1
|
Jiang Y, Huang M, Zhao Y, Dai J, Yang Q, Tang X, Li X, Cui Y, Zhang J, Sun J, Fu L, Mao H, Peng XG. A [ 18F]FDG PET based nomogram to predict cancer-associated cachexia and survival outcome: A multi-center study. Nutrition 2025; 129:112593. [PMID: 39426212 DOI: 10.1016/j.nut.2024.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Cancer patients with cachexia face poor prognosis and shortened survival. Early diagnosis and accurate prognosis prediction remain challenging. This multi-center study aims to develop and externally validate a nomogram integrating [18F]fluoro-2-deoxy-D-glucose ([18F]FDG) PET findings and routine clinical biochemistry tests for predicting cancer-associated cachexia, while also assessing its potential prognostic value. RESEARCH METHODS & PROCEDURES A retrospective analysis of 658 cancer patients (390 in the development cohort, 268 in the validation cohort) utilized [18F]FDG PET/CT data from two centers. Logistic regression identified organ-specific standardized uptake values (SUVs) and clinical variables associated with cancer-associated cachexia. Diagnostic accuracy, discriminative ability, and clinical effectiveness were assessed using area under the curve (AUC), calibration curve, and decision curve. Nomogram predictability for overall survival was evaluated through Cox regression and Kaplan-Meier curves. RESULTS The combined nomogram incorporating age (odds ratio [OR] = 1.893; P = 0.012), hemoglobin (OR = 2.591; P < 0.001), maximum SUV of the liver (OR = 3.646; P < 0.001), and minimum SUV of the subcutaneous fat (OR = 5.060; P < 0.001) achieved good performance in predicting cancer-associated cachexia (AUC = 0.807/0.726, development/validation). Calibration and decision curve analyses confirmed its clinical effectiveness. Kaplan-Meier curves analysis showed that overall survival can be categorized using the combined nomogram (P < 0.001). CONCLUSION Combining radiological information from clinical standard [18F]FDG PET data from cancer patients with biochemical results in their routine clinical blood tests through a well-constructed nomogram enables predicting cachexia and its effect on the prognosis of cancer patients.
Collapse
Affiliation(s)
- Yang Jiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mouqing Huang
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou, China
| | - Yufei Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jingyue Dai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qingwen Yang
- Department of Internal Medicine, Ulm University & Ulm University Hospital, Ulm, Germany
| | - Xingzhe Tang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xinxiang Li
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Cui
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jingqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jialu Sun
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Fu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Xin-Gui Peng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Department of Radiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Song R, Li B, Wang X, Fan X, Zheng Z, Zheng Y, He J, Wang C, Wang L. Construction and validation of deep learning model for cachexia in extensive-stage small cell lung cancer patients treated with immune checkpoint inhibitors: a multicenter study. Transl Lung Cancer Res 2024; 13:2958-2971. [PMID: 39670020 PMCID: PMC11632437 DOI: 10.21037/tlcr-24-543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/12/2024] [Indexed: 12/14/2024]
Abstract
Background Cachexia is observed in around 60% of patients with extensive-stage small cell lung cancer (ES-SCLC) and may play an important role in the development of resistance to immunotherapy. This study aims to evaluate the influence of cachexia on the effectiveness of immunotherapy, develop and assess a deep learning (DL)-based prediction model for cachexia, as well as its prognostic value. Methods The analysis encompassed ES-SCLC patients who received the combination of first-line immunotherapy and chemotherapy from Shandong Cancer Hospital and Institute, Qilu Hospital, and Jining First People's Hospital. Survival analysis was conducted to examine the correlation between cachexia and the efficacy of immunotherapy. Medical records and computed tomography (CT) images of the third lumbar vertebra (L3) level were collected to construct the clinical model, radiomics, and DL models. The receiver operating characteristic (ROC) curve analysis was conducted to assess and analyze the efficacy of various models in detecting and evaluating the risk of cachexia. Results A total of 231 ES-SCLC patients were enrolled in the study. Cachexia was related to inferior progression-free survival (PFS) and overall survival (OS). In internal and external validation cohorts, the area under the curve (AUC) of the DL model were 0.73 and 0.71. Conversely, the radiomics model in external validation cohort recorded an AUC of 0.67, highlighting the superior performance of the DL model and its demonstrated capability for effective generalization in external validation. All patients were categorized into two groups, namely high risk and low risk using the DL model. It was shown that patients with low-risk cachexia were associated with significantly prolonged PFS and OS. Conclusions The DL model not only had better performance in predicting cachexia but also correlated with survival outcomes of ES-SCLC patients who receiving initial immunotherapy.
Collapse
Affiliation(s)
- Ruiting Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoqing Wang
- Department of Portal Hypertension, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xinyu Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhonghang Zheng
- Department of Nuclear Medicine, Shandong First Medical University Affiliated Jining First People’s Hospital, Jining, China
| | - Yawen Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junyi He
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong University Cancer Center, Jinan, China
| | - Chunni Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
McGale JP, Chen DL, Trebeschi S, Farwell MD, Wu AM, Cutler CS, Schwartz LH, Dercle L. Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol 2024; 34:5829-5841. [PMID: 38355986 DOI: 10.1007/s00330-024-10637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. METHODS We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. RESULTS Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. CONCLUSION Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. CLINICAL RELEVANCE STATEMENT This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. KEY POINTS • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.
Collapse
Affiliation(s)
- Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Delphine L Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna M Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
HOU Y, ZHANG T, WANG H. [Advancements in Radiomics for Immunotherapy of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:637-644. [PMID: 39318257 PMCID: PMC11425675 DOI: 10.3779/j.issn.1009-3419.2024.102.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 09/26/2024]
Abstract
Lung cancer is the main cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) being the predominant subtype. At present, immunotherapy represented by immune checkpoint inhibitors (ICIs) of programmed cell death receptor 1 or its ligand has been widely used in the clinical diagnosis and treatment of patients with NSCLC. However, only a few patients can benefit from it, and reliable predictive markers for immunotherapy are lacking. Radiomics is a tool that uses computer software and algorithms to extract a large amount of quantitative information from biomedical images. A large number of studies have confirmed that the radiomic model that predicts the immune efficacy of NSCLC can be used as a new type of immune efficacy predictive marker, which is expected to guide the individualized diagnosis and treatment decisions for patients with lung cancer and has a bright application prospect. This article reviews the research progress of radiomics in predicting the immune therapy response of NSCLC, identifying pseudo-progression and hyperprogression, ICIs-related pneumonia, cachexia risk, and combining with other genomics.
.
Collapse
|
5
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Ni S, Liang Q, Jiang X, Ge Y, Jiang Y, Liu L. Prognostic models for immunotherapy in non-small cell lung cancer: A comprehensive review. Heliyon 2024; 10:e29840. [PMID: 38681577 PMCID: PMC11053285 DOI: 10.1016/j.heliyon.2024.e29840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of lung cancer. Given the limited clinical benefits of immunotherapy in patients with non-small cell lung cancer (NSCLC), various predictors have been shown to significantly influence prognosis. However, no single predictor is adequate to forecast patients' survival benefit. Therefore, it's imperative to develop a prognostic model that integrates multiple predictors. This model would be instrumental in identifying patients who might benefit from ICIs. Retrospective analysis and small case series have demonstrated the potential role of these models in prognostic prediction, though further prospective investigation is required to evaluate more rigorously their application in these contexts. This article presents and summarizes the latest research advancements on immunotherapy prognostic models for NSCLC from multiple omics perspectives and discuss emerging strategies being developed to enhance the domain.
Collapse
Affiliation(s)
- Siqi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinping Ge
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uygur Autonomous Regio, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uygur Autonomous Regio, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
7
|
Yu Y, Yan L, Huang T, Wu Z, Liu J. Cancer cachexia reduces the efficacy of immune checkpoint inhibitors in cancer patients. Aging (Albany NY) 2024; 16:5354-5369. [PMID: 38466657 PMCID: PMC11006492 DOI: 10.18632/aging.205652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE Cachexia, a multifactorial syndrome, is frequently noticed in cancer patients. A recent study has shown inconsistent findings about the relationship between cachexia and the efficiency of immune checkpoint inhibitors (ICIs). To analyze this disparity, we did a meta-analysis. METHODS From the beginning of each database to July 2023, literature describing the association between cachexia and prognosis of ICI-treated patients with solid malignancies was systematically searched in three online databases. Estimates were pooled, and 95% confidence intervals (CIs) were generated. RESULTS We analyzed a total of 12 articles, which included data from 1407 patients. The combined results of our analysis showed that cancer patients with cachexia had significantly worse overall survival (HR = 1.88, 95% CI: 1.59-2.22, p < 0.001), progression-free survival (HR = 1.84, 95% CI: 1.59-2.12, p < 0.001), and time to treatment failure (HR = 2.15, 95% CI: 1.32-3.50, p = 0.002). These findings were consistent in both univariate and multivariate analyses. Additionally, while not statistically significant, we observed a trend towards a lower objective response rate in cancer patients with cachexia compared to those without cachexia (OR = 0.59, 95% CI: 0.32-1.09, p = 0.093). CONCLUSION Poor survival in cachexia patients suggests a negative relationship between cachexia and ICI efficacy. In clinical practice, the existence of cachexia should be estimated to choose individuals who may benefit from ICIs.
Collapse
Affiliation(s)
- Yean Yu
- Department of Nephrology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Li Yan
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Tianhui Huang
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zhenfu Wu
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Juan Liu
- Department of Critical Care Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Critical Care Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Chantadisai M, Wongwijitsook J, Ritlumlert N, Rakvongthai Y. Combined clinical variable and radiomics of post-treatment total body scan for prediction of successful I-131 ablation in low-risk papillary thyroid carcinoma patients. Sci Rep 2024; 14:5001. [PMID: 38424177 PMCID: PMC10904821 DOI: 10.1038/s41598-024-55755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
To explore the feasibility of combined radiomics of post-treatment I-131 total body scan (TBS) and clinical parameter to predict successful ablation in low-risk papillary thyroid carcinoma (PTC) patients. Data of low-risk PTC patients who underwent total/near total thyroidectomy and I-131 ablation 30 mCi between April 2015 and July 2021 were retrospectively reviewed. The clinical factors studied included age, sex, and pre-ablative serum thyroglobulin (Tg). Radiomic features were extracted via PyRadiomics, and radiomic feature selection was performed. The predictive performance for successful ablation of the clinical parameter, radiomic, and combined models (radiomics combined with clinical parameter) was calculated using the area under the receiver operating characteristic curve (AUC). One hundred and thirty patients were included. Successful ablation was achieved in 77 patients (59.2%). The mean pre-ablative Tg in the unsuccessful group (15.50 ± 18.04 ng/ml) was statistically significantly higher than those in the successful ablation group (7.12 ± 7.15 ng/ml). The clinical parameter, radiomic, and combined models produced AUCs of 0.66, 0.77, and 0.87 in the training sets, and 0.65, 0.69, and 0.78 in the validation sets, respectively. The combined model produced a significantly higher AUC than that of the clinical parameter (p < 0.05). Radiomic analysis of the post-treatment TBS combined with pre-ablative serum Tg showed a significant improvement in the predictive performance of successful ablation in low-risk PTC patients compared to the use of clinical parameter alone.Thai Clinical Trials Registry TCTR identification number is TCTR20230816004 ( https://www.thaiclinicaltrials.org/show/TCTR20230816004 ).
Collapse
Affiliation(s)
- Maythinee Chantadisai
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
| | - Jirarot Wongwijitsook
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Division of Nuclear Medicine, Department of Radiology, Surin Hospital, Surin, Thailand
| | - Napat Ritlumlert
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- School of Radiological Technology, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Yothin Rakvongthai
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
McGale JP, Howell HJ, Beddok A, Tordjman M, Sun R, Chen D, Wu AM, Assi T, Ammari S, Dercle L. Integrating Artificial Intelligence and PET Imaging for Drug Discovery: A Paradigm Shift in Immunotherapy. Pharmaceuticals (Basel) 2024; 17:210. [PMID: 38399425 PMCID: PMC10892847 DOI: 10.3390/ph17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of artificial intelligence (AI) and positron emission tomography (PET) imaging has the potential to become a powerful tool in drug discovery. This review aims to provide an overview of the current state of research and highlight the potential for this alliance to advance pharmaceutical innovation by accelerating the development and deployment of novel therapeutics. We previously performed a scoping review of three databases (Embase, MEDLINE, and CENTRAL), identifying 87 studies published between 2018 and 2022 relevant to medical imaging (e.g., CT, PET, MRI), immunotherapy, artificial intelligence, and radiomics. Herein, we reexamine the previously identified studies, performing a subgroup analysis on articles specifically utilizing AI and PET imaging for drug discovery purposes in immunotherapy-treated oncology patients. Of the 87 original studies identified, 15 met our updated search criteria. In these studies, radiomics features were primarily extracted from PET/CT images in combination (n = 9, 60.0%) rather than PET imaging alone (n = 6, 40.0%), and patient cohorts were mostly recruited retrospectively and from single institutions (n = 10, 66.7%). AI models were used primarily for prognostication (n = 6, 40.0%) or for assisting in tumor phenotyping (n = 4, 26.7%). About half of the studies stress-tested their models using validation sets (n = 4, 26.7%) or both validation sets and test sets (n = 4, 26.7%), while the remaining six studies (40.0%) either performed no validation at all or used less stringent methods such as cross-validation on the training set. Overall, the integration of AI and PET imaging represents a paradigm shift in drug discovery, offering new avenues for more efficient development of therapeutics. By leveraging AI algorithms and PET imaging analysis, researchers could gain deeper insights into disease mechanisms, identify new drug targets, or optimize treatment regimens. However, further research is needed to validate these findings and address challenges such as data standardization and algorithm robustness.
Collapse
Affiliation(s)
- Jeremy P. McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Harrison J. Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Godinot, 51100 Reims, France
| | - Mickael Tordjman
- Department of Radiology, Hôtel Dieu Hospital, APHP, 75014 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Delphine Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Anna M. Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Tarek Assi
- International Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| |
Collapse
|
10
|
Fang Y, Chen X, Cao C. Cancer immunotherapy efficacy and machine learning. Expert Rev Anticancer Ther 2024; 24:21-28. [PMID: 38288663 DOI: 10.1080/14737140.2024.2311684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Immunotherapy is one of the major breakthroughs in the treatment of cancer, and it has become a powerful clinical strategy, however, not all patients respond to immune checkpoint blockade and other immunotherapy strategies. Applying machine learning (ML) techniques to predict the efficacy of cancer immunotherapy is useful for clinical decision-making. AREAS COVERED Applying ML including deep learning (DL) in radiomics, pathomics, tumor microenvironment (TME) and immune-related genes analysis to predict immunotherapy efficacy. The studies in this review were searched from PubMed and ClinicalTrials.gov (January 2023). EXPERT OPINION An increasing number of studies indicate that ML has been applied to various aspects of oncology research, with the potential to provide more effective individualized immunotherapy strategies and enhance treatment decisions. With advances in ML technology, more efficient methods of predicting the efficacy of immunotherapy may become available in the future.
Collapse
Affiliation(s)
- Yuting Fang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Caineng Cao
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences; Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Kumar V, Stewart JH. Editorial: Immunology of cachexia. Front Immunol 2023; 14:1339263. [PMID: 38116001 PMCID: PMC10728869 DOI: 10.3389/fimmu.2023.1339263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Vijay Kumar
- *Correspondence: John H. Stewart IV, ; Vijay Kumar, ;
| | - John H. Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Li Q, Zhang D, Sui X, Song T, Hu L, Xu X, Wang X, Wang F. The Warburg effect drives cachectic states in patients with pancreatobiliary adenocarcinoma. FASEB J 2023; 37:e23144. [PMID: 37584661 DOI: 10.1096/fj.202300649r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
We have studied whether the Warburg effect (uncontrolled glycolysis) in pancreatobiliary adenocarcinoma triggers cachexia in the patient. After 74 pancreatobiliary adenocarcinomas were removed by surgery, their glucose transporter-1 and four glycolytic enzymes were quantified using Western blotting. Based on the resulting data, the adenocarcinomas were equally divided into a group of low glycolysis (LG) and a group of high glycolysis (HG). Energy homeostasis was assessed in these cancer patients and in 74 non-cancer controls, using serum albumin and C-reactive protein and morphometrical analysis of abdominal skeletal muscle and fat on computed tomography scans. Some removed adenocarcinomas were transplanted in nude mice to see their impacts on host energy homeostasis. Separately, nude mice carrying tumor grafts of MiaPaCa-2 pancreatic adenocarcinoma cells were treated with the glycolytic inhibitor 3-bromopyruvate and with emodin that inhibited glycolysis by decreasing hypoxia-inducible factor-1α. Adenocarcinomas in both group LG and group HG impaired energy homeostasis in the cancer patients, compared to the non-cancer reference. The impaired energy homeostasis induced by the adenocarcinomas in group HG was more pronounced than that by the adenocarcinomas in group LG. When original adenocarcinomas were grown in nude mice, their glycolytic abilities determined the levels of hepatic gluconeogenesis, skeletal muscle proteolysis, adipose-tissue lipolysis, and weight loss in the mice. When MiaPaCa-2 cells were grown as tumors in nude mice, 3-bromopyruvate and emodin decreased tumor-induced glycolysis and cachexia, with the best effects being seen when the drugs were administered in combination. In conclusion, the Warburg effect in pancreatobiliary adenocarcinoma triggers cancer cachexia.
Collapse
Affiliation(s)
- Qiuju Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Dapeng Zhang
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Xiaojun Sui
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Tao Song
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Lijuan Hu
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Xiaoqing Xu
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
- Haihe Hospital, Tianjin, China
| | - Feng Wang
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| |
Collapse
|
13
|
Evangelista L, Fiz F, Laudicella R, Bianconi F, Castello A, Guglielmo P, Liberini V, Manco L, Frantellizzi V, Giordano A, Urso L, Panareo S, Palumbo B, Filippi L. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers (Basel) 2023; 15:3258. [PMID: 37370869 PMCID: PMC10296704 DOI: 10.3390/cancers15123258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the existing literature concerning the applications of positron emission tomography (PET) radiomics in lung cancer patient candidates or those undergoing immunotherapy. MATERIALS AND METHODS A systematic review was conducted on databases and web sources. English-language original articles were considered. The title and abstract were independently reviewed to evaluate study inclusion. Duplicate, out-of-topic, and review papers, or editorials, articles, and letters to editors were excluded. For each study, the radiomics analysis was assessed based on the radiomics quality score (RQS 2.0). The review was registered on the PROSPERO database with the number CRD42023402302. RESULTS Fifteen papers were included, thirteen were qualified as using conventional radiomics approaches, and two used deep learning radiomics. The content of each study was different; indeed, seven papers investigated the potential ability of radiomics to predict PD-L1 expression and tumor microenvironment before starting immunotherapy. Moreover, two evaluated the prediction of response, and four investigated the utility of radiomics to predict the response to immunotherapy. Finally, two papers investigated the prediction of adverse events due to immunotherapy. CONCLUSIONS Radiomics is promising for the evaluation of TME and for the prediction of response to immunotherapy, but some limitations should be overcome.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Fiz
- Nuclear Medicine Department, E.O. “Ospedali Galliera”, 16128 Genoa, Italy;
- Nuclear Medicine Department and Clinical Molecular Imaging, University Hospital, 72076 Tübingen, Germany
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90100 Palermo, Italy;
| | - Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti, 06125 Perugia, Italy;
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy;
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy;
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Alessia Giordano
- Nuclear Medicine Unit, IRCCS CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università degli Studi di Perugia, 06125 Perugia, Italy;
| | - Luca Filippi
- Nuclear Medicine Section, Santa Maria Goretti Hospital, 04100 Latina, Italy;
| |
Collapse
|
14
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
15
|
Li J, Zhang B, Ge S, Deng S, Hu C, Sang S. Prognostic value of 18F-FDG PET/CT radiomic model based on primary tumor in patients with non-small cell lung cancer: A large single-center cohort study. Front Oncol 2022; 12:1047905. [DOI: 10.3389/fonc.2022.1047905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
ObjectivesIn the present study, we aimed to determine the prognostic value of the 18F-FDG PET/CT-based radiomics model when predicting progression-free survival (PFS) and overall survival (OS) in patients with non-small cell lung cancer (NSCLC).MethodsA total of 368 NSCLC patients who underwent 18F-FDG PET/CT before treatment were randomly assigned to the training (n = 257) and validation (n = 111) cohorts. Radiomics signatures from PET and CT images were obtained using LIFEx software, and then clinical and complex models were constructed and validated by selecting optimal parameters based on PFS and OS to construct radiomics signatures.ResultsIn the training cohort, the C-index of the clinical model for predicting PFS and OS in NSCLC patients was 0.748 and 0.834, respectively, and the AUC values were 0.758 and 0.846, respectively. The C-index of the complex model for predicting PFS and OS was 0.775 and 0.881, respectively, and the AUC values were 0.780 and 0.891, respectively. The C-index of the clinical model for predicting PFS and OS in the validation group was 0.729 and 0.832, respectively, and the AUC values were 0.776 and 0.850, respectively. The C-index of the complex model for predicting PFS and OS was 0.755 and 0.867, respectively, and the AUC values were 0.791 and 0.874, respectively. Moreover, decision curve analysis showed that the complex model had a higher net benefit than the clinical model.Conclusions18F-FDG PET/CT radiomics before treatment could predict PFS and OS in NSCLC patients, and the predictive power was higher when combined with clinical factors.
Collapse
|
16
|
Ter Maat LS, van Duin IAJ, Elias SG, van Diest PJ, Pluim JPW, Verhoeff JJC, de Jong PA, Leiner T, Veta M, Suijkerbuijk KPM. Imaging to predict checkpoint inhibitor outcomes in cancer. A systematic review. Eur J Cancer 2022; 175:60-76. [PMID: 36096039 DOI: 10.1016/j.ejca.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Checkpoint inhibition has radically improved the perspective for patients with metastatic cancer, but predicting who will not respond with high certainty remains difficult. Imaging-derived biomarkers may be able to provide additional insights into the heterogeneity in tumour response between patients. In this systematic review, we aimed to summarise and qualitatively assess the current evidence on imaging biomarkers that predict response and survival in patients treated with checkpoint inhibitors in all cancer types. METHODS PubMed and Embase were searched from database inception to 29th November 2021. Articles eligible for inclusion described baseline imaging predictive factors, radiomics and/or imaging machine learning models for predicting response and survival in patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was assessed using the QUIPS and PROBAST tools and data was extracted. RESULTS In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investigated simple imaging factors. 45 studies investigated radiomic features or deep learning models. Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality studies. The added value of baseline fluorodeoxyglucose positron emission tomography parameters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imaging showed promising results. Reports on radiomics were almost unanimously positive, but numerous methodological concerns exist. CONCLUSIONS There is well-supported evidence for several imaging biomarkers that can be used in clinical decision making. Further research, however, is needed into biomarkers that can more accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics and radioactive drug labelling appear to be promising approaches for this purpose.
Collapse
Affiliation(s)
- Laurens S Ter Maat
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Josien P W Pluim
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Tim Leiner
- Utrecht University, Utrecht, the Netherlands; Department of Radiology, Mayo Clinical, Rochester, MN, USA
| | - Mitko Veta
- Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
18
|
Cui R, Yang Z, Liu L. What does radiomics do in PD-L1 blockade therapy of NSCLC patients? Thorac Cancer 2022; 13:2669-2680. [PMID: 36039482 PMCID: PMC9527165 DOI: 10.1111/1759-7714.14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/19/2022] Open
Abstract
With the in‐depth understanding of programmed cell death 1 ligand 1 (PD‐L1) in non‐small cell lung cancer (NSCLC), PD‐L1 has become a vital immunotherapy target and a significant biomarker. The clinical utility of detecting PD‐L1 by immunohistochemistry or next‐generation sequencing has been written into guidelines. However, the application of these methods is limited in some circumstances where the biopsy size is small or not accessible, or a dynamic monitor is needed. Radiomics can noninvasively, in real‐time, and quantitatively analyze medical images to reflect deeper information about diseases. Since radiomics was proposed in 2012, it has been widely used in disease diagnosis and differential diagnosis, tumor staging and grading, gene and protein phenotype prediction, treatment plan decision‐making, efficacy evaluation, and prognosis prediction. To explore the feasibility of the clinical application of radiomics in predicting PD‐L1 expression, immunotherapy response, and long‐term prognosis, we comprehensively reviewed and summarized recently published works in NSCLC. In conclusion, radiomics is expected to be a companion to the whole immunotherapy process.
Collapse
Affiliation(s)
- Ruichen Cui
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Yang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Yin X, Liao H, Yun H, Lin N, Li S, Xiang Y, Ma X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol 2022; 86:146-159. [PMID: 35963564 DOI: 10.1016/j.semcancer.2022.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Lung cancer accounts for the main proportion of malignancy-related deaths and most patients are diagnosed at an advanced stage. Immunotherapy and targeted therapy have great advances in application in clinics to treat lung cancer patients, yet the efficacy is unstable. The response rate of these therapies varies among patients. Some biomarkers have been proposed to predict the outcomes of immunotherapy and targeted therapy, including programmed cell death-ligand 1 (PD-L1) expression and oncogene mutations. Nevertheless, the detection tests are invasive, time-consuming, and have high demands on tumor tissue. The predictive performance of conventional biomarkers is also unsatisfactory. Therefore, novel biomarkers are needed to effectively predict the outcomes of immunotherapy and targeted therapy. The application of artificial intelligence (AI) can be a possible solution, as it has several advantages. AI can help identify features that are unable to be used by humans and perform repetitive tasks. By combining AI methods with radiomics, pathology, genomics, transcriptomics, proteomics, and clinical data, the integrated model has shown predictive value in immunotherapy and targeted therapy, which significantly improves the precision treatment of lung cancer patients. Herein, we reviewed the application of AI in predicting the outcomes of immunotherapy and targeted therapy in lung cancer patients, and discussed the challenges and future directions in this field.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Hu Liao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Hong Yun
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Nan Lin
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Shen Li
- West China School of Medicine, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Yu Xiang
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
20
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
21
|
Kothari G. Role of radiomics in predicting immunotherapy response. J Med Imaging Radiat Oncol 2022; 66:575-591. [PMID: 35581928 PMCID: PMC9323544 DOI: 10.1111/1754-9485.13426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Immunotherapies have revolutionised cancer management. Despite their success, durable responses are limited to a subset of patients. Prediction of immunotherapy response in patients has proven to be difficult due to a lack of robust biomarkers. Routinely collected imaging may offer an additional information source to personalise patient treatment, with advantages over tissue-based biomarkers. Quantitative image analysis or radiomics, which involves the high-throughput extraction of imaging features, has the potential to non-invasively predict cancer histology, outcomes and prognosis. This review evaluates the value of radiomics in patients undergoing immunotherapy, with a summary provided of the performance of radiomics models in predicting immunotherapy response and toxicity, as well as immune correlates. Much of the literature focussed on clinical endpoints and correlates to tissue biomarkers, particularly in lung cancer, while few studies investigated association with immune-related adverse events. Strengths of the studies included more frequent use of clinical trial datasets, homogenous patient cohorts and high-quality diagnostic scans. Limitations of the studies include heterogeneity in study methodology, lack of well-defined homogenous imaging datasets, limited open publishing of imaging datasets, coding and parameters used for radiomics signature development and limited use of external validation datasets. Future research should address the above limitations, as well as further explore the relationship between radiomics and immune-related adverse effects and less well-studied biological correlates such tumour mutational burden, and incorporate known clinical prognostic scores into radiomics models.
Collapse
Affiliation(s)
- Gargi Kothari
- Department of Radiation OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbournePeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
22
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
23
|
The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J Clin Med 2022; 11:jcm11061740. [PMID: 35330068 PMCID: PMC8948743 DOI: 10.3390/jcm11061740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Abstract Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an “ideal” biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.
Collapse
|
24
|
Kang CY, Duarte SE, Kim HS, Kim E, Park J, Lee AD, Kim Y, Kim L, Cho S, Oh Y, Gim G, Park I, Lee D, Abazeed M, Velichko YS, Chae YK. OUP accepted manuscript. Oncologist 2022; 27:e471-e483. [PMID: 35348765 PMCID: PMC9177100 DOI: 10.1093/oncolo/oyac036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
The recent, rapid advances in immuno-oncology have revolutionized cancer treatment and spurred further research into tumor biology. Yet, cancer patients respond variably to immunotherapy despite mounting evidence to support its efficacy. Current methods for predicting immunotherapy response are unreliable, as these tests cannot fully account for tumor heterogeneity and microenvironment. An improved method for predicting response to immunotherapy is needed. Recent studies have proposed radiomics—the process of converting medical images into quantitative data (features) that can be processed using machine learning algorithms to identify complex patterns and trends—for predicting response to immunotherapy. Because patients undergo numerous imaging procedures throughout the course of the disease, there exists a wealth of radiological imaging data available for training radiomics models. And because radiomic features reflect cancer biology, such as tumor heterogeneity and microenvironment, these models have enormous potential to predict immunotherapy response more accurately than current methods. Models trained on preexisting biomarkers and/or clinical outcomes have demonstrated potential to improve patient stratification and treatment outcomes. In this review, we discuss current applications of radiomics in oncology, followed by a discussion on recent studies that use radiomics to predict immunotherapy response and toxicity.
Collapse
Affiliation(s)
| | | | - Hye Sung Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugene Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Alice Daeun Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yoojin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gahyun Gim
- Department of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Inae Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongyup Lee
- Department of Physical Medicine and Rehabilitation, Geisinger Health System, Danville, PA, USA
| | - Mohamed Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yury S Velichko
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Young Kwang Chae
- Corresponding author: Young Kwang Chae, Department of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
Han J, Harrison L, Patzelt L, Wu M, Junker D, Herzig S, Berriel Diaz M, Karampinos DC. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res 2021; 11:94. [PMID: 34557972 PMCID: PMC8460705 DOI: 10.1186/s13550-021-00834-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer quality of life, and increased mortality. Timely detection is, therefore, crucial, as is the careful monitoring of cancer progression, in an effort to improve management, facilitate individual treatment and minimize disease complications. A detailed analysis of body composition and tissue changes using imaging modalities—that is, computed tomography, magnetic resonance imaging, (18F) fluoro-2-deoxy-d-glucose (18FDG) PET and dual-energy X-ray absorptiometry—shows great premise for charting the course of cachexia. Quantitative and qualitative changes to adipose tissue, organs, and muscle compartments, particularly of the trunk and extremities, could present important biomarkers for phenotyping cachexia and determining its onset in patients. In this review, we present and compare the imaging techniques that have been used in the setting of cancer cachexia. Their individual limitations, drawbacks in the face of clinical routine care, and relevance in oncology are also discussed.
Collapse
Affiliation(s)
- Jessie Han
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Luke Harrison
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Patzelt
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Chair of Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
26
|
Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, Lambin P, Bottari F, Tsoutzidis N, Miraglio B, Walsh S, Vos W, Hustinx R, Ferreira M, Lovinfosse P, Leijenaar RTH. A review in radiomics: Making personalized medicine a reality via routine imaging. Med Res Rev 2021; 42:426-440. [PMID: 34309893 DOI: 10.1002/med.21846] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Radiomics is the quantitative analysis of standard-of-care medical imaging; the information obtained can be applied within clinical decision support systems to create diagnostic, prognostic, and/or predictive models. Radiomics analysis can be performed by extracting hand-crafted radiomics features or via deep learning algorithms. Radiomics has evolved tremendously in the last decade, becoming a bridge between imaging and precision medicine. Radiomics exploits sophisticated image analysis tools coupled with statistical elaboration to extract the wealth of information hidden inside medical images, such as computed tomography (CT), magnetic resonance (MR), and/or Positron emission tomography (PET) scans, routinely performed in the everyday clinical practice. Many efforts have been devoted in recent years to the standardization and validation of radiomics approaches, to demonstrate their usefulness and robustness beyond any reasonable doubts. However, the booming of publications and commercial applications of radiomics approaches warrant caution and proper understanding of all the factors involved to avoid "scientific pollution" and overly enthusiastic claims by researchers and clinicians alike. For these reasons the present review aims to be a guidebook of sorts, describing the process of radiomics, its pitfalls, challenges, and opportunities, along with its ability to improve clinical decision-making, from oncology and respiratory medicine to pharmacological and genotyping studies.
Collapse
Affiliation(s)
- Julien Guiot
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Akshayaa Vaidyanathan
- Radiomics (Oncoradiomics SA), Liège, Belgium.,The D-Lab, Department of Precision Medicine, Department of Nuclear Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Louis Deprez
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Fadila Zerka
- Radiomics (Oncoradiomics SA), Liège, Belgium.,The D-Lab, Department of Precision Medicine, Department of Nuclear Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Denis Danthine
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Anne-Noelle Frix
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, Department of Nuclear Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | - Sean Walsh
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | - Wim Vos
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine and Oncological Imaging, University Hospital of Liege, Liege, Belgium.,GIGA-CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Marta Ferreira
- GIGA-CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Pierre Lovinfosse
- Department of Nuclear Medicine and Oncological Imaging, University Hospital of Liege, Liege, Belgium
| | | |
Collapse
|