1
|
O’Connor JP, Tessyman V, Little RA, Babur M, Forster D, Latif A, Cheung S, Lipowska-Bhalla G, Higgins GS, Asselin MC, Parker GJ, Williams KJ. Combined Oxygen-Enhanced MRI and Perfusion Imaging Detect Hypoxia Modification from Banoxantrone and Atovaquone and Track Their Differential Mechanisms of Action. CANCER RESEARCH COMMUNICATIONS 2024; 4:2565-2574. [PMID: 39240065 PMCID: PMC11443776 DOI: 10.1158/2767-9764.crc-24-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Oxygen-enhanced MRI (OE-MRI) has shown promise for quantifying and spatially mapping tumor hypoxia, either alone or in combination with perfusion imaging. Previous studies have validated the technique in mouse models and in patients with cancer. Here, we report the first evidence that OE-MRI can track change in tumor oxygenation induced by two drugs designed to modify hypoxia. Mechanism of action of banoxantrone and atovaquone were confirmed using in vitro experiments. Next, in vivo OE-MRI studies were performed in Calu6 and U87 xenograft tumor models, alongside fluorine-18-fluoroazomycin arabinoside PET and immunohistochemistry assays of hypoxia. Neither drug altered tumor size. Banoxantrone reduced OE-MRI hypoxic fraction in Calu6 tumors by 52.5% ± 12.0% (P = 0.008) and in U87 tumors by 29.0% ± 15.8% (P = 0.004) after 3 days treatment. Atovaquone reduced OE-MRI hypoxic fraction in Calu6 tumors by 53.4% ± 15.3% (P = 0.002) after 7 days therapy. PET and immunohistochemistry provided independent validation of the MRI findings. Finally, combined OE-MRI and perfusion imaging showed that hypoxic tissue was converted into necrotic tissue when treated by the hypoxia-activated cytotoxic prodrug banoxantrone, whereas hypoxic tissue became normoxic when treated by atovaquone, an inhibitor of mitochondrial complex III of the electron transport chain. OE-MRI detected and quantified hypoxia reduction induced by two hypoxia-modifying therapies and could distinguish between their differential mechanisms of action. These data support clinical translation of OE-MRI biomarkers in clinical trials of hypoxia-modifying agents to identify patients demonstrating biological response and to optimize treatment timing and scheduling. Significance: For the first time, we show that hypoxic fraction measured by oxygen-enhanced MRI (OE-MRI) detected changes in tumor oxygenation induced by two drugs designed specifically to modify hypoxia. Furthermore, when combined with perfusion imaging, OE-MRI hypoxic volume distinguished the two drug mechanisms of action. This imaging technology has potential to facilitate drug development, enrich clinical trial design, and accelerate clinical translation of novel therapeutics into clinical use.
Collapse
Affiliation(s)
- James P.B. O’Connor
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Victoria Tessyman
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom.
| | - Ross A. Little
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.
| | - Muhammad Babur
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom.
| | - Duncan Forster
- Cancer Research UK Manchester Centre, University of Manchester, Manchester, United Kingdom.
| | - Ayşe Latif
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom.
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.
| | | | - Geoff S. Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom.
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom.
| | - Geoff J.M. Parker
- Bioxydyn Ltd., Manchester, United Kingdom.
- Centre for Medical Image Computing, University College London, London, United Kingdom.
| | - Kaye J. Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
2
|
Doma Sherpa D, Dasgupta S, Mitra I, Kanti Das T, Chakraborty P, Joshi M, Sharma S, Kalapahar S, Chaudhury K. PI3K/AKT signaling alters glucose metabolism in uterine microenvironment of women with idiopathic recurrent spontaneous miscarriage. Clin Chim Acta 2024; 561:119834. [PMID: 38944409 DOI: 10.1016/j.cca.2024.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND This study aims to identify metabolomic signatures in uterine fluid of women with idiopathic recurrent spontaneous miscarriage (IRSM) during window of implantation (WOI). Also, glucose transporters GLUT3 and GLUT4 and proteins of PI3K-Akt signaling pathway in endometrial tissue are assessed. METHODS Paired uterine fluid and endometrial biopsies were collected during WOI from women with IRSM (n = 24) and healthy women with azoospermic male partners as controls (n = 15). NMR metabolomics was used to identify the dysregulated metabolites in uterine fluid of IRSM women. Additionally, proteins and glucose transporters were investigated in the endometrial tissue using immunohistochemistry (IHC) and western blotting. RESULTS Uterine fluid metabolomics indicated eleven metabolites to be significantly downregulated in IRSM. While expression levels of PI3K (p85), PI3K (p110), p-Akt (Thr308), p-Akt (Ser473), GLUT3 and GLUT4 were significantly downregulated in endometrial tissue of these women, p-IKK α/β (Ser176/180) and p-NFkBp65 (Ser536) were significantly increased. CONCLUSION Our findings suggest that dysregulation of PI3K/Akt pathway in the uterine microenvironment could be a likely cause of endometrial dysfunction, thereby affecting implantation. Further studies on the downstream effects of the Akt signaling pathway in-vitro for improved understanding of the Akt-mediated cellular responses in IRSM is, therefore, warranted.
Collapse
Affiliation(s)
- Da Doma Sherpa
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India
| | | | - Imon Mitra
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India
| | | | | | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
3
|
Dai W, Guo R, Na X, Jiang S, Liang J, Guo C, Fang Y, Na Z, Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol 2024; 73:103205. [PMID: 38815332 PMCID: PMC11167393 DOI: 10.1016/j.redox.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a major molecular mediator of the hypoxic response. In the endometrium, local hypoxic conditions induced by hormonal fluctuations and endometrial vascular remodeling contribute to the production of HIF-1α, which plays an indispensable role in a series of physiological activities, such as menstruation and metamorphosis. The sensitive regulation of HIF-1α maintains the cellular viability and regenerative capacity of the endometrium against cellular stresses induced by hypoxia and excess reactive oxygen species. In contrast, abnormal HIF-1α levels exacerbate the development of various endometrial pathologies. This knowledge opens important possibilities for the development of promising HIF-1α-centered strategies to ameliorate endometrial disease. Nonetheless, additional efforts are required to elucidate the regulatory network of endometrial HIF-1α and promote the applications of HIF-1α-centered strategies in the human endometrium. Here, we summarize the role of the HIF-1α-mediated pathway in endometrial physiology and pathology, highlight the latest HIF-1α-centered strategies for treating endometrial diseases, and improve endometrial receptivity.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinni Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Ma J, Yao Z, Ma L, Zhu Q, Zhang J, Li L, Liu C. Glucose metabolism reprogramming in gynecologic malignant tumors. J Cancer 2024; 15:2627-2645. [PMID: 38577616 PMCID: PMC10988310 DOI: 10.7150/jca.91131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
The incidence and mortality of gynecological tumors are progressively increasing due to factors such as obesity, viral infection, unhealthy habits, as well as social and economic pressures. Consequently, it has emerged as a significant threat to women's health. Numerous studies have revealed the remarkable metabolic activity of tumor cells in glycolysis and its ability to influence malignant biological behavior through specific mechanisms. Therefore, it is crucial for patients and gynecologists to comprehend the role of glycolytic proteins, regulatory molecules, and signaling pathways in tumorigenesis, progression, and treatment. This article aims to review the correlation between abnormal glucose metabolism and gynecologic tumors including cervical cancer (CC), endometrial carcinoma (EC), and ovarian cancer (OC). The findings from this research will provide valuable scientific insights for early screening, timely diagnosis and treatment interventions while also aiding in the prevention of recurrence among individuals with gynecological tumors.
Collapse
Affiliation(s)
- Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Yao
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Liangjian Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Qinyin Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Jiajia Zhang
- Department of Child Health, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
5
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
6
|
Boso D, Tognon M, Curtarello M, Minuzzo S, Piga I, Brillo V, Lazzarini E, Carlet J, Marra L, Trento C, Rasola A, Masgras I, Caporali L, Del Ben F, Brisotto G, Turetta M, Pastorelli R, Brunelli L, Navaglia F, Esposito G, Grassi A, Indraccolo S. Anti-VEGF therapy selects for clones resistant to glucose starvation in ovarian cancer xenografts. J Exp Clin Cancer Res 2023; 42:196. [PMID: 37550722 PMCID: PMC10405561 DOI: 10.1186/s13046-023-02779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis. METHODS Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy. RESULTS Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation. CONCLUSION A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.
Collapse
Affiliation(s)
- Daniele Boso
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - Martina Tognon
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | - Ilaria Piga
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | | | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - Jessica Carlet
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Ludovica Marra
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Chiara Trento
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Leonardo Caporali
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Filippo Navaglia
- Laboratory Medicine, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Angela Grassi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy.
| |
Collapse
|
7
|
Buckley CE, O’Brien RM, Nugent TS, Donlon NE, O’Connell F, Reynolds JV, Hafeez A, O’Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O’Sullivan J, Lynam-Lennon N. Metformin is a metabolic modulator and radiosensitiser in rectal cancer. Front Oncol 2023; 13:1216911. [PMID: 37601689 PMCID: PMC10435980 DOI: 10.3389/fonc.2023.1216911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer.
Collapse
Affiliation(s)
- Croí E. Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Rebecca M. O’Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Timothy S. Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Noel E. Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Surgery, Beacon Hospital, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Brian J. Mehigan
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Paul H. McCormick
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Cara Dunne
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Michael E. Kelly
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - John O. Larkin
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Ni Z, Dawa Z, Suolang D, Pingcuo Q, Langga Z, Quzhen P, Deji Z. Platycodin D inhibits the proliferation, invasion and migration of endometrial cancer cells by blocking the PI3K/Akt signaling pathway via ADRA2A upregulation. Oncol Lett 2023; 25:136. [PMID: 36909368 PMCID: PMC9996608 DOI: 10.3892/ol.2023.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/17/2022] [Indexed: 02/17/2023] Open
Abstract
Endometrial cancer (EC) is a complex disease that affects the reproductive health of females worldwide. Platycodin D (PD) is known to exert numerous anticancer effects, markedly inhibiting cell proliferation, inducing apoptosis and causing cell cycle arrest in several types of cancer. The present study aimed to explore the mechanisms underlying the effects of PD in EC cells. The viability and proliferation of human endometrial stromal cells (ESCs) and RL95-2 EC cells following treatment with PD were evaluated using Cell Counting Kit-8, MTT and colony formation assays. Wound healing and Transwell assays were also performed to assess the migration and invasion of EC cells following treatment with PD. The expression levels of α2A-adrenergic receptor (ADRA2A) were measured using reverse transcription-quantitative PCR and western blotting assays with and without PD treatment and following transfection with short hairpin (sh) RNAs targeting ADRA2A2. Moreover, western blot analysis was performed to measure the expression levels of Ki67, PCNA, MMP2 and MMP9 and the phosphorylation of proteins of the PI3K/Akt signaling pathway. The results demonstrated that treatment with PD markedly decreased the proliferation, invasion and migration of EC cells, and reduced activation of the PI3K/Akt signaling pathway in EC cells. Moreover, transfection with sh-ADRA2A attenuated the effects of PD. ADRA2A expression was downregulated in EC cells compared with ESCs, and ADRA2A expression was elevated in EC cells following treatment with PD. In conclusion, the present study indicates that PD blocked the PI3K/Akt signaling pathway via the upregulation of ADRA2A expression, thereby inhibiting the proliferation, invasion and migration of EC cells.
Collapse
Affiliation(s)
- Zhen Ni
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoma Dawa
- Basic Department, Medical College of Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Deji Suolang
- Department of Respiratory and Critical Care Diseases, The People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Quzhen Pingcuo
- Department of Digestive System, The People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoma Langga
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Pingcuo Quzhen
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoga Deji
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850000, P.R. China
| |
Collapse
|
9
|
Li J, Yang H, Zhang L, Zhang S, Dai Y. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed Pharmacother 2023; 161:114526. [PMID: 36933381 DOI: 10.1016/j.biopha.2023.114526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer cells are usually featured by metabolic adaptations that facilitate their growth, invasion, and metastasis. Thus, reprogramming of intracellular energy metabolism is currently one of the hotspots in the field of cancer research. Whereas aerobic glycolysis (known as the Warburg effect) has long been considered a dominant form of energy metabolism in cancer cells, emerging evidence indicates that other metabolic forms, especially oxidative phosphorylation (OXPHOS), may play a critical role at least in some types of cancer. Of note, women with metabolic syndromes (MetS), including obesity, hyperglycemia, dyslipidemia, and hypertension, have an increased risk of developing endometrial carcinoma (EC), suggesting a close link between metabolism and EC. Interestingly, the metabolic preferences vary among EC cell types, particularly cancer stem cells and chemotherapy-resistant cells. Currently, it is commonly accepted that glycolysis is the main energy provider in EC cells, while OXPHOS is reduced or impaired. Moreover, agents specifically targeting the glycolysis and/or OXPHOS pathways can inhibit tumor cell growth and promote chemosensitization. For example, metformin and weight control not only reduce the incidence of EC but also improve the prognosis of EC patients. In this review, we comprehensively overview the current in-depth understanding of the relationship between metabolism and EC and provide up-to-date insights into the development of novel therapies targeting energy metabolism for auxiliary treatment in combination with chemotherapy for EC, especially those resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Hongmei Yang
- Department of Critical Care Medicine, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Lingyi Zhang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Songling Zhang
- Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China.
| | - Yun Dai
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
10
|
Hebert JF, Myatt L. Metformin Impacts Human Syncytiotrophoblast Mitochondrial Function from Pregnancies Complicated by Obesity and Gestational Diabetes Mellitus in a Sexually Dimorphic Manner. Antioxidants (Basel) 2023; 12:719. [PMID: 36978967 PMCID: PMC10044921 DOI: 10.3390/antiox12030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are associated with placental dysfunction, small for gestational age (SGA) offspring, and programming of adult-onset disease. We examine how metformin, commonly used to treat type A2 GDM, affects placental metabolism as well as mitochondrial content and function. Syncytiotrophoblasts (STBs) were prepared from placentas of male and female fetuses collected at term cesarean section from lean (pre-pregnancy BMI < 25), obese (BMI > 30), and obese A2GDM women. Metformin treatment (0.001-10 mM) of STB caused no change in non-mitochondrial respiration but significant concentration-dependent (1 and 10 mM) decreases in basal, maximal, and ATP-linked respiration and spare capacity. Respiration linked to proton leak was significantly increased in STB of male A2GDM placentas at low metformin concentrations. Metformin concentrations ≥1 mM increased glycolysis in STB from placentas from lean women, but only improved glycolytic capacity in female STB. Whereas metformin had little effect on superoxide generation from male STB of any group, it gave a concentration-dependent decrease in superoxide generation from female STB of lean and obese women. Fewer mitochondria were observed in STB from obese women and male STB from lean women with increasing metformin concentration. Metformin affects STB mitochondrial function in a sexually dimorphic manner but at concentrations above those reported in maternal circulation (approximately 0.01 mM) in women treated with metformin for GDM.
Collapse
Affiliation(s)
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University; Portland, OR 97239, USA
| |
Collapse
|
11
|
Huang P, Fan X, Yu H, Zhang K, Li H, Wang Y, Xue F. Glucose metabolic reprogramming and its therapeutic potential in obesity-associated endometrial cancer. J Transl Med 2023; 21:94. [PMID: 36750868 PMCID: PMC9906873 DOI: 10.1186/s12967-022-03851-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/24/2022] [Indexed: 02/09/2023] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer that endangers women health. Although substantial progresses of EC management have been achieved in recent years, the incidence of EC still remains high. Obesity has been a common phenomenon worldwide that increases the risk of EC. However, the mechanism associating obesity and EC has not been fully understood. Metabolic reprogramming as a remarkable characteristic of EC is currently emerging. As the primary factor of metabolic syndrome, obesity promotes insulin resistance, hyperinsulinemia and hyperglycaemia. This metabolic disorder remodels systemic status, which increases EC risk and is related with poor prognosis. Glucose metabolism in EC cells is complex and mediated by glycolysis and mitochondria to ensure energy requirement. Factors that affect glucose metabolism may have an impact on EC initiation and progression. In this study, we review the glucose metabolic reprogramming of EC not only systemic metabolism but also inherent tumor cell metabolism. In particular, the role of glucose metabolic regulation in malignant properties of EC will be focused. Understanding of metabolic profile and glucose metabolism-associated regulation mechanism in EC may provide novel perspective for treatment.
Collapse
Affiliation(s)
- Pengzhu Huang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangqin Fan
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfei Yu
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- grid.412645.00000 0004 1757 9434Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
12
|
Zhu L, Liu J, Qiu M, Chen J, Liang Q, Peng G, Zou Z. Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials 2022; 288:121711. [DOI: 10.1016/j.biomaterials.2022.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
13
|
Chen Y. Identification and Validation of Cuproptosis-Related Prognostic Signature and Associated Regulatory Axis in Uterine Corpus Endometrial Carcinoma. Front Genet 2022; 13:912037. [PMID: 35937995 PMCID: PMC9353190 DOI: 10.3389/fgene.2022.912037] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/13/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Uterine corpus endometrial carcinoma (UCEC) is a common gynecological malignancy globally with high recurrence and mortality rates. Cuproptosis is a new type of programmed cell death involved in tumor cell proliferation and growth, angiogenesis, and metastasis.Methods: The difference in cuproptosis-related genes (CRGs) between UCEC tissues and normal tissues deposited in The Cancer Genome Atlas database was calculated using the “limma” R package. LASSO Cox regression analysis was conducted to construct a prognostic cuproptosis–related signature. Kaplan–Meier analysis was conducted to compare the survival of UCEC patients. A ceRNA network was constructed to identify the lncRNA–miRNA–mRNA regulatory axis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify CRG expression in UCEC.Results: The expression of FDX1, LIAS, DLAT, and CDKN2A were upregulated, whereas the expression of LIPT1, DLD, PDHB, MTF1, and GLS were downregulated in UCEC versus normal tissues. The genetic mutation landscape of CRGs in UCEC was also summarized. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these CRGs were enriched in the tricarboxylic acid (TCA) cycle, glycolysis, and HIF-1 signaling pathway. LASSO Cox regression analysis was performed and identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1). UCEC patients with high risk scores had a poor prognosis with an area under the curve of 0.782 and 0.764 on 3- and 5-year receiver operating characteristic curves. Further analysis demonstrated a significant correlation between CDKN2A and pTNM stage, tumor grade, immune cell infiltration, drug sensitivity, tumor mutational burden (TMB) score, and microsatellite instable (MSI) score. The data validation of qRT-PCR further demonstrated the upregulation of CDKN2A and the downregulation of LIPT1 and GLS in UCEC versus normal tissues. The ceRNA network also identified lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis for UCEC.Conclusion: The current study identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1) for UCEC. The ceRNA network also identified that lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis may be involved in the progression of UCEC. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
|
14
|
Zhang J, Liu Q, Li J, Liu Z, Wang X, Li N, Huang Z, Xu H. Magnetic resonance spectroscopy associations with clinicopathologic features of estrogen-dependent endometrial cancer. BMC Med Imaging 2022; 22:127. [PMID: 35850646 PMCID: PMC9295509 DOI: 10.1186/s12880-022-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the magnetic resonance spectroscopy (MRS) associations with clinicopathologic features of estrogen-dependent endometrial cancer (type I EC). METHODS Totally 45 patients with type I EC who underwent preoperative multi-voxel MRS at 3.0 T were enrolled. The mean ratio of the Cho peak integral to the unsuppressed water peak integral (Cho/water) of the tumor was calculated. The Cho/water and apparent diffusion coefficient (ADC) of type I EC with and without local invasion, as well as with different levels of Ki-67 staining index (SI) (≤ 40% and > 40%), were compared. Correlation test was used to examine the relationship of Cho/water, as well as mean ADC, with Ki-67 SI, tumor stage, and tumor grade. RESULTS The mean Cho/water of EC with Ki-67 SI ≤ 40% (2.28 ± 0.93) × 10-3 was lower than that with Ki-67 SI > 40% (4.08 ± 1.00) × 10-3 (P < 0.001). The mean Cho/water of EC with deep and superficial myometrial invasion was (3.41 ± 1.26) × 10-3 and (2.43 ± 1.11) × 10-3, respectively (P = 0.011). There was no significant difference in Cho/water between type I EC with and without cervical invasioin ([2.68 ± 1.00] × 10-3 and [2.77 ± 1.28] × 10-3, P = 0.866). The mean Cho/water of type I EC with and without lymph node metastasis was (4.02 ± 1.90) × 10-3 and (2.60 ± 1.06) × 10-3, respectively (P = 0.014). The Cho/water was positively correlated with the Ki-67 SI (r = 0.701, P < 0.001). There were no significant differences in ADC among groups (all P > 0.05). CONCLUSION MRS is helpful for preoperative assessment of clinicopathological features of type I EC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Qingwei Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Jie Li
- Special Inspection Department, Taian City Central Hospital Branch, No. 336, Wanguan Road, Taian, 271000, Shandong, China
| | - Zhiling Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| | - Han Xu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Banz-Jansen C, Helweg LP, Kaltschmidt B. Endometrial Cancer Stem Cells: Where Do We Stand and Where Should We Go? Int J Mol Sci 2022; 23:ijms23063412. [PMID: 35328833 PMCID: PMC8955970 DOI: 10.3390/ijms23063412] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is one of the most common malignant diseases in women worldwide, with an incidence of 5.9%. Thus, it is the most frequent cancer of the female genital tract, with more than 34,000 women dying, in Europe and North America alone. Endometrial Cancer Stem Cells (CSC) might be drivers of carcinogenesis as well as metastatic and recurrent disease. Therefore, targeting CSCs is of high interest to improve prognosis of patients suffering of advanced or recurrent endometrial cancer. This review describes the current evidence of molecular mechanisms in endometrial CSCs with special emphasis on MYC and NF-κB signaling as well as mitochondrial metabolism. Furthermore, the current status of immunotherapy targeting PD-1 and PD-L1 in endometrial cancer cells and CSCs is elucidated. The outlined findings encourage novel therapies that target signaling pathways in endometrial CSCs as well as immunotherapy as a promising therapeutic approach in the treatment of endometrial cancer to impede cancer progression and prevent recurrence.
Collapse
Affiliation(s)
- Constanze Banz-Jansen
- Department of Gynecology and Obstetrics, and Perinatal Center, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany;
| | - Laureen P. Helweg
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany;
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence:
| | - Barbara Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany;
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Yang X, Cheng Y, Zhou J, Zhang L, Li X, Wang Z, Yin S, Zhai L, Huang T, Wu X, Shen B, Dong Y, Zhao L, Chi Y, Jia Y, Wang J, He Y, Dong X, Xiao H, Wang J. Targeting Cancer Metabolism Plasticity with JX06 Nanoparticles via Inhibiting PDK1 Combined with Metformin for Endometrial Cancer Patients with Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104472. [PMID: 35064767 PMCID: PMC8922133 DOI: 10.1002/advs.202104472] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Indexed: 05/23/2023]
Abstract
Diabetes is closely related to the occurrence of endometrial cancer (EC) and its poor prognosis. However, there is no effective clinical treatment for EC patients with diabetes (patientEC+/dia+ ). To explore new therapeutic targets, Ishikawa is cultured with high glucose (IshikawaHG ) mimicking hyperglycemia in patientEC+/dia+ . Subsequently, it is discovered that IshikawaHG exhibits glucose metabolic reprogramming characterized by increased glycolysis and decreased oxidative phosphorylation. Further, pyruvate dehydrogenase kinase 1 (PDK1) is identified to promote glycolysis of IshikawaHG by proteomics. Most importantly, JX06, a novel PDK1 inhibitor combined metformin (Met) significantly inhibits IshikawaHG proliferation though IshikawaHG is resistant to Met. Furthermore, a reduction-sensitive biodegradable polymer is adopted to encapsulate JX06 to form nanoparticles (JX06-NPs) for drug delivery. It is found that in vitro JX06-NPs have better inhibitory effect on the growth of IshikawaHG as well as patient-derived EC cells (PDC) than JX06. Additionally, it is found that JX06-NPs can accumulate to the tumor of EC-bearing mouse with diabetes (miceEC+/dia+ ) after intravenous injection, and JX06-NPs combined Met can significantly inhibit tumor growth of miceEC+/dia+ . Taken together, the study demonstrates that the combination of JX06-NPs and Met can target the cancer metabolism plasticity, which significantly inhibits the growth of EC, thereby provides a new adjuvant therapy for patientsEC+/dia+ .
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yuan Cheng
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Jingyi Zhou
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xingchen Li
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Zhiqi Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Shenyi Yin
- College of Future TechnologyPeking UniversityBeijing100871China
| | - LiRong Zhai
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Ting Huang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Boqiang Shen
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yangyang Dong
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Lijun Zhao
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular BiologyPeking University People's HospitalBeijing100044China
| | - Yuanyuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Jiaqi Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Yijiao He
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| | - Xiying Dong
- Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100730China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalNo. 11, Xizhimen South Street, Xicheng DistrictBeijing100044China
| |
Collapse
|
17
|
Long non-coding RNA PAARH promotes hepatocellular carcinoma progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. Cell Death Dis 2022; 13:102. [PMID: 35110549 PMCID: PMC8810756 DOI: 10.1038/s41419-022-04505-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.
Collapse
|
18
|
Liu S, Washio J, Sato S, Abiko Y, Shinohara Y, Kobayashi Y, Otani H, Sasaki S, Wang X, Takahashi N. Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions. Int J Mol Sci 2022; 23:ijms23020989. [PMID: 35055173 PMCID: PMC8781974 DOI: 10.3390/ijms23020989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.
Collapse
Affiliation(s)
- Shan Liu
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Correspondence: ; Tel.: +81-22-717-8295
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuta Shinohara
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuri Kobayashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Shiori Sasaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| |
Collapse
|
19
|
Barczyński B, Frąszczak K, Kotarski J. Perspectives of metformin use in endometrial cancer and other gynaecological malignancies. J Drug Target 2021; 30:359-367. [PMID: 34753372 DOI: 10.1080/1061186x.2021.2005072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Insulin resistance and hyperinsulinemia play a key role in type 1 endometrial cancer pathogenesis. Most of these cancers develop on a background of overweight or type 2 diabetes mellitus (T2DM). One of the medications widely used in the treatment of T2DM is biguanide derivative, metformin, which exerts promising anticancer properties principally through activation of adenosine monophosphate kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) pathways. Many epidemiological studies on diabetic patients show potential preventative role of metformin in endometrial cancer patients, but data regarding its therapeutic role is still limited. So far, most of attention has been paid to the concept of metformin use in fertility sparing treatment of early-stage cancer. Another investigated alternative is its application in patients with primary advanced or recurrent disease. In this review we present the latest data on clinical use of metformin in endometrial cancer patients and potential underlying mechanisms of its activity. Finally, we present some most important clinical information regarding metformin efficacy in other gynaecological malignancies, mainly breast and ovarian cancer.
Collapse
Affiliation(s)
- Bartłomiej Barczyński
- Ist Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Frąszczak
- Ist Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Ist Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
20
|
Hsin IL, Shen HP, Chang HY, Ko JL, Wang PH. Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 Positive Feedback Loop Induces Cell Cycle Arrest by Dual PI3K/mTOR Inhibitor PQR309 in Endometrial Cancer Cell Lines. Cells 2021; 10:cells10112916. [PMID: 34831139 PMCID: PMC8616154 DOI: 10.3390/cells10112916] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Gene mutations in PIK3CA, PIK3R1, KRAS, PTEN, and PPP2R1A commonly detected in type I endometrial cancer lead to PI3K/Akt/mTOR pathway activation. Bimiralisib (PQR309), an orally bioavailable selective dual inhibitor of PI3K and mTOR, has been studied in preclinical models and clinical trials. The aim of this study is to evaluate the anticancer effect of PQR309 on endometrial cancer cells. PQR309 decreased cell viability in two-dimensional and three-dimensional cell culture models. PQR309 induced G1 cell cycle arrest and little cell death in endometrial cancer cell lines. It decreased CDK6 expression and increased p27 expression. Using the Proteome Profiler Human XL Oncology Array and Western blot assay, the dual inhibitor could inhibit the expressions of c-Myc and mtp53. KJ-Pyr-9, a c-Myc inhibitor, was used to prove the role of c-Myc in endometrial cancer survival and regulating the expression of mtp53. Knockdown of mtp53 lowered cell proliferation, Akt/mTOR pathway activity, and the expressions of c-Myc. mtp53 silence enhanced PQR309-inhibited cell viability, spheroid formation, and the expressions of p-Akt, c-Myc, and CDK6. This is the first study to reveal the novel finding of the PI3K/mTOR dual inhibitor in lowering cell viability by abolishing the PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop in endometrial cancer cell lines.
Collapse
Affiliation(s)
- I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
| | - Huang-Pin Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hui-Yi Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (I.-L.H.); (H.-P.S.); (H.-Y.C.); (J.-L.K.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: 886-4-24739595 (ext. 21721)
| |
Collapse
|
21
|
Janda M, Robledo KP, Gebski V, Armes JE, Alizart M, Cummings M, Chen C, Leung Y, Sykes P, McNally O, Oehler MK, Walker G, Garrett A, Tang A, Land R, Nicklin JL, Chetty N, Perrin LC, Hoet G, Sowden K, Eva L, Tristram A, Obermair A. Complete pathological response following levonorgestrel intrauterine device in clinically stage 1 endometrial adenocarcinoma: Results of a randomized clinical trial. Gynecol Oncol 2021; 161:143-151. [PMID: 33762086 DOI: 10.1016/j.ygyno.2021.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/24/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Intrauterine levonorgestrel (LNG-IUD) is used to treat patients with endometrial adenocarcinoma (EAC) and endometrial hyperplasia with atypia (EHA) but limited evidence is available on its effectiveness. The study determined the extent to which LNG-IUD with or without metformin (M) or weight loss (WL) achieves a pathological complete response (pCR) in patients with EAC or EHA. PATIENTS AND METHODS This phase II randomized controlled clinical trial enrolled patients with histologically confirmed, clinically stage 1 FIGO grade 1 EAC or EHA; a body mass index > 30 kg/m2; a depth of myometrial invasion of less than 50% on MRI; a serum CA125 ≤ 30 U/mL. All patients received LNG-IUD and were randomized to observation (OBS), M (500 mg orally twice daily), or WL (pooled analysis). The primary outcome measure was the proportion of patients developing a pCR (defined as absence of any evidence of EAC or EHA) after 6 months. RESULTS From December 2012 to October 2019, 165 patients were enrolled and 154 completed the 6-months follow up. Women had a mean age of 53 years, and a mean BMI of 48 kg/m2. Ninety-six patients were diagnosed with EAC (58%) and 69 patients with EHA (42%). Thirty-five participants were randomized to OBS, 36 to WL and 47 to M (10 patients were withdrawn). After 6 months the rate of pCR was 61% (95% CI 42% to 77%) for OBS, 67% (95% CI 48% to 82%) for WL and 57% (95% CI 41% to 72%) for M. Across the three treatment groups, the pCR was 82% and 43% for EHA and EAC, respectively. CONCLUSION Complete response rates at 6 months were encouraging for patients with EAC and EHA across the three groups. TRIAL REGISTRATION U.S. National Library of Medicine, NCT01686126.
Collapse
Affiliation(s)
- Monika Janda
- Centre for Health Services Research, The University of Queensland, QLD, Australia
| | - Kristy P Robledo
- University of Sydney NHMRC Clinical Trials Centre, Sydney, NSW, Australia
| | - Val Gebski
- University of Sydney NHMRC Clinical Trials Centre, Sydney, NSW, Australia
| | - Jane E Armes
- Sunshine Coast University Hospital Laboratory, Birtinya, QLD, Australia
| | | | - Margaret Cummings
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia; Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Yee Leung
- Division of Obstetrics and Gynaecology, The University of Western Australia, WA, Australia
| | - Peter Sykes
- Christchurch Women's Hospital, Canterbury District Health Board, Christchurch, New Zealand; University of Otago, Christchurch, New Zealand
| | - Orla McNally
- Department of Oncology and Dysplasia, Royal Women's Hospital, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Andrea Garrett
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Amy Tang
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Russell Land
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - James L Nicklin
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Naven Chetty
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Mater Health Services, Brisbane, Australia
| | - Lewis C Perrin
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Mater Health Services, Brisbane, Australia
| | - Greet Hoet
- The Townsville Hospital, Townsville, QLD, Australia
| | | | - Lois Eva
- National Women's Health, Auckland City Hospital, Auckland, New Zealand
| | | | - Andreas Obermair
- Queensland Centre for Gynaecological Cancer Research, The University of Queensland, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| |
Collapse
|
22
|
Salinas-Vera YM, Gallardo-Rincón D, Ruíz-García E, Silva-Cázares MB, de la Peña-Cruz CS, López-Camarillo C. The role of hypoxia in endometrial cancer. Curr Pharm Biotechnol 2021; 23:221-234. [PMID: 33655827 DOI: 10.2174/1389201022666210224130022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
Endometrial cancer represents the most frequent neoplasia from the corpus uteri, and comprises the 14th leading cause of death in women worldwide. Risk factors that contribute to the disease include early menarche, late menopause, nulliparity, and menopausal hormone use, as well as hypertension and obesity comorbidities. The clinical effectiveness of chemotherapy is variable, suggesting that novel molecular targeted therapies against specific cellular processes associated with the maintenance of cancer cell survival and therapy resistance urged to ameliorate the rates of success in endometrial cancer treatment. In the course of tumor growth, cancer cells must adapt to decreased oxygen availability in the microenvironment by upregulation of hypoxia-inducible factors, which orchestrate the activation of a transcriptional program leading to cell survival. During this adaptative process, the hypoxic cancer cells may acquire invasive and metastatic properties as well as increased cell proliferation and resistance to chemotherapy, enhanced angiogenesis, vasculogenic mimicry, and maintenance of cancer cell stemness, which contribute to more aggressive cancer phenotypes. Several studies have shown that hypoxia-inducible factor 1 alpha (HIF-1α) protein is aberrantly overexpressed in many solid tumors from breast, prostate, ovarian, bladder, colon, brain, and pancreas. Thus, it has been considered an important therapeutic target. Here, we reviewed the current knowledge of the relevant roles of cellular hypoxia mechanisms and HIF-1α functions in diverse processes associated with endometrial cancer progression. In addition, we also summarize the role of microRNAs in the posttranscriptional regulation of protein-encoding genes involved in the hypoxia response in endometrial cancer. Finally, we pointed out the need for urgent targeted therapies to impair the cellular processes activated by hypoxia in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastrointestinales, Instituto Nacional de Cancerología, Ciudad de México. Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastrointestinales, Instituto Nacional de Cancerología, Ciudad de México. Mexico
| | - Macrina B Silva-Cázares
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí. Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México. Mexico
| |
Collapse
|
23
|
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 2020; 5:166. [PMID: 32843638 PMCID: PMC7447642 DOI: 10.1038/s41392-020-00280-x] [Citation(s) in RCA: 651] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence shows that cellular and acellular components in tumor microenvironment (TME) can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, considering the increasing significance of TME in cancer biology. Nonetheless, the clinical efficacy of therapeutic strategies targeting TME, especially the specific cells or pathways of TME, remains unsatisfactory. Classifying the chemopathological characteristics of TME and crosstalk among one another can greatly benefit further studies exploring effective treating methods. Herein, we present an updated image of TME with emphasis on hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical microenvironment. We then summarize conventional drugs including aspirin, celecoxib, β-adrenergic antagonist, metformin, and statin in new antitumor application. These drugs are considered as viable candidates for combination therapy due to their antitumor activity and extensive use in clinical practice. We also provide our outlook on directions and potential applications of TME theory. This review depicts a comprehensive and vivid landscape of TME from biology to treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
24
|
Qu D, Qin Y, Liu Y, Liu T, Liu C, Han T, Chen Y, Ma C, Li X. Fever-Inducible Lipid Nanocomposite for Boosting Cancer Therapy through Synergistic Engineering of a Tumor Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32301-32311. [PMID: 32575984 DOI: 10.1021/acsami.0c06949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fever-mimic response capable of recruiting reprogrammed macrophages holds great potential in the engineering of the tumor microenvironment (TME). Low-temperature photothermal therapy (LT-PTT) can maintain tumors at a fever-like temperature (<45 °C) temporarily; however, it still faces several challenges in efficient regulation of TME because of reciprocal cross-talk between the bypass pathways. Here, we report a synergistic engineering of TME through an enhanced activation of a fever-mimic response based on both LT-PTT and tumor vascular normalization. Such engineering is achieved by a fever-inducible lipid nanocomposite (GNR-T/CM-L), which produces mild heat (∼43 °C) and sequentially releases multicomponents to cooperatively upregulate interferon-gamma under NIR irradiation, forming a bidirectionally closed loop for downstream M1 tumor-associated macrophage polarization and promoting the inhibition of the tumor growth. In proof-of-concept studies, GNR-T/CM-L demonstrated efficient tumor ablation in breast tumor xenograft-bearing mice and significantly prolonged their survival period. It paves an avenue to precisely reprogram TME for efficient cancer therapy through synergistic pathways of creating fever-like responses in the tumor.
Collapse
Affiliation(s)
- Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yue Qin
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Tingting Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Tao Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chengyao Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
25
|
Harris AL. Development of cancer metabolism as a therapeutic target: new pathways, patient studies, stratification and combination therapy. Br J Cancer 2020; 122:1-3. [PMID: 31819198 PMCID: PMC6964699 DOI: 10.1038/s41416-019-0666-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer metabolism has undergone a resurgence in the last decade, 70 years after Warburg described aerobic glycolysis as a feature of cancer cells. A wide range of techniques have elucidated the complexity and heterogeneity in preclinical models and clinical studies. What emerges are the large differences between tissues, tumour types and intratumour heterogeneity. However, synergies with inhibition of metabolic pathways have been found for many drugs and therapeutic approaches, and a critical role of window studies and translational trial design is key to success.
Collapse
Affiliation(s)
- Adrian L Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|