithelial-Mesenchymal Transition. Front Oncol 2019; 9:1168. [PMID: 31750253 PMCID: PMC6848597 DOI: 10.3389/fonc.2019.01168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The extract of the seeds of Psoralea corylifolia Linn. (P. corylifolia) have been shown to display anti-tumor activity. However, the prospects of the active compounds from this plant in the treatment of oral squamous cell carcinoma (OSCC) remains unclear. In the present study, the antitumor effects of psorachromene, a flavonoid extracted from the seeds of P. corylifolia, were investigated using cells and animal models of OSCC; the downstream regulatory mechanisms were also elucidated. The results showed that psorachromene significantly repressed cell proliferation, migration, and invasiveness and increased the toxic effects of chemotherapeutic agents against OSCC cells. The repressive effects of psorachromene were attributable to the inhibition of EGFR-Slug signaling, and the induction of G2/M arrest and apoptosis in the OSCC cells. Additionally, we found that psorachromene induced the expression of tumor suppressor long non-coding ribonucleic acid (RNA) growth arrest-specific transcript 5 (GAS5) and the activation of its downstream anticancer mechanisms. Animal experiments also showed noticeable inhibition of tumor growth, without significant physiological toxicity. The findings indicate that psorachromene displays anti-tumor activity in OSCC, and warrants further investigation as a potential agent for clinical application.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Jang-Hau Lian
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
37
|
Yu Y, Hann SS. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. Onco Targets Ther 2019; 12:8421-8436. [PMID: 31632088 PMCID: PMC6794681 DOI: 10.2147/ott.s221305] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in fundamental biological processes, and deregulations of lncRNAs have been linked to numerous human diseases, especially cancers. Of particular interest in this regard is lncRNA GAS5, which is mainly identified as a tumor suppressor in several cancers. GAS5 was significantly low expressed in multiple cancers and was associated with clinic-pathological characteristics and patient survival, indicating a novel potential diagnostic and prognostic biomarker, and a therapeutic target for cancer. Functionally, GAS5 is involved in cell proliferation, metastasis, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and drug resistance, among others, via multiple molecular mechanisms, such as binding to DNA sequences, forming RNA-DNA triplex complex, triggering or suppressing the expression of genes, binding proteins to form chromatin-modifying complex, which activates or represses gene expression, and acting as miRNA sponge to suppress miRNA expression, leading to regulation of miRNA target genes. This review provides an overview of the current state of knowledge and role of GAS5 in clinical relevance, biological functions and molecular mechanisms underlying the dysregulation of expression and function of GAS5 in cancer. Finally, the potential prospective role as diagnostic and prognostic biomarker and therapeutic target in cancer is discussed.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
38
|
ΔNp63 transcript loss in bladder cancer constitutes an independent molecular predictor of TaT1 patients post-treatment relapse and progression. J Cancer Res Clin Oncol 2019; 145:3075-3087. [PMID: 31595333 DOI: 10.1007/s00432-019-03028-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Bladder cancer represents a major cause of malignancy-related morbidity and the most expensive per-patient-to-treat cancer, due to the lifelong surveillance of the patients. Accurate disease prognosis is essential in establishing personalized treatment decisions; yet optimum tools for precise risk stratification remain a competing task. In the present study, we have performed the complete evaluation of TP63 clinical significance in improving disease prognosis. METHODS The levels of ΔNp63 and TAp63 transcripts of TP63 were quantified in 342 bladder tissue specimens of our screening cohort (n = 182). Hedegaard et al. (Cancer Cell 30:27-42. doi:10.1016/j.ccell.2016.05.004, 2016) (n = 476) and TCGA provisional (n = 413) were used as validation cohorts for NMIBC and MIBC, respectively. Survival analysis was performed using recurrence and progression for NMIBC or mortality for MIBC as endpoint events. Bootstrap analysis was performed for internal validation, while decision curve analysis was used for the evaluation of the clinical net benefit on disease prognosis. RESULTS ΔNp63 was significantly expressed in bladder tissues, and was found to be over-expressed in bladder tumors. Interestingly, reduced ΔNp63 levels were correlated with muscle-invasive disease, high-grade tumors and high-EORTC-risk NMIBC patients. Moreover, ΔNp63 loss was independently associated with higher risk for NMIBC relapse (HR = 2.730; p = 0.007) and progression (HR = 7.757; p = 0.016). Hedegaard et al. and TCGA validation cohorts confirmed our findings. Finally, multivariate models combining ΔΝp63 loss with established prognostic markers led to a superior clinical benefit for NMIBC prognosis and risk stratification. CONCLUSIONS ΔΝp63 loss is associated with adverse outcome of NMIBC resulting in superior prediction of NMIBC early relapse and progression.
Collapse
|
39
|
Zhang C, Li Z, Hu J, Qi F, Li X, Luo J. Identification of five long noncoding RNAs signature and risk score for prognosis of bladder urothelial carcinoma. J Cell Biochem 2019; 121:856-866. [PMID: 31373406 DOI: 10.1002/jcb.29330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Nowadays, an increasing number of studies illustrated that bladder urothelial cancer (BLCA) may act as the most common subtype of urological malignancies with a high rate of recurrence and metastasis. In this study, we attempted to establish a prognostic model and identify the possible pathway crosstalk. Long noncoding RNAs (lncRNAs) and mRNA expression and corresponding clinical information of patients with BLCA were downloaded from The Cancer Genome Atlas (TCGA). The differentially expressed genes analysis, univariate Cox analysis, the least absolute shrinkage, and selection operator Cox (LASSO Cox) regression model were then applied to identify five crucial lncRNAs (AC092725.1, AC104071.1, AL023584.1, AL132642.1, and AL137804.1). The multivariate cox analysis was utilized to calculate the regression coefficients (βi ). The risk-score model was subsequently constructed as follows: (0.13541AC092725.1) + (0.20968AC104071.1) + (0.1525AL023584.1) - (0.14768AL132642.1) + (0.14387AL137804.1). Nomogram and assessment of overall survival (OS) prediction were verificated by the receiver operating characteristic curve in the testing group. As to 3-, 5-year OS prediction, the area under curve (AUC) for the nomogram of training data set was 0.83 and 0.86. Besides, the AUC (0.883 and 0.879) presented excellent predictive power in the testing group. In addition, the calibration plots validated the predictive performance of the nomogram. Weighted correlation network analysis (WGCNA) coupled with functional enrichment analysis contributed to explore the potential pathways, including PI3K-Akt, HIF-1, and Jak-STAT signaling pathways. Construction of the risk-score model and data analysis were both derived from multiple packages on the basis of the R platform chiefly.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zongtai Li
- Department of Medical Oncology, Gaozhou People's Hospital, Gaozhou, China
| | - Jiateng Hu
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Hongkou District, Shanghai, China
| |
Collapse
|
40
|
Jin S, Yang X, Li J, Yang W, Ma H, Zhang Z. p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma. Mol Cancer 2019; 18:38. [PMID: 30857539 PMCID: PMC6410525 DOI: 10.1186/s12943-019-0993-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Long intergenic noncoding RNA p21 (lincRNA-p21) is considered a target of wild-type p53, but little is known about its regulation by mutant p53 and its functions during the progression of head and neck squamous cell carcinoma (HNSCC). Methods RNAscope was used to detect the expression and distribution of lincRNA-p21. Chromatin immunoprecipitation and electrophoretic mobility shift assays were performed to analyze the transcriptional regulation of lincRNA-p21 in HNSCC cells. The biological functions of lincRNA-p21 were investigated in vitro and in vivo. RNA immunoprecipitation and pull-down assays were used to detect the direct binding of lincRNA-p21. Results Lower lincRNA-p21 expression was observed in HNSCC tissues and indicated worse prognosis. Both wild and mutant type p53 transcriptionally regulated lincRNA-p21, but nuclear transcription factor Y subunit alpha (NF-YA) was essential for mutant p53 in the regulation of lincRNA-p21. Ectopic expression of lincRNA-p21 significantly inhibited cell proliferation capacity in vitro and in vivo and vice versa. Moreover, the overexpression of lincRNA-p21 induced G1 arrest and apoptosis. Knockdown NF-YA expression reversed tumor suppressor activation of lincRNA-p21 in mutant p53 cells, not wild-type p53 cells. A negative correlation was observed between lincRNA-p21 and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) in HNSCC tissues. High lincRNA-p21 expression inhibited Janus kinase 2 (JAK2)/STAT3 signal activation and vice versa. Further, we observed direct binding to STAT3 by lincRNA-p21 in HNSCC cells, which suppressed STAT3-induced oncogenic potential. Conclusions Our results revealed the transcriptional regulation of lincRNA-p21 by the mutant p53/NF-YA complex in HNSCC. LincRNA-p21 acted as a tumor suppressor in HNSCC progression, which was attributed to direct binding to STAT3 and blocking of JAK2/STAT3 signaling. Electronic supplementary material The online version of this article (10.1186/s12943-019-0993-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiayi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|