1
|
Si T, Huang L, Liang T, Huang P, Zhang H, Zhang M, Zhou X. Ruangan Lidan decoction inhibits the growth and metastasis of liver cancer by downregulating miR-9-5p and upregulating PDK4. Cancer Biol Ther 2023; 24:2246198. [PMID: 37773732 PMCID: PMC10543352 DOI: 10.1080/15384047.2023.2246198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/04/2023] [Indexed: 10/01/2023] Open
Abstract
A growing number of studies have suggested that traditional Chinese medicine (TCM) plays an essential role in the development and occurrence of liver cancer. However, the function of Ruangan Lidan decoction (RLD) in liver cancer are not yet adequately identified and manifested, which attracted our attention. The key genes related to liver cancer and RLD and the upstream miRNAs of PDK4 were obtained based on bioinformatics analysis, followed by verification of the targeting relationship between miR-9-5p and PDK4. Next, Huh7 cells were treated with RLD to detect cell proliferation, colony formation, migration, invasion, and apoptosis by multiple assays with gain- and loss-of-function experiments. Moreover, subcutaneous transplanted tumor model and lung metastasis model of liver cancer in nude mice were established to further verify the functional role of RLD in liver cancer growth and metastasis via miR-9-5p/PDK4 axis. Bioinformatics analysis found that PDK4 and miR-9-5p were related to liver cancer, and PDK4 may be a downstream regulator of RLD. miR-9-5p could target and inhibit PDK4. In vitro cell experiments demonstrated that RLD suppressed liver cancer cell proliferation, invasion and migration, and promoted apoptosis by inhibiting miR-9-5p expression and promoting PDK4 expression. In vivo animal experiments further confirmed that RLD inhibited liver cancer growth and metastasis via upregulation of miR-9-5p-dependent PDK4. RLD downregulated miR-9-5p and upregulated PDK4 to inhibit the proliferation, migration, invasion, and induce apoptosis, thereby suppressing the growth and metastasis of liver cancer, highlighting a potential novel target for treatment of liver cancer.
Collapse
Affiliation(s)
- Tao Si
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Liyin Huang
- Graduate school, Guangxi University of Chinese Medicine, Nanning, China
| | - Ting Liang
- Graduate school, Guangxi University of Chinese Medicine, Nanning, China
| | - Ping Huang
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Mingmin Zhang
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Xiaoling Zhou
- Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| |
Collapse
|
2
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Shen X, Chang P, Zhang X, Zhang J, Wang X, Quan Z, Wang P, Liu T, Niu Y, Zheng R, Chen B, Yu J. The landscape of N6-methyladenosine modification patterns and altered transcript profiles in the cardiac-specific deletion of natriuretic peptide receptor A. Mol Omics 2023; 19:105-125. [PMID: 36412146 DOI: 10.1039/d2mo00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The atrial natriuretic peptide (ANP) and the brain natriuretic peptide (BNP) are critical biological makers and regulators of cardiac functions. Our previous results show that NPRA (natriuretic peptide receptor A)-deficient mice have distinct metabolic patterns and expression profiles compared with the control. Still, the molecular mechanism that could account for this observation remains to be elucidated. Here, methylation alterations were detected by mazF-digestion, and differentially expressed genes of transcriptomes were detected by a Genome Oligo Microarray using the myocardium from NPRA-deficient (NPRA-/-) mice and wild-type (NPRA+/+) mice as the control. Comprehensive analysis of m6A methylation data gave an altered landscape of m6A modification patterns and altered transcript profiles in cardiac-specific NPRA-deficient mice. The m6A "reader" igf2bp3 showed a clear trend of increase, suggesting a function in altered methylation and expression in cardiac-specific NPRA-deficient mice. Intriguingly, differentially m6A-methylated genes were enriched in the metabolic process and insulin resistance pathway, suggesting a regulatory role in cardiac metabolism of m6A modification regulated by NPRA. Notably, it was confirmed that the pyruvate dehydrogenase kinase 4 (Pdk4) gene upregulated the gene expression and the hypermethylation level simultaneously, which may be the key factor for the cardiac metabolic imbalance and insulin resistance caused by natriuretic peptide signal resistance. Taken together, cardiac metabolism might be regulated by natriuretic peptide signaling, with decreased m6A methylation and a decrease of Pdk4.
Collapse
Affiliation(s)
- Xi Shen
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Pan Chang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xiaomeng Zhang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Jing Zhang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xihui Wang
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zhuo Quan
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Pengli Wang
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Tian Liu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Yan Niu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Rong Zheng
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| | - Baoying Chen
- Imaging Diagnosis and Treatment Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China.
| | - Jun Yu
- Clinical Experimental Centre, Xi'an International Medical Centre Hospital, 777, Xitai Road, Hightech-zone, Xi'an, Shaanxi 710100, P. R. China. .,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, P. R. China
| |
Collapse
|
4
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
5
|
LncRNA SNHG17 Contributes to Proliferation, Migration, and Poor Prognosis of Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2021; 2021:9990338. [PMID: 34557456 PMCID: PMC8455207 DOI: 10.1155/2021/9990338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/20/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been substantially reported to have critical roles in regulating tumorigenesis in recent years. However, the expression pattern and biological function of SNHG17 in hepatocellular carcinoma (HCC) remain unclear. Bioinformatics analysis and qRT-PCR were performed to detect the expression pattern of SNHG17 in HCC tissues, adjacent nontumorous tissues, and cell lines. The effect of SNHG17 on proliferation, migration, and apoptosis of HCC was investigated by knockdown and overexpressing SNHG17 in HCC cell lines. RNA sequencing was utilized to explore the underlying mechanism. Utilizing publicly available TCGA-LIHC, GSE102079 HCC datasets, and qRT-PCR, we found SNHG17 was significantly upregulated in HCC tissues and cell lines and was notably associated with larger tumor size, poorly differentiation, presence of vascular invasion, and advanced TNM stage. Furthermore, gain- and loss-of-function studies demonstrated that SNHG17 promoted cell proliferation and migration and inhibited apoptosis of HCC. By employing RNA sequencing, we found knockdown of SNHG17 caused 1037 differentially expressed genes, highly enriched in several pathways, including metabolic, PI3K-Akt, cell adhesion, regulation of cell proliferation, and apoptotic pathway; among them, 92 were overlapped with SNHG17-related genes in the TCGA-LIHC dataset. Furthermore, ERH, TBCA, TDO2, and PDK4 were successfully validated and found significantly dysregulated in HCC tissues. Moreover, HCC patients with higher SNHG17 expression had a relatively poor overall survival and disease-free survival, and ERH and PDK4 also played a marked role in the prognosis of HCC. Broadly, our findings illustrate that SNHG17 acts as a noncoding oncogene in HCC progression, suggesting its potential value as a novel target for HCC therapy.
Collapse
|
6
|
Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep 2021; 41:228121. [PMID: 33739396 PMCID: PMC8026821 DOI: 10.1042/bsr20204402] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.
Collapse
|
7
|
Strowitzki MJ, Kimmer G, Wehrmann J, Ritter AS, Radhakrishnan P, Opitz VM, Tuffs C, Biller M, Kugler J, Keppler U, Harnoss JM, Klose J, Schmidt T, Blanco A, Taylor CT, Schneider M. Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses. JCI Insight 2021; 6:139191. [PMID: 33784253 PMCID: PMC8119215 DOI: 10.1172/jci.insight.139191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Anastomotic leakage (AL) accounts for a major part of in-house mortality in patients undergoing colorectal surgery. Local ischemia and abdominal sepsis are common risk factors contributing to AL and are characterized by upregulation of the hypoxia-inducible factor (HIF) pathway. The HIF pathway is critically regulated by HIF-prolyl hydroxylases (PHDs). Here, we investigated the significance of PHDs and the effects of pharmacologic PHD inhibition (PHI) during anastomotic healing. Ischemic or septic colonic anastomoses were created in mice by ligation of mesenteric vessels or lipopolysaccharide-induced abdominal sepsis, respectively. Genetic PHD deficiency (Phd1-/-, Phd2+/-, and Phd3-/-) or PHI were applied to manipulate PHD activity. Pharmacologic PHI and genetic PHD2 haplodeficiency (Phd2+/-) significantly improved healing of ischemic or septic colonic anastomoses, as indicated by increased bursting pressure and reduced AL rates. Only Phd2+/- (but not PHI or Phd1-/-) protected from sepsis-related mortality. Mechanistically, PHI and Phd2+/- induced immunomodulatory (M2) polarization of macrophages, resulting in increased collagen content and attenuated inflammation-driven immune cell recruitment. We conclude that PHI improves healing of colonic anastomoses in ischemic or septic conditions by Phd2+/--mediated M2 polarization of macrophages, conferring a favorable microenvironment for anastomotic healing. Patients with critically perfused colorectal anastomosis or abdominal sepsis could benefit from pharmacologic PHI.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany.,School of Medicine and Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Julian Wehrmann
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Vanessa M Opitz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Christopher Tuffs
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Marvin Biller
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Julia Kugler
- School of Medicine and Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ulrich Keppler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany.,Department of Anaesthesiology, Heidelberg University, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Johannes Klose
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Alfonso Blanco
- Flow Cytometry Core Technology. Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine and Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Body A, Prenen H, Latham S, Lam M, Tipping-Smith S, Raghunath A, Segelov E. The Role of Neoadjuvant Chemotherapy in Locally Advanced Colon Cancer. Cancer Manag Res 2021; 13:2567-2579. [PMID: 33762848 PMCID: PMC7982559 DOI: 10.2147/cmar.s262870] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Neoadjuvant systemic therapy has many potential advantages over up-front surgery, including tumor downstaging, early treatment of micrometastatic disease, and providing an in vivo test of tumor biology. Due to these advantages, neoadjuvant therapy is becoming the standard of care for an increasing number of tumor types. Currently, colon cancer patients are still routinely treated with up-front surgery, and neoadjuvant systemic therapy is not yet standard. Limitations to widespread use of neoadjuvant therapy have included inaccurate radiological staging, concerns about tumor progression while undergoing preoperative treatment rendering a patient incurable, and a lack of randomized data demonstrating benefit. However, there is great interest in neoadjuvant chemotherapy, and a number of trials are under way. Early follow up of the first phase III trial of neoadjuvant chemotherapy for colon cancer demonstrated tumor downstaging and suggested an improvement in disease-free survival with neoadjuvant chemotherapy, and it is hoped that this will translate into longer-term overall survival benefit. Clinicians should closely watch this developing field, consider the option of neoadjuvant chemotherapy for colon cancer patients, and actively seek out opportunities for their patients to participate in ongoing clinical trials to further inform this field in future.
Collapse
Affiliation(s)
- Amy Body
- Medical Oncology, Monash Medical Centre, Clayton, Melbourne, VIC, Australia.,School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Hans Prenen
- Medical Oncology, Monash Medical Centre, Clayton, Melbourne, VIC, Australia.,Oncology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Sarah Latham
- Medical Oncology, Monash Medical Centre, Clayton, Melbourne, VIC, Australia
| | - Marissa Lam
- Medical Oncology, Monash Medical Centre, Clayton, Melbourne, VIC, Australia
| | | | - Ajay Raghunath
- Medical Oncology, Monash Medical Centre, Clayton, Melbourne, VIC, Australia
| | - Eva Segelov
- Medical Oncology, Monash Medical Centre, Clayton, Melbourne, VIC, Australia.,School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z, Xie H. Altered glycolysis results in drug-resistant in clinical tumor therapy. Oncol Lett 2021; 21:369. [PMID: 33747225 DOI: 10.3892/ol.2021.12630] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo metabolic reprogramming, including increased glucose metabolism, fatty acid synthesis and glutamine metabolic rates. These enhancements to three major metabolic pathways are closely associated with glycolysis, which is considered the central component of cancer cell metabolism. Increasing evidence suggests that dysfunctional glycolysis is commonly associated with drug resistance in cancer treatment, and aberrant glycolysis plays a significant role in drug-resistant cancer cells. Studies on the development of drugs targeting these abnormalities have led to improvements in the efficacy of tumor treatment. The present review discusses the changes in glycolysis targets that cause drug resistance in cancer cells, including hexokinase, pyruvate kinase, pyruvate dehydrogenase complex, glucose transporters, and lactate, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies. In addition, the association between increased oxidative phosphorylation and drug resistance is introduced, which is caused by metabolic plasticity. Given that aberrant glycolysis has been identified as a common metabolic feature of drug-resistant tumor cells, targeting glycolysis may be a novel strategy to develop new drugs to benefit patients with drug-resistance.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shipeng Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaowei Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
Atas E, Oberhuber M, Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Front Oncol 2020; 10:583217. [PMID: 33384955 PMCID: PMC7771695 DOI: 10.3389/fonc.2020.583217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area ‘Data & Technologies’, CBmed—Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area ‘Data & Technologies’, CBmed—Center for Biomarker Research in Medicine GmbH, Graz, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Hoffmann K, Nagel AJ, Tanabe K, Fuchs J, Dehlke K, Ghamarnejad O, Lemekhova A, Mehrabi A. Markers of liver regeneration-the role of growth factors and cytokines: a systematic review. BMC Surg 2020; 20:31. [PMID: 32050952 PMCID: PMC7017496 DOI: 10.1186/s12893-019-0664-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Post-hepatectomy liver failure contributes significantly to postoperative mortality after liver resection. The prediction of the individual risk for liver failure is challenging. This review aimed to provide an overview of cytokine and growth factor triggered signaling pathways involved in liver regeneration after resection. METHODS MEDLINE and Cochrane databases were searched without language restrictions for articles from the time of inception of the databases till March 2019. All studies with comparative data on the effect of cytokines and growth factors on liver regeneration in animals and humans were included. RESULTS Overall 3.353 articles comprising 40 studies involving 1.498 patients and 101 animal studies were identified and met the inclusion criteria. All included trials on humans were retrospective cohort/observational studies. There was substantial heterogeneity across all included studies with respect to the analyzed cytokines and growth factors and the described endpoints. CONCLUSION High-level evidence on serial measurements of growth factors and cytokines in blood samples used to predict liver regeneration after resection is still lacking. To address the heterogeneity of patients and potential markers, high throughput serial analyses may offer a method to predict an individual's regenerative potential in the future.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany.
| | - Alexander Johannes Nagel
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Kazukata Tanabe
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | | | - Karolin Dehlke
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Anastasia Lemekhova
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Atas E, Oberhuber M, Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Front Oncol 2020. [PMID: 33384955 DOI: 10.3389/fonc.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area 'Data & Technologies', CBmed-Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area 'Data & Technologies', CBmed-Center for Biomarker Research in Medicine GmbH, Graz, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
The double inhibition of PDK1 and STAT3-Y705 prevents liver metastasis in colorectal cancer. Sci Rep 2019; 9:12973. [PMID: 31506552 PMCID: PMC6736869 DOI: 10.1038/s41598-019-49480-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
As a key glycolysis enzyme, the significance of pyruvate dehydrogenase kinase 1 (PDK1) in the development of colorectal cancer (CRC) remains unknown. This study revealed that the prognosis of CRC patients with high levels of PDK1 was poor, and PDK1 knockdown significantly reduced liver metastasis of CRC in both nude mice and immune competent BALB/C mice. When combined with cryptotanshinone (CPT), an inhibitor of STAT3-p-Y705, the liver metastasis was further inhibited. PDK1 knockdown obviously increased reactive oxygen species level in anoikis conditions and subsequently resulted in an elevated anoikis, but the combination of PDK1 knockdown and CPT showed a reduced effect on anoikis. Based on this discrepancy, the adherence ability of CRC cells to matrix protein fibronectin was further detected. It showed that PDK1 knockdown significantly decreased the adherence of CRC cells to fibronectin when combined with CPT. These results suggest that inhibition of PDK1 can decrease the surviving CRC cells in blood circulation via up-regulation of anoikis, and inhibition of STAT3-p-Y705 can prevent it to settle down on the liver premetastatic niche, which ultimately reduces liver metastasis.
Collapse
|
14
|
Strowitzki MJ, Ritter AS, Kimmer G, Schneider M. Hypoxia-adaptive pathways: A pharmacological target in fibrotic disease? Pharmacol Res 2019; 147:104364. [PMID: 31376431 DOI: 10.1016/j.phrs.2019.104364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Wound healing responses are physiological reactions to injuries and share common characteristics and phases independently of the injured organ or tissue. A major hallmark of wound healing responses is the formation of extra-cellular matrix (ECM), mainly consisting of collagen fibers, to restore the initial organ architecture and function. Overshooting wound healing responses result in unphysiological accumulation of ECM and collagen deposition, a process called fibrosis. Importantly, hypoxia (oxygen demand exceeds supply) plays a significant role during wound healing responses and fibrotic diseases. Under hypoxic conditions, cells activate a gene program, including the stabilization of hypoxia-inducible factors (HIFs), which induces the expression of HIF target genes counteracting hypoxia. In contrast, in normoxia, so-called HIF-prolyl hydroxylases (PHDs) oxygen-dependently hydroxylate HIF-α, which marks it for proteasomal degradation. Importantly, PHDs can be pharmacologically inhibited (PHI) by so-called PHD inhibitors. There is mounting evidence that the HIF-pathway is continuously up-regulated during the development of tissue fibrosis, and that pharmacological (HIFI) or genetic inhibition of HIF can prevent organ fibrosis. By contrast, initial (short-term) activation of the HIF pathway via PHI during wound healing seems to be beneficial in several models of inflammation or acute organ injury. Thus, timing and duration of PHI and HIFI treatment seem to be crucial. In this review, we will highlight the role of hypoxia-adaptive pathways during wound healing responses and development of fibrotic disease. Moreover, we will discuss whether PHI and HIFI might be a promising treatment option in fibrotic disease, and consider putative pitfalls that might result from this approach.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|