1
|
Liang QJ, Long QQ, Tian FQ, Long XD. Progress in research of polo-like kinase 1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2024; 32:652-659. [DOI: 10.11569/wcjd.v32.i9.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a protein kinase that regulates the cell cycle, and it has been found that PLK1 mediates the regulation of signaling pathways associated with hepatocellular carcinoma (HCC) development, thereby affecting the biological behaviors of hepatic tumor cells such as cell proliferation, migration, and invasion. Therefore, PLK1 may be a very promising target for the treatment of HCC. This article reviews the relevant signaling pathways of PLK1 in HCC development and PLK1 inhibitors in the treatment of HCC.
Collapse
Affiliation(s)
- Qiu-Ju Liang
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qin-Qin Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Feng-Qin Tian
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Lee HH, Chow KL, Wong HS, Chong TY, Wong AS, Cheng GH, Ko JM, Siu HC, Yeung MC, Huen MS, Tse KY, Bray MR, Mak TW, Leung SY, Ip PP. Inhibition of Aberrantly Overexpressed Polo-like Kinase 4 Is a Potential Effective Treatment for DNA Damage Repair-Deficient Uterine Leiomyosarcoma. Clin Cancer Res 2024; 30:3904-3918. [PMID: 38848043 PMCID: PMC11369621 DOI: 10.1158/1078-0432.ccr-23-3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibits DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. A PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) was tested in vitro on gynecologic sarcoma cell lines SK-UT-1, SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in the Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2-knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining DNA repair. Compared with wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and nonhomologous end-joining repairs were impaired. CONCLUSIONS Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacologic inhibition of ATM enhanced the efficacy of the PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.
Collapse
Affiliation(s)
- Horace H.Y. Lee
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Kin Long Chow
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ho Shing Wong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Tsz Yan Chong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Alice S.T. Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Grace H.W. Cheng
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Jasmine M.K. Ko
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Maximus C.F. Yeung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael S.Y. Huen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | - Tak Wah Mak
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Philip P.C. Ip
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Zhong C, Jiang WJ, Yao Y, Li Z, Li Y, Wang S, Wang X, Zhu W, Wu S, Wang J, Fan S, Ma S, Liu Y, Zhang H, Zhao W, Zhao L, Feng Y, Li Z, Guo R, Yu L, Pei F, Hu J, Feng X, Yang Z, Yang Z, Yang X, Hou Y, Zhang D, Xu D, Sheng R, Li Y, Liu L, Wu HJ, Huang J, Fei T. CRISPR screens reveal convergent targeting strategies against evolutionarily distinct chemoresistance in cancer. Nat Commun 2024; 15:5502. [PMID: 38951519 PMCID: PMC11217446 DOI: 10.1038/s41467-024-49673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.
Collapse
Affiliation(s)
- Chunge Zhong
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Wen-Jie Jiang
- Peking University Third Hospital, Beijing, 100191, China
| | - Yingjia Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Zexu Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - You Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shengnan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Xiaofeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Wenjuan Zhu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Siqi Wu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Jing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Shuangshuang Fan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shixin Ma
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Han Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Wenchang Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Lu Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Yi Feng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Zihan Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Ruifang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Li Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Fengyun Pei
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Hu
- Clinical Research Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Zhengjia Yang
- Department of Cardiothoracic Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Danni Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Dake Xu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Ren Sheng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Yihao Li
- BeiGene Institute, BeiGene (Shanghai) Research & Development Co., Ltd, 200131, Shanghai, China
| | - Lijun Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Hua-Jun Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Jun Huang
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Clinical Research Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Institute of Gastroenterology, Guangzhou, China.
| | - Teng Fei
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China.
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
| |
Collapse
|
4
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
5
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
7
|
Murphy T, Mason JM, Leber B, Bray MR, Chan SM, Gupta V, Khalaf D, Maze D, McNamara CJ, Schimmer AD, Schuh AC, Sibai H, Trus M, Valiquette D, Martin K, Nguyen L, Li X, Mak TW, Minden MD, Yee KWL. Preclinical characterization and clinical trial of CFI-400945, a polo-like kinase 4 inhibitor, in patients with relapsed/refractory acute myeloid leukemia and higher-risk myelodysplastic neoplasms. Leukemia 2024; 38:502-512. [PMID: 38114624 DOI: 10.1038/s41375-023-02110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
CFI-400945 is a selective oral polo-like kinase 4 (PLK4) inhibitor that regulates centriole duplication. PLK4 is aberrantly expressed in patients with acute myeloid leukemia (AML). Preclinical studies indicate that CFI-400945 has potent in vivo efficacy in hematological malignancies and xenograft models, with activity in cells harboring TP53 mutations. In this phase 1 study in very high-risk patients with relapsed/refractory AML and myelodysplastic syndrome (MDS) (NCT03187288), 13 patients were treated with CFI-400945 continuously in dose escalation from 64 mg/day to 128 mg/day. Three of the 9 efficacy evaluable AML patients achieved complete remission (CR). Two of 4 AML patients (50%) with TP53 mutations and complex monosomal karyotype achieved a CR with 1 patient proceeding to allogenic stem cell transplant. A third patient with TP53 mutated AML had a significant reduction in marrow blasts by > 50% with an improvement in neutrophil and platelet counts. Responses were observed after 1 cycle of therapy. Dose-limiting toxicity was enteritis/colitis. A monotherapy and combination therapy study with a newer crystal form of CFI-400945 in patients with AML, MDS and chronic myelomonocytic leukemia (CMML) is ongoing (NCT04730258).
Collapse
Affiliation(s)
- Tracy Murphy
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jacqueline M Mason
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Treadwell Therapeutics Canada Inc, Toronto, Canada
| | - Brian Leber
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Mark R Bray
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Treadwell Therapeutics Canada Inc, Toronto, Canada
| | - Steven M Chan
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vikas Gupta
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dina Khalaf
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Dawn Maze
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Caroline J McNamara
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron D Schimmer
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andre C Schuh
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hassan Sibai
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Trus
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Debbie Valiquette
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Kylie Martin
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linh Nguyen
- Treadwell Therapeutics Inc., San Mateo, CA, USA
| | - Xuan Li
- Department of Biostatistics, University Health Network, Toronto, ON, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Treadwell Therapeutics Canada Inc, Toronto, Canada
| | - Mark D Minden
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Karen W L Yee
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Pellizzari S, Bhat V, Athwal H, Cescon DW, Allan AL, Parsyan A. PLK4 as a potential target to enhance radiosensitivity in triple-negative breast cancer. Radiat Oncol 2024; 19:24. [PMID: 38365710 PMCID: PMC10873955 DOI: 10.1186/s13014-024-02410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Radioresistance is one of the barriers to developing more effective therapies against the most aggressive, triple-negative, breast cancer (TNBC) subtype. In our previous studies, we showed that inhibition of Polo-like Kinase 4 (PLK4) by a novel drug, CFI-400945 significantly enhances the anticancer effects of radiotherapy (RT) compared to single treatment alone. Here we further investigate the role of PLK4 in enhancing radiation effects in TNBC and explore mechanisms of PLK4 inhibition and radiation combinatorial antiproliferative effects. To assess cellular proliferation in response to treatments, we used colony formation assays in TNBC cell lines and patient-derived organoids (PDOs). Downregulation of PLK4 expression was achieved using siRNA silencing in TNBC cell lines. Immunofluorescence against centrin was used to assess the alteration of centriole amplification in response to treatments. We observed that inhibition of PLK4 by CFI-400945 or Centrinone B or its downregulation by siRNA, when combined with RT, resulted in a significant increase in antiproliferative effect in TNBC cells lines and PDOs compared to untreated or single-treated cells. Anticancer synergy was observed using a response matrix in PDOs treated with CFI-400945 and RT. We show that the overamplification of centrioles might be involved in the combined antiproliferative action of RT and PLK4 inhibition. Our data suggest that PLK4 is a promising target for enhancing the anticancer effects of RT in TNBC that, at least in part, is modulated by the overamplification of centrioles. These results support further mechanistic and translational studies of anti-PLK4 agents and RT as an anticancer combination treatment strategy.
Collapse
Grants
- Ontario Graduate Scholarship (OGS)
- Breast Cancer Society of Canada
- Western Postdoctoral Fellowship (Western University)
- London Regional Cancer Program Catalyst Grant
- Young Investigator Startup Grant, Department of Surgery, Western University and the London Regional Cancer Program Catalyst Grant for Translational Cancer Research, Western University (London, ON)
- Cancer Research Society (CRS) and Canadian Institutes of Health Research (CIHR)/Institute of Cancer Research (ICR), Operating Grants 2022 Competition, Targeted Funding Opportunity
- Clinician Scientist Award, Department of Surgery, Western University, and the Academic Medical Organization of Southwestern Ontario (AMOSO) Opportunities Fund (London, ON)
Collapse
Affiliation(s)
- Sierra Pellizzari
- Department of Anatomy and Cell Biology, Western University, N6A 3K7, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Western University, N6A 3K7, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre and London Health Sciences, Centre Research Inc, N6A 5W9, London, ON, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, N6A 3K7, London, ON, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, M5G 2M9, Toronto, ON, Canada
- Department of Medical Oncology and Hematology, University of Toronto, M5G 2C1, Toronto, ON, Canada
| | - Alison L Allan
- Department of Anatomy and Cell Biology, Western University, N6A 3K7, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre and London Health Sciences, Centre Research Inc, N6A 5W9, London, ON, Canada
- Department of Oncology, Western University, N6A 3K7, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, N6A 3K7, London, ON, Canada.
- London Regional Cancer Program, London Health Sciences Centre and London Health Sciences, Centre Research Inc, N6A 5W9, London, ON, Canada.
- Department of Oncology, Western University, N6A 3K7, London, ON, Canada.
- Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, N6A 4V2, London, ON, Canada.
| |
Collapse
|
9
|
|
10
|
Portelinha A, da Silva Ferreira M, Erazo T, Jiang M, Asgari Z, de Stanchina E, Younes A, Wendel HG. Synthetic lethality of drug-induced polyploidy and BCL-2 inhibition in lymphoma. Nat Commun 2023; 14:1522. [PMID: 36934096 PMCID: PMC10024740 DOI: 10.1038/s41467-023-37216-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Spontaneous whole genome duplication and the adaptive mutations that disrupt genome integrity checkpoints are infrequent events in B cell lymphomas. This suggests that lymphomas might be vulnerable to therapeutics that acutely trigger genomic instability and polyploidy. Here, we report a therapeutic combination of inhibitors of the Polo-like kinase 4 and BCL-2 that trigger genomic instability and cell death in aggressive lymphomas. The synthetic lethality is selective for tumor cells and spares vital organs. Mechanistically, inhibitors of Polo-like kinase 4 impair centrosome duplication and cause genomic instability. The elimination of polyploid cells largely depends on the pro-apoptotic BAX protein. Consequently, the combination of drugs that induce polyploidy with the BCL-2 inhibitor Venetoclax is highly synergistic and safe against xenograft and PDX models. We show that B cell lymphomas are ill-equipped for acute, therapy-induced polyploidy and that BCL-2 inhibition further enhances the removal of polyploid lymphoma cells.
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Tatiana Erazo
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Man Jiang
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Zahra Asgari
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
- AstraZeneca, Medimmune Way, Gaithersburg, MD, USA.
| | - Hans-Guido Wendel
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
12
|
Polo-like kinase 4 inhibitor CFI-400945 inhibits carotid arterial neointima formation but increases atherosclerosis. Cell Death Dis 2023; 9:49. [PMID: 36750553 PMCID: PMC9905587 DOI: 10.1038/s41420-023-01305-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023]
Abstract
Neointima lesion and atherosclerosis are proliferative vascular diseases associated with deregulated proliferation of vascular smooth muscle cells (SMCs). CFI-400945 is a novel, highly effective anticancer drug that inhibits polo-like kinase 4 (PLK4) and targets mitosis. In this study, we aim to investigate how CFI-400945 affects the development of proliferative vascular diseases. In C57BL/6 mice, neointima formation was generated by complete carotid ligation. In apolipoprotein E knockout (ApoE-/-) mice fed a high-fat diet, atherosclerosis was induced by partial carotid ligation. CFI-400945 was directly applied to carotid arteries via a perivascular collar. Our results showed that CFI-400945 drastically inhibited neointima formation but significantly accelerated atherosclerosis. In vitro studies showed that CFI-400945 treatment induced SMC polyploidization and arrested cells in the G2/M phase. CFI-400945 treatment upregulated p53 and p27 expression but decreased p21 and cyclin B1 expression. CFI-400945 also induced SMC apoptosis, which was inhibited by hydroxyurea, a DNA synthesis inhibitor that inhibits polyploidization. Furthermore, CFI-400945 caused supernumerary centrosomes, leading to mitotic failure, resulting in polyploidization. In conclusion, CFI-400945 prevents carotid arterial neointima formation in C57BL/6 mice but accelerates atherosclerosis in ApoE-/- mice, likely through mitotic arrest and subsequent induction of polyploidization and apoptosis.
Collapse
|
13
|
Zhang C, Ma X, Wei G, Zhu X, Hu P, Chen X, Wang D, Li Y, Ruan T, Zhang W, Tao K, Wu C. Centrosomal protein 120 promotes centrosome amplification and gastric cancer progression via USP54-mediated deubiquitination of PLK4. iScience 2022; 26:105745. [PMID: 36590171 PMCID: PMC9800543 DOI: 10.1016/j.isci.2022.105745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Centrosomal protein 120 (CEP120) is a 120 kDa centrosome protein that plays an important role in centrosome replication. Overexpression of CEP120 can lead to centrosome duplicate abnormality, which is closely associated with tumorigenesis and development. However, there are no reports on the relationship between CEP120 and tumors. In our study, overexpression of CEP120 promoted centrosome amplification in gastric cancer (GC), and the role of CEP120 in promoting GC progression was demonstrated in vitro and in vivo. We demonstrated that CEP120 promotes centrosome amplification and GC progression by promoting the expression and centrosome aggregation of the deubiquitinating enzyme USP54, maintaining the stability of PLK4 and reducing its ubiquitination degradation. In conclusion, the CEP120-USP54-PLK4 axis may play an important role in promoting centrosome amplification and GC progression, thus providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Chenggang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xiuxian Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Peng Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xiang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Dianshi Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Yuan Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Weikang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
- Corresponding author
| |
Collapse
|
14
|
Ganesh M, Suraj S. Expeditious entry into carbocyclic and heterocyclic spirooxindoles. Org Biomol Chem 2022; 20:5651-5693. [PMID: 35792116 DOI: 10.1039/d2ob00767c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spirocyclic frameworks have attracted synthetic practitioners due to their unique three-dimensional assembly, improved metabolic stability, solubility, and increased molecular complexity with regard to planar architectures. A recent surge in the number of spirocyclic oxindoles inhibiting enzymes, moderating unique protein-protein interactions, modulating receptors and transporters is testament to their prevalence. Against this background, the construction of spirocyclic frameworks containing an oxindole moiety as a torsional switch via stereoselective methods is in great demand. Herein we present a summary of the past three years in the progress of metal, organic molecule, nanostructured particle mediated, and even uncatalyzed versions of the highly diastereo- and enantioselective pathways leading to oxindole spirocycles.
Collapse
Affiliation(s)
- Madhu Ganesh
- Sudhanva Technologies Private Limited, No. 7, Weavers Colony, Basavanapura, Bengaluru, Karnataka 560083, India.
| | - Shammy Suraj
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
15
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
16
|
Huang J, Shi Q, Choudhry N, Li H, Yang C, Kalashova J, Yan Z, Li J, Reddy MC, Gopala SG, Zhang S, Zhang J, Nimishetti N, Yang D. Discovery and Optimization of Seven-Membered Lactam-Based Compounds to Phenocopy the Inhibition of the Aurora Kinase B. ACS Med Chem Lett 2022; 13:1091-1098. [DOI: 10.1021/acsmedchemlett.2c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jian Huang
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Qiong Shi
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Namrta Choudhry
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Hongmei Li
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Chenglu Yang
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Julia Kalashova
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Ziqi Yan
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Jinhua Li
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | | | | | - Shenqiu Zhang
- Anticancer Bioscience (U.K.), St Andrews KY16 9QD, United Kingdom
| | - Jing Zhang
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Naganna Nimishetti
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| | - Dun Yang
- Chengdu Anticancer Bioscience, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan 610000, China
| |
Collapse
|
17
|
Bhurta D, Bharate SB. Styryl Group, a Friend or Foe in Medicinal Chemistry. ChemMedChem 2022; 17:e202100706. [PMID: 35166041 DOI: 10.1002/cmdc.202100706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/12/2022] [Indexed: 11/10/2022]
Abstract
The styryl (Ph-CH=CH-R) group is widely represented in medicinally important compounds, including drugs, clinical candidates, and molecular probes as it positively impacts the lipophilicity, oral absorption, and biological activity. The analysis of matched molecular pairs (styryl vs. phenethyl, phenyl, methyl, H) for the biological activity indicates the superiority aspect of styryl compounds. However, the Michael acceptor site in the styryl group makes it amenable to the nucleophilic attack by biological nucleophiles and transformation to the toxic metabolites. One of the downsides of styryl compounds is isomerization that impacts the molecular conformation and directly affects biological activity. The impact of cis-trans isomerism and isosteric replacements on biological activity is exemplified. We also discuss the styryl group-bearing drugs, clinical candidates, and fluorescent probes. Overall, the present review reveals the utility of the styryl group in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products and medicinal chemistry, 180001, Jammu, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
18
|
Levine AJ. Targeting the P53 Protein for Cancer Therapies: The Translational Impact of P53 Research. Cancer Res 2022; 82:362-364. [PMID: 35110395 DOI: 10.1158/0008-5472.can-21-2709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
It is only recently that drugs targeting K-RAS and Tp53 missense mutations have been developed, and along with the allele specific nature of some of these drugs comes the possibility of combining them with the immunologic therapies for cancers. It has taken about 40 years since their discoveries to understand the pathways they command, how they function, and how they interact with the environment of the cells they control. This communication focuses on the transfer of some of the hard won information about the p53 protein, its mutations, structures, and activities learned in the basic science laboratory and translated to the clinic.
Collapse
|
19
|
TEC kinase stabilizes PLK4 to promote liver cancer metastasis. Cancer Lett 2022; 524:70-81. [PMID: 34637843 DOI: 10.1016/j.canlet.2021.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Abstract
Aberrated PLK4 expression has been reported in different malignancies and causes centrosome amplification, aneuploidy, and genomic instability. However, the mechanism by which PLK4 is regulated in carcinogenesis remains not fully characterised. Here, we showed that PLK4 was overexpressed in human HCC and overexpression of PLK4 predicted poorer patient prognosis. Unexpectedly, we found that induced expression of PLK4 promotes, but knockdown of PLK4 inhibits, HCC cell migration and invasion. Mechanistically, we found that TEC tyrosine kinase, which also promotes HCC cell migration, stabilizes PLK4 by phosphorylation. TEC directly phosphorylates PLK4 at tyrosine 86 residue, which not only stabilizes the protein but also enhances PLK4-mediated HCC cell invasion. Further investigation by transcriptome sequencing indicated that PLK4 promotes the phosphorylation of focal adhesion kinase to regulate the focal adhesion pathway in HCC cell migration. Taken together, our results demonstrated that PLK4 plays an important role in HCC metastasis and revealed for the first time the mechanism by which PLK4 promotes HCC metastasis via TEC phosphorylation.
Collapse
|
20
|
Centrosomal-associated Proteins: Potential therapeutic targets for solid tumors? Biomed Pharmacother 2021; 144:112292. [PMID: 34700231 DOI: 10.1016/j.biopha.2021.112292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The centrosome is a special organelle in human cells and an organizing unit for microtubules and signaling molecules. In addition, the centrosome is tightly restricted during the cell cycle and forms the basal body of the cilia in ciliated cells. Centrosome abnormality is frequently observed in malignant tumors. The dysregulation of centrosome-associated proteins leads to multipolar mitosis, aneuploidy, and nondirected cell migration, and therefore promotes cancer progression. The overduplication of primary centrosome and the accumulation of chromosome, comprise the majority cause of chromosomal mis-segregation in cancer cells. This review discusses the structure and function of the centrosome and the role of its associated proteins in the progression of solid tumors. We summarized the effects of centrosome amplification abnormalities and other centrosome-related phenotypes on tumors. The mechanism of the delineation of centrosome amplification with tumor malignancy remains to be decided. A better understanding of centrosome abnormality in tumorigenesis may be useful to screen novel therapeutic strategies for the treatment of solid tumors.
Collapse
|
21
|
Hammond D, Montalban-Bravo G. Management and Outcomes of Blast Transformed Chronic Myelomonocytic Leukemia. Curr Hematol Malig Rep 2021; 16:405-417. [PMID: 34499330 DOI: 10.1007/s11899-021-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Despite recent advances in the treatment of de novo acute myeloid leukemia (AML), AML arising from antecedent chronic myelomonocytic leukemia (CMML) continues to have dismal outcomes. While the unique biological drivers of CMML and subsequent leukemic transformation (LT) have been revealed with advances in molecular characterization, this has not yet translated to the bedside. Here, we review these biologic drivers, outcomes with current therapies, and rationale avenues of future investigation specifically in blast phase CMML (CMML-BP). RECENT FINDINGS CMML-BP outcomes are studied as an aggregate with more common categories of AML with myelodysplasia-related changes (AML-MRCs) or the even broader category of secondary AML (sAML), which illustrates the crux of the problem. While a modest survival advantage with allogeneic hematopoietic stem cell transplant exists, the difficulty is bridging patients to transplant and managing patients that require an allograft-sparing approach. Limited data suggest that short-lived remissions can be obtained employing CPX-351 or venetoclax-based lower intensity combination therapy. Promising future strategies include repurposing cladribine, exploiting the supportive role of dendritic cell subsets with anti-CD123 therapies, MCL-1 inhibition, dual MEK/PLK1 inhibition, FLT3 inhibition in RAS-mutated and CBL-mutated subsets, and immune therapies targeting novel immune checkpoint molecules such as the leukocyte immunoglobulin-like receptor B4 (LILRB4), an immune-modulatory transmembrane protein restrictively expressed on monocytic cells. The successful management of an entity as unique as CMML-BP will require a cooperative, concerted effort to design and conduct clinical trials dedicated to this rare form of sAML.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
22
|
Yang Z, Sun H, Ma W, Wu K, Peng G, Ou T, Wu S. Down-regulation of Polo-like kinase 4 (PLK4) induces G1 arrest via activation of the p38/p53/p21 signalling pathway in bladder cancer. FEBS Open Bio 2021; 11:2631-2646. [PMID: 34342940 PMCID: PMC8409300 DOI: 10.1002/2211-5463.13262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 4 (PLK4) has been reported to contribute to tumor growth, invasion, and metastasis. However, the role of PLK4 in human bladder cancer (BC) remains unclear. Here, we demonstrate the regulatory function of PLK4 in human BC progression. PLK4 is overexpressed in BC cell lines and tissues, and its overexpression correlated with poor prognosis. Our transcriptome analysis combined with subsequent functional assays indicated that PLK4 inhibition can suppress BC cell growth and induce cell cycle arrest at G1 phase via activation of the p38/p53/p21 pathway in vitro and in vivo. Overall, our data suggest that PLK4 is a critical regulator of BC cell proliferation, and thus it may have potential as a novel molecular target for BC treatment.
Collapse
Affiliation(s)
- Ziyi Yang
- Shenzhen University Health Science Center, Shenzhen, Guangdong province, China.,Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Haiyan Sun
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Kai Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Guoyu Peng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Tong Ou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Song Wu
- Shenzhen University Health Science Center, Shenzhen, Guangdong province, China.,Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| |
Collapse
|
23
|
Zhao Y, Yang J, Liu J, Cai Y, Han Y, Hu S, Ren S, Zhou X, Wang X. Inhibition of Polo-like kinase 4 induces mitotic defects and DNA damage in diffuse large B-cell lymphoma. Cell Death Dis 2021; 12:640. [PMID: 34162828 PMCID: PMC8222327 DOI: 10.1038/s41419-021-03919-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Polo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, has recently been shown to play key roles in tumorigenesis. Blocking PLK4 expression by interference or targeted drugs exhibits attractive potential in improving the efficacy of chemotherapy. Nevertheless, the role of PLK4 in diffuse large B-cell lymphoma (DLBCL) is still undefined. In this study, we discover that PLK4 is a potential target for the treatment of DLBCL, and demonstrate the efficacy of a PLK4 inhibitor when used in combination with doxorubicin. Pharmaceutical inhibition of PLK4 with CFI-400945 inhibited DLBCL cell proliferation and induced apoptotic cell death. The anti-tumor effects were accompanied by mitotic defects, including polyploidy and cytokinesis failure. Activation of p53 and Hippo/YAP tumor suppressor signaling pathway was identified as the potential mechanisms driving CFI-400945 activity. Moreover, CFI-400945 treatment resulted in activation of DNA damage response. Combining CFI-400945 with doxorubicin markedly delayed tumor progression in DLBCL xenografts. Finally, PLK4 was increased in primary DLBCL tissues and cell lines. High levels of PLK4 expression were associated with poor survival in the patients receiving CHOP-based treatment, implicating PLK4 as a predictive biomarker of DLBCL chemosensitivity. These results provide the therapeutic potential of CFI-400945 both as monotherapy or in combination with doxorubicin for the treatment of DLBCL.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Damage
- Doxorubicin/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Indazoles/pharmacology
- Indoles/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, SCID
- Mitosis/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Juan Yang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shuai Ren
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
24
|
Bakowski MA, Beutler N, Wolff KC, Kirkpatrick MG, Chen E, Nguyen TTH, Riva L, Shaabani N, Parren M, Ricketts J, Gupta AK, Pan K, Kuo P, Fuller M, Garcia E, Teijaro JR, Yang L, Sahoo D, Chi V, Huang E, Vargas N, Roberts AJ, Das S, Ghosh P, Woods AK, Joseph SB, Hull MV, Schultz PG, Burton DR, Chatterjee AK, McNamara CW, Rogers TF. Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nat Commun 2021; 12:3309. [PMID: 34083527 PMCID: PMC8175350 DOI: 10.1038/s41467-021-23328-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.
Collapse
Affiliation(s)
- Malina A Bakowski
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA.
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Karen C Wolff
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | | | - Emily Chen
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Tu-Trinh H Nguyen
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Riva
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ricketts
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anil K Gupta
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Kastin Pan
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Peiting Kuo
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - MacKenzie Fuller
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- HUMANOID CoRE, UC San Diego, La Jolla, CA, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Victor Chi
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Edward Huang
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Natalia Vargas
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Soumita Das
- HUMANOID CoRE, UC San Diego, La Jolla, CA, USA
- Department of Pathology, UC San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- HUMANOID CoRE, UC San Diego, La Jolla, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Ashley K Woods
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Sean B Joseph
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell V Hull
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Peter G Schultz
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- UC San Diego Division of Infectious Diseases and Global Public Health, UC San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
25
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
26
|
Qin J, Cheng W, Duan YT, Yang H, Yao Y. Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications. Anticancer Agents Med Chem 2021; 21:839-860. [PMID: 32819234 DOI: 10.2174/1871520620999200818160350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties. METHODS A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application. RESULTS The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials. CONCLUSION This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| |
Collapse
|
27
|
Garvey DR, Chhabra G, Ndiaye MA, Ahmad N. Role of Polo-Like Kinase 4 (PLK4) in Epithelial Cancers and Recent Progress in its Small Molecule Targeting for Cancer Management. Mol Cancer Ther 2021; 20:632-640. [PMID: 33402398 PMCID: PMC8026525 DOI: 10.1158/1535-7163.mct-20-0741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
The polo-like kinases (PLKs) are a family of serine/threonine kinases traditionally linked to cell-cycle regulation. A structurally unique member of this family, PLK4, has been shown to regulate centriole duplication during the cell cycle via interactions with a variety of centrosomal proteins. Recent findings suggest that PLK4 is overexpressed in various human cancers and associated with poor cancer prognosis. Although several studies have shown that PLK4 inhibition may lead to cancer cell death, the underlying mechanisms are largely unknown. In this review, we discuss the structure, localization, and function of PLK4, along with the functional significance of PLK4 in epithelial cancers and some preliminary work suggesting a role for PLK4 in the key cancer progression process epithelial-mesenchymal transition. We also discuss the potential of PLK4 as a druggable target for anticancer drug development based on critical analysis of the available data of PLK4 inhibitors in preclinical development and clinical trials. Overall, the emerging data suggest that PLK4 plays an essential role in epithelial cancers and should be further explored as a potential biomarker and/or therapeutic target. Continued detailed exploration of available and next-generation PLK4 inhibitors may provide a new dimension for novel cancer therapeutics following successful clinical trials.
Collapse
Affiliation(s)
- Debra R Garvey
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin.
- William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
28
|
Parsyan A, Cruickshank J, Hodgson K, Wakeham D, Pellizzari S, Bhat V, Cescon DW. Anticancer effects of radiation therapy combined with Polo-Like Kinase 4 (PLK4) inhibitor CFI-400945 in triple negative breast cancer. Breast 2021; 58:6-9. [PMID: 33866248 PMCID: PMC8079282 DOI: 10.1016/j.breast.2021.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Development of novel multimodality radiotherapy treatments in metastatic breast cancer, especially in the most aggressive triple negative (TNBC) subtype, is of significant clinical interest. Here we show that a novel inhibitor of Polo-Like Kinase 4 (PLK4), CFI-400945, in combination with radiation, exhibits a synergistic anti-cancer effect in TNBC cell lines and patient-derived organoids in vitro and leads to a significant increase in survival to tumor endpoint in xenograft models in vivo, compared to control or single-agent treatment. Further preclinical and proof-of-concept clinical studies are warranted to characterize molecular mechanisms of action of this combination and its potential applications in clinical practice. PLK4 inhibitor CFI-400945, combined with radiation, shows synergistic antiproliferative activity in immortalized breast cancer cell lines. CFI-400945 in combination with radiation shows synergistic antiproliferative activity in breast cancer patient-derived organoids. In MDA-MB-231 xenograft mice, CFI-400945 sensitizes to radiation and significantly improves survival to the tumour endpoint.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, Ontario, N6A 4V2, Canada; Department of Oncology, Western University, London, Ontario, N6A 5W9, Canada; London Regional Cancer Program, London Health Sciences Centre, Western University, London, Ontario, N6A 5W9, Canada; Department of Anatomy and Cell Biology, London Regional Cancer Program, Western University, London, Ontario, N6A 5C1, Canada.
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| | - Drew Wakeham
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| | - Sierra Pellizzari
- Department of Anatomy and Cell Biology, London Regional Cancer Program, Western University, London, Ontario, N6A 5C1, Canada
| | - Vasudeva Bhat
- London Regional Cancer Program, London Health Sciences Centre, Western University, London, Ontario, N6A 5W9, Canada; Department of Anatomy and Cell Biology, London Regional Cancer Program, Western University, London, Ontario, N6A 5C1, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| |
Collapse
|
29
|
Abreu P, Ivanics T, Jiang K, Chen K, E Hansen B, Sapisochin G, Ghanekar A. Novel biomarker for hepatocellular carcinoma: high tumoral PLK-4 expression is associated with better prognosis in patients without microvascular invasion. HPB (Oxford) 2021; 23:359-366. [PMID: 32800449 DOI: 10.1016/j.hpb.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) recurrence after liver resection (LR) adversely affects prognosis but is difficult to predict. Aberrant expression of Polo-Like Kinase 4 (PLK-4) is implicated in several adult malignancies. We sought to evaluate the prognostic value of PLK-4 expression in HCC after curative-intent LR. METHODS Patients undergoing LR for HCC between July-2015 and November-2017 at our centre were retrospectively identified. PLK-4 expression was measured in tumour and adjacent non-tumour liver tissue using quantitative RT-PCR. Disease-free survival (DFS) was evaluated by Kaplan-Meier and Cox proportional hazard models. RESULTS A total of 145 patients were identified. Patients were divided according to PLK-4 expression (high: n = 58, low: n = 87) by generating a receiver operating characteristic curve for recurrence with an area under the curve of 0.72 (95% CI: 0.6-0.8). Recurrence and death rates were similar between groups. In patients without mVI, low PLK-4 expression was associated with worse actuarial DFS (low 1-, 3-, 5-year 83%, 60%, 47% vs. high 91%, 81%, 81%; p = 0.02). In patients without mVI, high PLK-4 expression was an independent predictor of survival (HR 0.3, 95% CI: 0.1-1.0; p = 0.04). CONCLUSION PLK-4 represents a biomarker for good prognosis in patients with HCC who do not have mVI. This could aid clinical decision making for adjuvant clinical trials.
Collapse
Affiliation(s)
- Phillipe Abreu
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Tommy Ivanics
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Keruo Jiang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kui Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bettina E Hansen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; Division of General Surgery, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Anand Ghanekar
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of General Surgery, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
|
31
|
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, Zong B, Liu S. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132:110924. [PMID: 33128942 DOI: 10.1016/j.biopha.2020.110924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumors, but it is not clear whether this is a cause or a consequence of cancer. The centrosome amplification observed in tumor cells may be explained by a series of events, such as failure of cell division, dysregulation of centrosome cycle checkpoints, and de novo centriole biogenesis disorder. The formation and progression of breast cancer are characterized by genomic abnormality. The centrosomes in breast cancer cells show characteristic structural aberrations, caused by centrosome amplification, which include: an increase in the number and volume of centrosomes, excessive increase of pericentriolar material (PCM), inappropriate phosphorylation of centrosomal molecular, and centrosome clustering formation induced by the dysregulation of important genes. The mechanism of intracellular centrosome amplification, the impact of which on breast cancer and the latest breast cancer target treatment options for centrosome amplification are exhaustively elaborated in this review.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jiao Tian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Chi Qu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Yang Peng
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jinwei Lei
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Lu Sun
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Beige Zong
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
32
|
Zhou L, Jilderda LJ, Foijer F. Exploiting aneuploidy-imposed stresses and coping mechanisms to battle cancer. Open Biol 2020; 10:200148. [PMID: 32873156 PMCID: PMC7536071 DOI: 10.1098/rsob.200148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Aneuploidy, an irregular number of chromosomes in cells, is a hallmark feature of cancer. Aneuploidy results from chromosomal instability (CIN) and occurs in almost 90% of all tumours. While many cancers display an ongoing CIN phenotype, cells can also be aneuploid without displaying CIN. CIN drives tumour evolution as ongoing chromosomal missegregation will yield a progeny of cells with variable aneuploid karyotypes. The resulting aneuploidy is initially toxic to cells because it leads to proteotoxic and metabolic stress, cell cycle arrest, cell death, immune cell activation and further genomic instability. In order to overcome these aneuploidy-imposed stresses and adopt a malignant fate, aneuploid cancer cells must develop aneuploidy-tolerating mechanisms to cope with CIN. Aneuploidy-coping mechanisms can thus be considered as promising therapeutic targets. However, before such therapies can make it into the clinic, we first need to better understand the molecular mechanisms that are activated upon aneuploidization and the coping mechanisms that are selected for in aneuploid cancer cells. In this review, we discuss the key biological responses to aneuploidization, some of the recently uncovered aneuploidy-coping mechanisms and some strategies to exploit these in cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
33
|
Kazazian K, Haffani Y, Ng D, Lee CMM, Johnston W, Kim M, Xu R, Pacholzyk K, Zih FSW, Tan J, Smrke A, Pollett A, Wu HST, Swallow CJ. FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity. Commun Biol 2020; 3:448. [PMID: 32807875 PMCID: PMC7431843 DOI: 10.1038/s42003-020-01161-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polo like kinase 4 (Plk4) is a tightly regulated serine threonine kinase that governs centriole duplication. Increased Plk4 expression, which is a feature of many common human cancers, causes centriole overduplication, mitotic irregularities, and chromosomal instability. Plk4 can also promote cancer invasion and metastasis through regulation of the actin cytoskeleton. Herein we demonstrate physical interaction of Plk4 with FAM46C/TENT5C, a conserved protein of unknown function until recently. FAM46C localizes to centrioles, inhibits Plk4 kinase activity, and suppresses Plk4-induced centriole duplication. Interference with Plk4 function by FAM46C was independent of the latter's nucleotidyl transferase activity. In addition, FAM46C restrained cancer cell invasion and suppressed MDA MB-435 cancer growth in a xenograft model, opposing the effect of Plk4. We demonstrate loss of FAM46C in patient-derived colorectal cancer tumor tissue that becomes more profound with advanced clinical stage. These results implicate FAM46C as a tumor suppressor that acts by inhibiting Plk4 activity.
Collapse
Affiliation(s)
- Karineh Kazazian
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Yosr Haffani
- Laboratory of Physiopathology, Alimentation and Biomolecules LR17ES03, Higher Institute of Biotechnology, Sidi Thabet, University of Manouba, Ariana, 2020, Tunisia
| | - Deanna Ng
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Chae Min Michelle Lee
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Wendy Johnston
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Minji Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Roland Xu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Karina Pacholzyk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Francis Si-Wah Zih
- Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Julie Tan
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Alannah Smrke
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hannah Sun-Tsi Wu
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Carol Jane Swallow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada. .,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
34
|
Anticancer effects of the PLK4 inhibitors CFI-400945 and centrinone in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2020; 146:2871-2883. [PMID: 32770382 PMCID: PMC7519924 DOI: 10.1007/s00432-020-03346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Purpose Polo-like kinase 4 (PLK4) inhibitors, such as CFI-400945 and centrinone, are emerging as promising antineoplastic agents. However, their effectiveness against Ewing’s sarcoma, a highly aggressive childhood cancer, remains to be established.
Methods CFI-400945 and centrinone were tested in three Ewing’s sarcoma cell lines with different TP53 status. Effects were assessed by flow-cytometric analyses of cell death, dissipation of the mitochondrial transmembrane potential and cell cycle distribution, by cell viability assay as well as by caspase 3/7 activity measurement, by immunoblotting and by immunofluorescence microscopy. Results CFI-400945 and centrinone elicited cell death in p53 wild-type and mutant Ewing’s sarcoma cells. Both agents induced mitochondrial membrane depolarisation, caspase 3/7 activation, PARP1 cleavage and DNA fragmentation, indicating an apoptotic form of cell death. In addition, the PLK4 inhibitors induced a G2/M cell cycle arrest, particularly when cell killing was attenuated by the pan-caspase inhibitor z-VAD-fmk. Moreover, CFI-400945 treatment produced polyploidy. Conclusion Our findings show that PLK4 inhibitors were effective against Ewing’s sarcoma cells in vitro and thus provide a rationale for their evaluation in vivo. Electronic supplementary material The online version of this article (10.1007/s00432-020-03346-z) contains supplementary material, which is available to authorized users.
Collapse
|