1
|
Cai XH, Zhao SQ, Zhang K, Liu WT. Progress in research of proteomics related to digestive system tumor markers. Shijie Huaren Xiaohua Zazhi 2024; 32:716-726. [DOI: 10.11569/wcjd.v32.i10.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The incidence and mortality of digestive system tumors are high. Even though the number of methods for tumor diagnosis and treatment is increasing, most of these tumors still cannot be diagnosed early, and their prognosis is poor. The lack of effective biomarkers and therapeutic targets is the reason why they cannot be diagnosed early and treated effectively. With the continuous development of proteomics technology, proteomics has become increasingly valuable in exploring the mechanisms of tumorigenesis and searching for biomarkers and drug targets. This article reviews the application progress of proteomics technology in screening of biomarkers for digestive system tumors, with an aim to provide new ideas for early diagnosis, prognosis, and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Xiao-Han Cai
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Si-Qi Zhao
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kai Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wen-Tian Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
3
|
Ho CLC, Gilbert MB, Urtecho G, Lee H, Drew DA, Klempner SJ, Cho JS, Ryan TJ, Rustgi N, Lee H, Lee J, Caraballo A, Magicheva-Gupta MV, Rios C, Shin AE, Tseng YY, Davis JL, Chung DC, Chan AT, Wang HH, Ryeom S. Stool Protein Mass Spectrometry Identifies Biomarkers for Early Detection of Diffuse-type Gastric Cancer. Cancer Prev Res (Phila) 2024; 17:361-376. [PMID: 38669694 DOI: 10.1158/1940-6207.capr-23-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
There is a high unmet need for early detection approaches for diffuse gastric cancer (DGC). We examined whether the stool proteome of mouse models of gastric cancer (GC) and individuals with hereditary diffuse gastric cancer (HDGC) have utility as biomarkers for early detection. Proteomic mass spectrometry of the stool of a genetically engineered mouse model driven by oncogenic KrasG12D and loss of p53 and Cdh1 in gastric parietal cells [known as Triple Conditional (TCON) mice] identified differentially abundant proteins compared with littermate controls. Immunoblot assays validated a panel of proteins, including actinin alpha 4 (ACTN4), N-acylsphingosine amidohydrolase 2 (ASAH2), dipeptidyl peptidase 4 (DPP4), and valosin-containing protein (VCP), as enriched in TCON stool compared with littermate control stool. Immunofluorescence analysis of these proteins in TCON stomach sections revealed increased protein expression compared with littermate controls. Proteomic mass spectrometry of stool obtained from patients with HDGC with CDH1 mutations identified increased expression of ASAH2, DPP4, VCP, lactotransferrin (LTF), and tropomyosin-2 relative to stool from healthy sex- and age-matched donors. Chemical inhibition of ASAH2 using C6 urea ceramide was toxic to GC cell lines and GC patient-derived organoids. This toxicity was reversed by adding downstream products of the S1P synthesis pathway, which suggested a dependency on ASAH2 activity in GC. An exploratory analysis of the HDGC stool microbiome identified features that correlated with patient tumors. Herein, we provide evidence supporting the potential of analyzing stool biomarkers for the early detection of DGC. Prevention Relevance: This study highlights a novel panel of stool protein biomarkers that correlate with the presence of DGC and has potential use as early detection to improve clinical outcomes.
Collapse
Affiliation(s)
- Chi-Lee C Ho
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Cell and Molecular Biology Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael B Gilbert
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Guillaume Urtecho
- Department of Systems Biology, Columbia University, New York, New York
| | - Hyoungjoo Lee
- Quantitative Proteomics Resource Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Drew
- Clinical Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel J Klempner
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jin S Cho
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Thomas J Ryan
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Naryan Rustgi
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hyuk Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Alexander Caraballo
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marina V Magicheva-Gupta
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carmen Rios
- Broad Institute of MIT and Harvard, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alice E Shin
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Yuen-Yi Tseng
- Broad Institute of MIT and Harvard, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jeremy L Davis
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, New York
| | - Sandra Ryeom
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
4
|
Okuda Y, Shimura T, Abe Y, Iwasaki H, Nishigaki R, Fukusada S, Sugimura N, Kitagawa M, Yamada T, Taguchi A, Kataoka H. Urinary dipeptidase 1 and trefoil factor 1 are promising biomarkers for early diagnosis of colorectal cancer. J Gastroenterol 2024; 59:572-585. [PMID: 38836911 DOI: 10.1007/s00535-024-02110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Currently utilized serum tumor markers and fecal immunochemical tests do not have sufficient diagnostic power for colorectal cancer (CRC) due to their low sensitivities. To establish non-invasive urinary protein biomarkers for early CRC diagnosis, we performed stepwise analyses employing urine samples from CRCs and healthy controls (HCs). METHODS Among 474 urine samples, 363 age- and sex-matched participants (188 HCs, 175 stage 0-III CRCs) were randomly divided into discovery (16 HCs, 16 CRCs), training (110 HCs, 110 CRCs), and validation (62 HCs, 49 CRCs) cohorts. RESULTS Of the 23 urinary protein candidates comprehensively identified from mass spectrometry in the discovery cohort, urinary levels of dipeptidase 1 (uDPEP1) and Trefoil factor1 (uTFF1) were the two most significant diagnostic biomarkers for CRC in both training and validation cohorts using enzyme-linked immunosorbent assays. A urinary biomarker panel comprising uDPEP1 and uTFF1 significantly distinguished CRCs from HCs, showing area under the curves of 0.825-0.956 for stage 0-III CRC and 0.792-0.852 for stage 0/I CRC. uDPEP1 and uTFF1 also significantly distinguished colorectal adenoma (CRA) patients from HCs, with uDPEP1 and uTFF1 increasing significantly in the order of HCs, CRA patients, and CRC patients. Moreover, expression levels of DPEP1 and TFF1 were also significantly higher in the serum and tumor tissues of CRC, compared to HCs and normal tissues, respectively. CONCLUSIONS This study established a promising and non-invasive urinary protein biomarker panel, which enables the early detection of CRC with high sensitivity.
Collapse
Affiliation(s)
- Yusuke Okuda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Yuichi Abe
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Ruriko Nishigaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Mika Kitagawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tamaki Yamada
- Okazaki Public Health Center, 1-3 Harusaki, Harisaki-Cho, Okazaki, 444-0827, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
5
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
An WT, Hao YX, Li HX, Wu XK. Urinary metabolic profiles during Helicobacter pylori eradication in chronic gastritis. World J Clin Cases 2024; 12:951-965. [PMID: 38414611 PMCID: PMC10895622 DOI: 10.12998/wjcc.v12.i5.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a major risk factor for chronic gastritis, affecting approximately half of the global population. H. pylori eradication is a popular treatment method for H. pylori-positive chronic gastritis, but its mechanism remains unclear. Urinary metabolomics has been used to elucidate the mechanisms of gastric disease treatment. However, no clinical study has been conducted on urinary metabolomics of chronic gastritis. AIM To elucidate the urinary metabolic profiles during H. pylori eradication in patients with chronic gastritis. METHODS We applied LC-MS-based metabolomics and network pharmacology to investigate the relationships between urinary metabolites and H. pylori-positive chronic gastritis via a clinical follow-up study. RESULTS Our study revealed the different urinary metabolic profiles of H. pylori-positive chronic gastritis before and after H. pylori eradication. The metabolites regulated by H. pylori eradication therapy include cis-aconitic acid, isocitric acid, citric acid, L-tyrosine, L-phenylalanine, L-tryptophan, and hippuric acid, which were involved in four metabolic pathways: (1) Phenylalanine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) citrate cycle; and (4) glyoxylate and dicarboxylate metabolism. Integrated metabolomics and network pharmacology revealed that MPO, COMT, TPO, TH, EPX, CMA1, DDC, TPH1, and LPO were the key proteins involved in the biological progress of H. pylori eradication in chronic gastritis. CONCLUSION Our research provides a new perspective for exploring the significance of urinary metabolites in evaluating the treatment and prognosis of H. pylori-positive chronic gastritis patients.
Collapse
Affiliation(s)
- Wen-Ting An
- Department of Pharmacy, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Yu-Xia Hao
- Department of Gastroenterology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Hong-Xia Li
- Department of Oncology, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Xing-Kang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
7
|
Han HS, Lee KW. Liquid Biopsy: An Emerging Diagnostic, Prognostic, and Predictive Tool in Gastric Cancer. J Gastric Cancer 2024; 24:4-28. [PMID: 38225764 PMCID: PMC10774753 DOI: 10.5230/jgc.2024.24.e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
Liquid biopsy, a minimally invasive procedure that causes minimal pain and complication risks to patients, has been extensively studied for cancer diagnosis and treatment. Moreover, it facilitates comprehensive quantification and serial assessment of the whole-body tumor burden. Several biosources obtained through liquid biopsy have been studied as important biomarkers for establishing early diagnosis, monitoring minimal residual disease, and predicting the prognosis and response to treatment in patients with cancer. Although the clinical application of liquid biopsy in gastric cancer is not as robust as that in other cancers, biomarker studies using liquid biopsy are being actively conducted in patients with gastric cancer. Herein, we aimed to review the role of various biosources that can be obtained from patients with gastric cancer through liquid biopsies, such as blood, saliva, gastric juice, urine, stool, peritoneal lavage fluid, and ascites, by dividing them into cellular and acellular components. In addition, we reviewed previous studies on the diagnostic, prognostic, and predictive biomarkers for gastric cancer using liquid biopsy and discussed the limitations of liquid biopsy and the challenges to overcome these limitations in patients with gastric cancer.
Collapse
Affiliation(s)
- Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
8
|
Repetto O, Vettori R, Steffan A, Cannizzaro R, De Re V. Circulating Proteins as Diagnostic Markers in Gastric Cancer. Int J Mol Sci 2023; 24:16931. [PMID: 38069253 PMCID: PMC10706891 DOI: 10.3390/ijms242316931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a highly malignant disease affecting humans worldwide and has a poor prognosis. Most GC cases are detected at advanced stages due to the cancer lacking early detectable symptoms. Therefore, there is great interest in improving early diagnosis by implementing targeted prevention strategies. Markers are necessary for early detection and to guide clinicians to the best personalized treatment. The current semi-invasive endoscopic methods to detect GC are invasive, costly, and time-consuming. Recent advances in proteomics technologies have enabled the screening of many samples and the detection of novel biomarkers and disease-related signature signaling networks. These biomarkers include circulating proteins from different fluids (e.g., plasma, serum, urine, and saliva) and extracellular vesicles. We review relevant published studies on circulating protein biomarkers in GC and detail their application as potential biomarkers for GC diagnosis. Identifying highly sensitive and highly specific diagnostic markers for GC may improve patient survival rates and contribute to advancing precision/personalized medicine.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
9
|
Busch MA, Haase A, Alefeld E, Biewald E, Jabbarli L, Dünker N. Trefoil Family Factor Peptide 1-A New Biomarker in Liquid Biopsies of Retinoblastoma under Therapy. Cancers (Basel) 2023; 15:4828. [PMID: 37835522 PMCID: PMC10571905 DOI: 10.3390/cancers15194828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a more advanced subtype of retinoblastoma. The present study investigated TFF1 expression within aqueous humor (AH) of enucleated eyes and compared TFF1 levels in AH and corresponding blood serum samples from RB patients undergoing intravitreal chemotherapy (IVC). TFF1 was consistently detectable in AH, confirming its potential as a biomarker. Crucially, our data confirmed that TFF1-secreting cells within the tumor mass originate from RB tumor cells, not from surrounding stromal cells. IVC-therapy-responsive patients exhibited remarkably reduced TFF1 levels post-therapy. By contrast, RB patients' blood serum displayed low-to-undetectable levels of TFF1 even after sample concentration and no therapy-dependent changes were observed. Our findings suggest that compared with blood serum, AH represents the more reliable source of TFF1 if used for liquid biopsy RB marker analysis in RB patients. Thus, analysis of TFF1 in AH of RB patients potentially provides a minimally invasive tool for monitoring RB therapy efficacy, suggesting its importance for effective treatment regimens.
Collapse
Affiliation(s)
- Maike Anna Busch
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - André Haase
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - Emily Alefeld
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - Eva Biewald
- Department of Ophthalmology, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (L.J.)
| | - Leyla Jabbarli
- Department of Ophthalmology, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (L.J.)
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| |
Collapse
|
10
|
Liu X, Zhang M, Shao C, Sun H, Zhang B, Guo Z, Sun J, Qi F, Zhang Y, Niu H, Sun W. Blood- and Urine-Based Liquid Biopsy for Early-Stage Cancer Investigation: Taken Clear Renal Cell Carcinoma as a Model. Mol Cell Proteomics 2023; 22:100603. [PMID: 37348606 PMCID: PMC10416070 DOI: 10.1016/j.mcpro.2023.100603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsy is a noninvasive technique that can provide valuable information for disease characterization by using biofluids as a source of biomarkers. Proteins found in biofluids can offer a wealth of information for understanding pathological processes. In this study, we used early-stage clear cell renal cell carcinoma (ccRCC) as a model to explore the proteomic relationships among tissue, plasma, and urine. We analyzed samples of tumor tissue, plasma, and urine from a cohort of 27 ccRCC patients with T1-2 stage and 27 matched healthy controls, using liquid chromatography-mass spectrometry (LC-MS) for proteomic analysis. We integrated the differential proteins found in the three types of samples to explore ccRCC-associated molecular changes. Our results showed that both plasma and urine proteomes could reflect functional changes in tumor tissue. In plasma, cytoskeletal proteins and metabolic enzymes were differentially expressed, while in urine, adhesion molecules and defense proteins showed differential levels. The differential proteins found in plasma and urine both reflect the binding and catalytic activity of tumor tissue. Additionally, proteins only changed in biofluids could reflect body immune response changes, with plasma proteins involved in actin cytoskeleton and oxidative stress, and urine proteins involved in granulocyte adhesion and leukocyte extravasation signaling. Plasma and urine proteins could effectively distinguish RCC from control, with good performances (plasma/urine: 92.6%/92.6% specificity, 96.3%/92.6% sensitivity, and an area under the curve of 0.981/0.97). In conclusion, biofluids could not only reflect functional changes in tumor tissue but also reflect changes in the body's immune response. These findings will benefit the understanding of body biomarkers in tumors and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Shao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Bioinformatics Department, DeepKinase Biotechnologies, Ltd, Beijing, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Binbin Zhang
- Department of Pharmacy, No.79 Army Group Hospital of People's Liberation Army Ground Force, Liaoyang, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Shinozuka T, Kanda M, Kodera Y. Site-specific protein biomarkers in gastric cancer: a comprehensive review of novel biomarkers and clinical applications. Expert Rev Mol Diagn 2023; 23:701-712. [PMID: 37395000 DOI: 10.1080/14737159.2023.2232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common cancer and the fourth leading cause of cancer-related death worldwide, thus representing a significant global health burden. Early detection and monitoring of GC are essential to improve patient outcomes. While traditional cancer biomarkers such as carcinoembryonic antigen, carbohydrate antigen (CA) 19-9, and CA 72-4 are widely used, their limited sensitivity and specificity necessitate the exploration of alternative biomarkers. AREAS COVERED This review comprehensively analyzes the landscape of GC protein biomarkers identified from 2019 to 2022, with a focus on tissue, blood, urine, saliva, gastric juice, ascites, and exhaled breath as sample sources. We address the potential clinical applications of these biomarkers in early diagnosis, monitoring recurrence, and predicting survival and therapeutic response of GC patients. EXPERT OPINION The discovery of novel protein biomarkers holds great promise for improving the clinical management of GC. However, further validation in large, diverse cohorts is needed to establish the clinical utility of these biomarkers. Integrating these biomarkers with existing diagnostic and monitoring approaches will likely lead to improved personalized treatment plans and patient outcomes.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Kim HH, Moon OJ, Seol YH, Lee J. A simple urine test by 3D-plus-3D immunoassay guides precise in vitro cancer diagnosis. Bioeng Transl Med 2023; 8:e10489. [PMID: 37206218 PMCID: PMC10189436 DOI: 10.1002/btm2.10489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Although a variety of urinary cancer markers are available for in vitro diagnosis, inherent problems of urine environment-containing various inorganic/organic ions/molecules that vary in concentration over a 20-fold range or more and significantly attenuate antibody avidity for markers-render conventional immunoassays unsuitable, remaining unresolved and a major challenge. Here we developed a 3D-plus-3D (3p3) immunoassay method, based on a single-step urinary marker detection by 3D-antibody probes, which are free of steric hindrance and capable of omnidirectional capture of markers in a 3D solution. The 3p3 immunoassay showed an excellent performance in the diagnosis of prostate cancer (PCa) through detecting PCa-specific urinary engrailed-2 protein, demonstrating 100% sensitivity and 100% specificity with the urine specimens of PCa-related and other related disease patients and healthy individuals. This innovative approach holds a great potential in opening up a novel clinical route for precise in vitro cancer diagnosis and also pushing urine immunoassay closer to more widespread adoption.
Collapse
Affiliation(s)
- Hye Hyun Kim
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulRepublic of Korea
| | - Ok Jeong Moon
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulRepublic of Korea
| | - Yong Hwan Seol
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
13
|
The effect of using albumin-perfluorohexane/cisplatin-magnetite nanoparticles produced by hydrothermal method against gastric cancer cells through combination therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
14
|
Pan X, Liu Y, Bao Y, Gao Y. Changes of development from childhood to late adulthood in rats tracked by urinary proteome. Mol Cell Proteomics 2023; 22:100539. [PMID: 37004987 DOI: 10.1016/j.mcpro.2023.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
To date, studies of development have mainly focused on the embryonic stage and a short time thereafter. There has been little research on the whole life of an individual from childhood to aging and death. For the first time, we used non-invasive urinary proteome technology to track changes in several important developmental timepoints in a group of rats, covering 10 timepoints from childhood, adolescence, young adulthood, middle adulthood, and near death in old age. Similar to previous studies on puberty, proteins were detected involved in sexual or reproductive maturation, mature spermatozoa in seminiferous tubules (first seen), gonadal hormones, decline of oestradiol, brain growth, and central nervous system myelination, and our differential protein enrichment pathways also included reproductive system development, tube development, response to hormone, response to oestradiol, brain development, and neuron development. Similar to previous studies in young adults, proteins were detected involved in musculoskeletal maturity, peak bone mass, development of the immune system, and growth and physical development, and our differential protein enrichment pathways also included skeletal system development, bone regeneration, system development, immune system processes, myeloid leukocyte differentiation, growth, and developmental growth. Studies on aging-related changes in neurons and neurogenesis have been reported, and we also found relevant pathways in aged rats, such as regulation of neuronal synaptic plasticity and positive regulation of long-term neuronal synaptic plasticity. However, at all timepoints throughout life, there were many biological pathways revealed by differential urinary protein enrichment involving multiple organs, tissues, systems, etc., that have not been mentioned in existing studies. This study shows comprehensive and detailed changes in rat lifetime development through the urinary proteome, helping to fill the gap in development research. Moreover, it provides a new approach to monitoring changes in human health and diseases of aging using the urinary proteome.
Collapse
Affiliation(s)
- Xuanzhen Pan
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875
| | - Yongtao Liu
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875
| | - Yijin Bao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875
| | - Youhe Gao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China 100875.
| |
Collapse
|
15
|
Mohammadi E, Aliarab A, Babaei G, Habibi NK, Jafari SM, Mir SM, Memar MY. MicroRNAs in esophageal squamous cell carcinoma: Application in prognosis, diagnosis, and drug delivery. Pathol Res Pract 2022; 240:154196. [PMID: 36356334 DOI: 10.1016/j.prp.2022.154196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in various cell biology processes, including cancer formation. These small non-coding RNAs could function as diagnostic and prognostic markers. They may involve esophageal squamous cell carcinoma (ESCC) and distinctive miRNA expression profiles; they are also known as therapeutic targets in human diseases. Therefore, in this study, the function of miRNAs was reviewed regarding the prognosis and diagnosis of ESCC. The changes in miRNAs before and after cancer therapy and the effects of miRNAs on chemo-susceptibility patterns were also investigated. MiRNA delivery systems in ESCC were also highlighted, providing a perspective on how these systems can improve miRNA efficiency.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasim Kouhi Habibi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Hua Z, Shen R, Lu B, Li M, Zhou P, Wu J, Dong W, Zhou Q, Zhang J. Weifuchun alters tongue flora and decreases serum trefoil factor I levels in gastric intestinal metaplasia: A CONSORT-compliant article. Medicine (Baltimore) 2022; 101:e31407. [PMID: 36397419 PMCID: PMC9666156 DOI: 10.1097/md.0000000000031407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To explore the molecular mechanisms of Weifuchun in the treatment of gastric intestinal metaplasia (GIM), we designed a preclinical pilot study to examine potential markers of disease progression based on alterations in the tongue flora. METHODS Total 27 patients with GIM were treated with Weifuchun for 4 weeks and 26 volunteers as controls. Tongue coating bacteria were profiled using 16S rDNA high-throughput sequencing. Serum pepsinogen I and II levels were detected using the latex immunoturbidimetric assay. The levels of serum trefoil factor I was detected by ELISA. Microplate-based quantification was used to detect serum total bile acid (TBA). RESULTS After treatment, the relative abundance of 4 dominant tongue coating genera (Granulicatella, Gemella, Lachnoanaerobaculum, and Neisseria) increased significantly wheras Alloprevotella, [Eubacterium] nodatum group, Prevotell, and Ruminococcaceae UCG-014 decreased (P < .05). The results showed that Alloprevotella and 3 rare tongue coating genera (Lautropia, Treponema 2, and Aliihoeflea) might be potential markers or target flora for the treatment of GIM. Kyoto encyclopedia of genes and genomes (KEGG) function prediction analysis showed that Weifuchun may regulate bile secretion and folate biosynthesis in patients with GIM. The level of serum trefoil factor I decreased significantly in response to Weifuchun treatment, which was consistent with the decrease in folate biosynthesis predicted by KEGG. CONCLUSION Weifuchun may restore the balance of tongue flora by decreasing the levels of serum trefoil factor I, thereby providing a new way to measuring the underlying effectiveness and potential mechanisms of action of this traditional Chinese medicinal compound in the treatment of GIM.
Collapse
Affiliation(s)
- Zhaolai Hua
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Rui Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Bin Lu
- Department of Oncology, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Meifeng Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Ping Zhou
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Wei Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Qihai Zhou
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| |
Collapse
|
17
|
Pan X, Liu Y, Bao Y, Wei L, Gao Y. Changes in the urinary proteome before and after quadrivalent influenza vaccine and COVID-19 vaccination. Front Immunol 2022; 13:946791. [PMID: 36275736 PMCID: PMC9585259 DOI: 10.3389/fimmu.2022.946791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
The proteome of urine samples from quadrivalent influenza vaccine cohort were analyzed with self-contrasted method. Significantly changed urine protein at 24 hours after vaccination was enriched in immune-related pathways, although each person’s specific pathways varied. We speculate that this may be because different people have different immunological backgrounds associated with influenza. Then, urine samples were collected from several uninfected SARS-CoV-2 young people before and after the first, second, and third doses of the COVID-19 vaccine. The differential proteins compared between after the second dose (24h) and before the second dose were enriched in pathways involving in multicellular organismal process, regulated exocytosis and immune-related pathways, indicating no first exposure to antigen. Surprisingly, the pathways enriched by the differential urinary protein before and after the first dose were similar to those before and after the second dose. It is inferred that although the volunteers were not infected with SARS-CoV-2, they might have been exposed to other coimmunogenic coronaviruses. Two to four hours after the third vaccination, the differentially expressed protein were also enriched in multicellular organismal process, regulated exocytosis and immune-related pathways, indicating that the immune response has been triggered in a short time after vaccination. Multicellular organismal process and regulated exocytosis after vaccination may be a new indicator to evaluate the immune effect of vaccines. Urinary proteome is a terrific window to monitor the changes in human immune function.
Collapse
Affiliation(s)
- Xuanzhen Pan
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yongtao Liu
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Bao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lilong Wei
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Youhe Gao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Youhe Gao,
| |
Collapse
|
18
|
Ji L, Wang J, Yang B, Zhu J, Wang Y, Jiao J, Zhu K, Zhang M, Zhai L, Gong T, Sun C, Qin J, Wang G. Urinary protein biomarker panel predicts esophageal squamous carcinoma from control cases and other tumors. Esophagus 2022; 19:604-616. [PMID: 35792948 DOI: 10.1007/s10388-022-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Discovery of noninvasive urinary biomarkers for the early diagnosis of esophageal squamous carcinoma (ESCC). METHODS We conducted proteomic analyses of 499 human urine samples obtained from healthy individuals (n = 321) and ESCC (n = 83), bladder cancer (n = 17), breast cancer (n = 12), colorectal cancer (n = 16), lung cancer (n = 33) and thyroid cancer (n = 17) patients from multiple medical centers. Those samples were divided into a discovery set (n = 247) and an independent validation set (n = 157). RESULTS Among urinary proteins identified in the comprehensive quantitative proteomics analysis, we selected a panel of three urinary biomarkers (ANXA1, S100A8, TMEM256), and established a logistic regression model in the discovery set that can correctly classify the majority of ESCC cases in the validation sets with the area under the curve (AUC) values of 0.825. This urinary biomarker panel not only discriminates ESCC patients from healthy individuals but also differentiates ESCC from other common tumors. Notably, the panel distinguishes stage I ESCC patients from healthy individuals with AUC values of 0.886. On the analysis of stage-specific biomarkers, another combination panel of protein (ANXA1, S100A8, SOD3, TMEM256) demonstrated a good AUC value of 0.792 for stage I ESCC. CONCLUSIONS Urinary biomarker panel represents a promising auxiliary diagnostic tool for ESCC, including early-stage ESCC.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bo Yang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Zhu
- Department of Thoracic Surgery, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jiaqi Jiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Kai Zhu
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Min Zhang
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Liqiang Zhai
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Tongqing Gong
- Beijing Pineal Health Management Co., Ltd, Beijing, 102206, China
| | - Changqing Sun
- Joint Center for Translational Medicine, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Guangshun Wang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.
| |
Collapse
|
19
|
Chen H, Rong Z, Ge L, Yu H, Li C, Xu M, Zhang Z, Lv J, He Y, Li W, Chen L. Leader gene identification for digestive system cancers based on human subcellular location and cancer-related characteristics in protein-protein interaction networks. Front Genet 2022; 13:919210. [PMID: 36226184 PMCID: PMC9548996 DOI: 10.3389/fgene.2022.919210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stomach, liver, and colon cancers are the most common digestive system cancers leading to mortality. Cancer leader genes were identified in the current study as the genes that contribute to tumor initiation and could shed light on the molecular mechanisms in tumorigenesis. An integrated procedure was proposed to identify cancer leader genes based on subcellular location information and cancer-related characteristics considering the effects of nodes on their neighbors in human protein-protein interaction networks. A total of 69, 43, and 64 leader genes were identified for stomach, liver, and colon cancers, respectively. Furthermore, literature reviews and experimental data including protein expression levels and independent datasets from other databases all verified their association with corresponding cancer types. These final leader genes were expected to be used as diagnostic biomarkers and targets for new treatment strategies. The procedure for identifying cancer leader genes could be expanded to open up a window into the mechanisms, early diagnosis, and treatment of other cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Chang Z, Duan Q, Yu C, Li D, Jiang H, Ge F, Xu G. Proteomics and Biochemical Analyses of Secreted Proteins Revealed a Novel Mechanism by Which ADAM12S Regulates the Migration of Gastric Cancer Cells. J Proteome Res 2022; 21:2160-2172. [PMID: 35926154 DOI: 10.1021/acs.jproteome.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gastric cancer is one of the cancers with the highest morbidity and mortality. Although several therapeutic approaches have been developed to treat this disease, the overall survival rate is still very low due to metastasis, drug resistance, and so forth. Therefore, it is necessary to discover new regulatory molecules and signaling pathways that modulate the metastasis of gastric cancer cells. A Disintegrin And Metalloprotease 12 (ADAM12) was highly expressed in gastric cancer tissues and presented in the patient urine. However, it is unclear whether and how ADAM12 regulates the migration of gastric cancer cells. In this work, we used the secretome protein enrichment with click sugars (SPECS) method to purify the secreted glycosylated proteins and performed quantitative proteomics to identify the secreted proteins that were differentially regulated by ADAM12S, the short and secreted form of ADAM12. Our proteomic and biochemical analyses revealed that ADAM12S upregulated the cell surface glycoprotein CD146, a cell adhesion molecule and melanoma marker, which was dependent on the catalytic residue of ADAM12S. Furthermore, we discovered that the ADAM12S-enhanced migration of gastric cancer cells was, at least partially, mediated by CD146. This work may help to evaluate whether ADAM12 could be a potential therapeutic target for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Zenghui Chang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chenyi Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Fei Ge
- Department of Oncology, Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
21
|
Han Y, Yoo HJ, Jee SH, Lee JH. High serum levels of L-carnitine and citric acid negatively correlated with alkaline phosphatase are detectable in Koreans before gastric cancer onset. Metabolomics 2022; 18:62. [PMID: 35900644 DOI: 10.1007/s11306-022-01922-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Monitoring metabolic biomarkers could be utilized as an effective tool for the early detection of gastric cancer (GC) risk. OBJECTIVE We aimed to discover predictive serum biomarkers for GC and investigate biomarker-related metabolism. METHODS Subjects were randomly selected from the Korean Cancer Prevention Study-II cohort and matched by age and sex. We analyzed baseline serum samples of 160 subjects (discovery set; control and GC occurrence group, 80 each) via nontargeted screening. Identified putative biomarkers were validated in baseline serum samples of 140 subjects (validation set; control and GC occurrence group, 70 each) using targeted metabolites analysis. RESULTS The final analysis was conducted on the discovery set (control, n = 52 vs. GC occurrence, n = 50) and the validation set (control, n = 43 vs. GC occurrence, n = 44) applying exclusion conditions. Eighteen putative metabolite sets differed between two groups found on nontargeted metabolic screening. We focused on fatty acid-related energy metabolism. In targeted analysis, levels of decanoyl-L-carnitine (p = 0.019), L-carnitine (p = 0.033), and citric acid (p = 0.025) were significantly lower in the GC occurrence group, even after adjusting for age, sex, and smoking status. Additionally, L-carnitine and citric acid were confirmed to have an independently significant relationship to GC development. Notably, alkaline phosphatase showed a significant correlation with these two biomarkers. CONCLUSION Changes in serum L-carnitine and citric acid levels that may result from alterations of fatty-acid-related energy metabolism are expected to be valuable biomarkers for the early diagnosis of GC risk.
Collapse
Affiliation(s)
- Youngmin Han
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Jin Yoo
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sun Ha Jee
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Li W, Li M, Zhang X, Yue S, Xu Y, Jian W, Qin Y, Lin L, Liu W. Improved profiling of low molecular weight serum proteome for gastric carcinoma by data-independent acquisition. Anal Bioanal Chem 2022; 414:6403-6417. [PMID: 35773495 DOI: 10.1007/s00216-022-04196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Low molecular weight proteins (LMWPs) in the bloodstream participate in various biological processes and are closely associated with disease status, whereas identification of serous LMWPs remains a great technical challenge due to the wide dynamic range of protein components. In this study, we constructed an integrated LMWP library by combining the LMWPs obtained by three enrichment methods (50% ACN, 20% ACN + 20 mM ABC, and 30 kDa) and their fractions identified by the data-dependent acquisition method. With this newly constructed library, we comprehensively profiled LMWPs in serum using data-independent acquisition and reliably achieved quantitative results for 75% serous LMWPs. When applying this strategy to quantify LMWPs in human serum samples, we could identify 405 proteins on average per sample, of which 136 proteins were with a MW less than 30 kDa and 293 proteins were with a MW less than 65 kDa. Of note, pre- and post-operative gastric carcinoma (GC) patients showed differentially expressed serous LWMPs, which was also different from the pattern of LWMP expression in healthy controls. In conclusion, our results showed that LMWPs could efficiently distinguish GC patients from healthy controls as well as between pre- and post-operative statuses, and more importantly, our newly developed LMWP profiling platform could be used to discover candidate LMWP biomarkers for disease diagnosis and status monitoring.
Collapse
Affiliation(s)
- Weifeng Li
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Mengna Li
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiaoli Zhang
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Siqin Yue
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yun Xu
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Wenjing Jian
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yin Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Lin Lin
- Sustech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
23
|
Zhu X, Su T, Wang S, Zhou H, Shi W. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol 2022; 12:834934. [PMID: 35619913 PMCID: PMC9127958 DOI: 10.3389/fonc.2022.834934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
With the development of materials science and biomedicine, the application of nanomaterials in the medical field is further promoted. In the process of the diagnosis and treatment of diseases, a variety of drugs need to be used. It is an ideal state to make these drugs arrive at a specific location at a specific time and release at a specific speed, which can improve the bioavailability of drugs and reduce the adverse effects of drugs on normal tissues. Traditional drug delivery methods such as tablets, capsules, syrups, and ointments have certain limitations. The emergence of a new nano-drug delivery system further improves the accuracy of drug delivery and the efficacy of drugs. It is well known that the development of the cancer of the stomach is the most serious consequence for the infection of Helicobacter pylori. For the patients who are suffering from gastric cancer, the treatments are mainly surgery, chemotherapy, targeted and immune therapy, and other comprehensive treatments. Although great progress has been made, the diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Current treatments are of limited benefits for patients, resulting in a poor 5-year survival rate. Nanomaterials may play a critical role in early diagnosis. A nano-drug delivery system can significantly improve the chemotherapy, targeted therapy, and immunotherapy of advanced gastric cancer, reduce the side effects of the original treatment plan and provide patients with better benefits. It is a promising treatment for gastric cancer. This article introduces the application of nanomaterials in the diagnosis and treatment of H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqing Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Noninvasive urinary protein signatures associated with colorectal cancer diagnosis and metastasis. Nat Commun 2022; 13:2757. [PMID: 35589723 PMCID: PMC9119985 DOI: 10.1038/s41467-022-30391-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, imaging, fecal immunochemical tests (FITs) and serum carcinoembryonic antigen (CEA) tests are not adequate for the early detection and evaluation of metastasis and recurrence in colorectal cancer (CRC). To comprehensively identify and validate more accurate noninvasive biomarkers in urine, we implement a staged discovery-verification-validation pipeline in 657 urine and 993 tissue samples from healthy controls and CRC patients with a distinct metastatic risk. The generated diagnostic signature combined with the FIT test reveals a significantly increased sensitivity (+21.2% in the training set, +43.7% in the validation set) compared to FIT alone. Moreover, the generated metastatic signature for risk stratification correctly predicts over 50% of CEA-negative metastatic patients. The tissue validation shows that elevated urinary protein biomarkers reflect their alterations in tissue. Here, we show promising urinary protein signatures and provide potential interventional targets to reliably detect CRC, although further multi-center external validation is needed to generalize the findings. More sensitive and specific non-invasive biomarkers are desired for early detection of cancer. Here, the authors show a protein signature in the urine that increases sensitivity for colorectal cancer detection when combined with fecal immunochemical tests and corrects diagnosis in some fecal immunochemical tests-negative patients.
Collapse
|
25
|
Busch MA, Haase A, Miroschnikov N, Doege A, Biewald E, Bechrakis NE, Beier M, Kanber D, Lohmann D, Metz K, Dünker N. TFF1 in Aqueous Humor—A Potential New Biomarker for Retinoblastoma. Cancers (Basel) 2022; 14:cancers14030677. [PMID: 35158945 PMCID: PMC8833755 DOI: 10.3390/cancers14030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Retinoblastoma is the most common pediatric intraocular malignancy with high cure rates in developed countries. Nevertheless, useful predictive biomarkers providing reliable evidence for therapy decisions are urgently needed to optimize therapy regimes. TFF1 is a promising candidate as it is expressed in a more advanced subtype of retinoblastoma. Additionally, TFF1 is a naturally secreted peptide. Thus, TFF1 might be detectable in the aqueous humor of RB patients’ eyes, providing the opportunity to determine its expression prior to therapy without the necessity of a tumor biopsy. We therefore investigated for the first time aqueous humor samples of retinoblastoma patients in order to test for the availably and expression status of TFF1 as well as to compare it with the original tumor and established corresponding primary cell cultures. Abstract Retinoblastoma (RB) is the most common childhood eye cancer. The expression of trefoil factor family peptide 1 (TFF1), a small secreted peptide, has been correlated with more advanced RB stages and it might be a promising new candidate as a RB biomarker. The study presented addressed the question of if TFF1 is detectable in aqueous humor (AH) of RB patients’ eyes, providing easy accessibility as a diagnostic and/or therapy accompanying predictive biomarker. The TFF1 expression status of 15 retinoblastoma AH samples was investigated by ELISA and Western blot analyses. The results were correlated with the TFF1 expression status in the tumor of origin and compared to TFF1 expression in established corresponding primary tumor cell cultures and supernatants. Nine out of fifteen AH patient samples exhibited TFF1 expression, which correlated well with TFF1 levels of the original tumor. TFF1 expression in most of the corresponding primary cell cultures reflects the levels of the original tumor, although not all TFF1-expressing tumor cells seem to secret into the AH. Together, our findings strongly suggest TFF1 as a reliable new RB biomarker.
Collapse
Affiliation(s)
- Maike Anna Busch
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
- Correspondence: ; Tel.: +49-201-7238-4434
| | - André Haase
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| | - Natalia Miroschnikov
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| | - Annika Doege
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| | - Eva Biewald
- Department of Ophthalmology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (N.E.B.)
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (N.E.B.)
| | - Manfred Beier
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Deniz Kanber
- Institute of Human Genetics, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (D.K.); (D.L.)
| | - Dietmar Lohmann
- Institute of Human Genetics, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (D.K.); (D.L.)
| | - Klaus Metz
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Nicole Dünker
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| |
Collapse
|
26
|
A Novel Urinary miRNA Biomarker for Early Detection of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14020461. [PMID: 35053622 PMCID: PMC8773893 DOI: 10.3390/cancers14020461] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Early diagnosis is critically important to achieve life-saving therapy for colorectal cancer (CRC). Since colonoscopy is not suitable as a screening method for CRC due to its invasiveness and high-cost, reliable and non-invasive diagnostic biomarkers are hopeful for CRC. In this case-control study, we established completely non-invasive, novel urinary microRNA (miRNA) biomarker panel combining miR-129-1-3p and miR-566 for the diagnosis of CRC. In the independent age- and sex-matched three cohorts comprising 415 participants, urinary levels of these miRNAs were consistently elevated in the CRC group compared to the healthy controls. Notably, the panel of combining miR-129-1-3p and miR-566 revealed an AUC of 0.845 for stage 0/I CRC that can be treated with endoscopic resection. Abstract Since noninvasive biomarkers as an alternative to invasive colonoscopy to detect colorectal cancer (CRC) are desired, we conducted this study to determine the urinary biomarker consisting of microRNAs (miRNAs). In total, 415 age- and sex-matched participants, including 206 patients with CRC and 209 healthy controls (HCs), were randomly divided into three groups: (1) the discovery cohort (CRC, n = 3; HC, n = 6); (2) the training cohort (140 pairs); and (3) the validation cohort (63 pairs). Among 11 urinary miRNAs with aberrant expressions between the two groups, miR-129-1-3p and miR-566 were significantly independent biomarkers that detect CRC. The panel consisting of two miRNAs could distinguish patients with CRC from HC participants with an area under the curve (AUC) = 0.811 in the training cohort. This panel showed good efficacy with an AUC = 0.868 in the validation cohort. This urinary biomarker combining miR-129-1-3p and miR-566 could detect even stage 0/I CRC effectively with an AUC = 0.845. Moreover, the expression levels of both miR-129-1-3p and miR-566 were significantly higher in primary tumor tissues than in adjacent normal tissue. Our established novel biomarker consisting of urinary miR-129-1-3p and miR-566 enables noninvasive and early detection of CRC.
Collapse
|
27
|
Li D, Yan L, Lin F, Yuan X, Yang X, Yang X, Wei L, Yang Y, Lu Y. Urinary Biomarkers for the Noninvasive Detection of Gastric Cancer. J Gastric Cancer 2022; 22:306-318. [DOI: 10.5230/jgc.2022.22.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dehong Li
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Fugui Lin
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Lu
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
28
|
Lin B, Liu J, Zhang Y, Wu Y, Chen S, Bai Y, Liu Q, Qin X. Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy. BMC Genomics 2021; 22:852. [PMID: 34819020 PMCID: PMC8613922 DOI: 10.1186/s12864-021-08155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a cause of nephrotic syndrome that is increasing in incidence but has unclear pathogenesis. Urinary peptidomics is a promising technology for elucidating molecular mechanisms underlying diseases. Dysregulation of the proteolytic system is implicated in various diseases. Here, we aimed to conduct urinary peptidomics to identify IMN-related proteases. RESULTS Peptide fingerprints indicated differences in naturally produced urinary peptide components among 20 healthy individuals, 22 patients with IMN, and 15 patients with other kidney diseases. In total, 1,080 peptide-matched proteins were identified, 279 proteins differentially expressed in the urine of IMN patients were screened, and 32 proteases were predicted; 55 of the matched proteins were also differentially expressed in the kidney tissues of IMN patients, and these were mainly involved in the regulation of proteasome-, lysosome-, and actin cytoskeleton-related signaling pathways. The 32 predicted proteases showed abnormal expression in the glomeruli of IMN patients based on Gene Expression Omnibus databases. Western blot revealed abnormal expression of calpain, matrix metalloproteinase 14, and cathepsin S in kidney tissues of patients with IMN. CONCLUSIONS This work shown the calpain/matrix metalloproteinase/cathepsin axis might be dysregulated in IMN. Our study is the first to systematically explore the role of proteases in IMN by urinary peptidomics, which are expected to facilitate discovery of better biomarkers for IMN.
Collapse
Affiliation(s)
- Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yabin Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Shixiao Chen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Qiuying Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China.
| |
Collapse
|
29
|
Meng W, Xu D, Meng Y, Zhang W, Xue Y, Zhen Z, Gao Y. Changes in the urinary proteome in rats with regular swimming exercise. PeerJ 2021; 9:e12406. [PMID: 34760390 PMCID: PMC8567855 DOI: 10.7717/peerj.12406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose Urine can sensitively reflect early pathophysiological changes in the body. The purpose of this study was to explore the changes of urine proteome in rats with regular swimming exercise. Methods In this study, experimental rats were subjected to daily moderate-intensity swimming exercise for 7 weeks. Urine samples were collected at weeks 2, 5, and 7 and were analyzed by using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Results Unsupervised clustering analysis of all urinary proteins identified at week 2 showed that the swimming group was distinctively different from the control group. Compared to the control group, a total of 112, 61 and 44 differential proteins were identified in the swimming group at weeks 2, 5 and 7, respectively. Randomized grouping statistical analysis showed that more than 85% of the differential proteins identified in this study were caused by swimming exercise rather than random allocation. According to the Human Protein Atlas, the differential proteins that have human orthologs were strongly expressed in the liver, kidney and intestine. Functional annotation analysis revealed that these differential proteins were involved in glucose metabolism and immunity-related pathways. Conclusion Our results revealed that the urinary proteome could reflect significant changes after regular swimming exercise. These findings may provide an approach to monitor the effects of exercise of the body.
Collapse
Affiliation(s)
- Wenshu Meng
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Dan Xu
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Yunchen Meng
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Weinan Zhang
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Yaqi Xue
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Zhiping Zhen
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
30
|
Herrera-Pariente C, Montori S, Llach J, Bofill A, Albeniz E, Moreira L. Biomarkers for Gastric Cancer Screening and Early Diagnosis. Biomedicines 2021; 9:biomedicines9101448. [PMID: 34680565 PMCID: PMC8533304 DOI: 10.3390/biomedicines9101448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most common cancers worldwide, with a bad prognosis associated with late-stage diagnosis, significantly decreasing the overall survival. This highlights the importance of early detection to improve the clinical course of these patients. Although screening programs, based on endoscopic or radiologic approaches, have been useful in countries with high incidence, they are not cost-effective in low-incidence populations as a massive screening strategy. Additionally, current biomarkers used in daily routine are not specific and sensitive enough, and most of them are obtained invasively. Thus, it is imperative to discover new noninvasive biomarkers able to diagnose early-stage gastric cancer. In this context, liquid biopsy is a promising strategy. In this review, we briefly discuss some of the potential biomarkers for gastric cancer screening and diagnosis identified in blood, saliva, urine, stool, and gastric juice.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Sheyla Montori
- UPNA, IdiSNA, Navarrabiomed Biomedical Research Center, Gastrointestinal Endoscopy Research Unit, 31008 Pamplona, Spain; (S.M.); (E.A.)
| | - Joan Llach
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Alex Bofill
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Eduardo Albeniz
- UPNA, IdiSNA, Navarrabiomed Biomedical Research Center, Gastrointestinal Endoscopy Research Unit, 31008 Pamplona, Spain; (S.M.); (E.A.)
- Endoscopy Unit, Gastroenterology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
- Correspondence:
| |
Collapse
|
31
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
32
|
A matter of perspective-Cutting-edge technology-driven urine proteome in COVID-19. ACTA ACUST UNITED AC 2021; 3:1-2. [PMID: 34075354 PMCID: PMC8157115 DOI: 10.1016/j.urine.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
In a recent issue of Nature Communications, we highlighted in-depth urine proteomic research in which significant immunosuppression was revealed in early SARS-CoV-2- infected patients 1. The application of urine in mapping the landscape of molecular changes closely associated with human diseases has been widely accepted. Herein, we take a systematic review of the published article from the perspective of both methodology and clinical significance.
Collapse
|
33
|
Urinary microRNA biomarkers for detecting the presence of esophageal cancer. Sci Rep 2021; 11:8508. [PMID: 33879806 PMCID: PMC8058072 DOI: 10.1038/s41598-021-87925-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer (EC) including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) generally exhibits poor prognosis; hence, a noninvasive biomarker enabling early detection is necessary. Age- and sex-matched 150 healthy controls (HCs) and 43 patients with ESCC were randomly divided into two groups: 9 individuals in the discovery cohort for microarray analysis and 184 individuals in the training/test cohort with cross-validation for qRT-PCR analysis. Using 152 urine samples (144 HCs and 8 EACs), we validated the urinary miRNA biomarkers for EAC diagnosis. Among eight miRNAs selected in the discovery cohort, urinary levels of five miRNAs (miR-1273f, miR-619-5p, miR-150-3p, miR-4327, and miR-3135b) were significantly higher in the ESCC group than in the HC group, in the training/test cohort. Consistently, these five urinary miRNAs were significantly different between HC and ESCC in both training and test sets. Especially, urinary miR-1273f and miR-619-5p showed excellent values of area under the curve (AUC) ≥ 0.80 for diagnosing stage I ESCC. Similarly, the EAC group had significantly higher urinary levels of these five miRNAs than the HC group, with AUC values of approximately 0.80. The present study established novel urinary miRNA biomarkers that can early detect ESCC and EAC.
Collapse
|
34
|
Shimura T. Novel Biomarkers of Gastrointestinal Cancer. Cancers (Basel) 2021; 13:cancers13071501. [PMID: 33805858 PMCID: PMC8036619 DOI: 10.3390/cancers13071501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Takaya Shimura
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| |
Collapse
|