1
|
Höfer S, Frasch L, Brajkovic S, Putzker K, Lewis J, Schürmann H, Leone V, Sakhteman A, The M, Bayer FP, Müller J, Hamood F, Siveke JT, Reichert M, Kuster B. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response. Mol Syst Biol 2025; 21:231-253. [PMID: 39838187 DOI: 10.1038/s44320-025-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
The DNA-damaging agent Gemcitabine (GEM) is a first-line treatment for pancreatic cancer, but chemoresistance is frequently observed. Several clinical trials investigate the efficacy of GEM in combination with targeted drugs, including kinase inhibitors, but the experimental evidence for such rationale is often unclear. Here, we phenotypically screened 13 human pancreatic adenocarcinoma (PDAC) cell lines against GEM in combination with 146 clinical inhibitors and observed strong synergy for the ATR kinase inhibitor Elimusertib in most cell lines. Dose-dependent phosphoproteome profiling of four ATR inhibitors following DNA damage induction by GEM revealed a strong block of the DNA damage response pathway, including phosphorylated pS468 of CHEK1, as the underlying mechanism of drug synergy. The current work provides a strong rationale for why the combination of GEM and ATR inhibition may be useful for the treatment of PDAC patients and constitutes a rich phenotypic and molecular resource for further investigating effective drug combinations.
Collapse
Affiliation(s)
- Stefanie Höfer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Larissa Frasch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sarah Brajkovic
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Joe Lewis
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Valentina Leone
- Department of Internal Medicine II, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Firas Hamood
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Maximilian Reichert
- Department of Internal Medicine II, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
2
|
Athans SR, Withers H, Stablewski A, Gurova K, Ohm J, Woloszynska A. STAG2 expression imparts distinct therapeutic vulnerabilities in muscle-invasive bladder cancer cells. Oncogenesis 2025; 14:4. [PMID: 40025053 PMCID: PMC11873148 DOI: 10.1038/s41389-025-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Expression of stromal antigen 2 (STAG2), a member of the cohesin complex, is associated with aggressive tumor characteristics and worse clinical outcomes in muscle invasive bladder cancer (MIBC) patients. The mechanism by which STAG2 acts in a pro-oncogenic manner in bladder cancer remains unknown. Due to this elusive role of STAG2, targetable vulnerabilities based on STAG2 expression have not yet been identified. In the current study, we sought to uncover therapeutic vulnerabilities of muscle invasive bladder cancer cells based on the expression of STAG2. Using CRISPR-Cas9, we generated isogenic STAG2 wild-type (WT) and knock out (KO) cell lines and treated each cell line with a panel of 312 anti-cancer compounds. We identified 100 total drug hits and found that STAG2 KO sensitized cells to treatment with PLK1 inhibitor rigosertib, whereas STAG2 KO protected cells from treatment with MEK inhibitor TAK-733 and PI3K inhibitor PI-103. After querying drug sensitivity data of over 4500 drugs in 24 bladder cancer cell lines from the DepMap database, we found that cells with less STAG2 mRNA expression are more sensitive to ATR and CHK inhibition. In dose-response studies, STAG2 KO cells are more sensitive to the ATR inhibitor berzosertib, whereas STAG2 WT cells are more sensitive to PI3K inhibitor PI-103. These results, in combination with RNA-seq analysis of STAG2-regulated genes, suggest a novel role of STAG2 in regulating PI3K signaling in bladder cancer cells. Finally, synergy experiments revealed that berzosertib exhibits significant synergistic cytotoxicity in combination with cisplatin against MIBC cells. Altogether, our study presents evidence that berzosertib, PI-103, and the combination of berzosertib with cisplatin may be novel opportunities to investigate as precision medicine approaches for MIBC patients based on STAG2 tumor expression.
Collapse
Affiliation(s)
- Sarah R Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Henry Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aimee Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
3
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
4
|
Krishnamurthy A, Wang H, Rhee JC, Davar D, Moy RH, Ratner L, Christner SM, Holleran JL, Deppas J, Sclafani C, Schmitz JC, Gore S, Chu E, Bakkenist CJ, Beumer JH, Villaruz LC. Phase I trial of ATR inhibitor elimusertib with FOLFIRI in advanced or metastatic gastrointestinal malignancies (ETCTN 10406). Cancer Chemother Pharmacol 2025; 95:27. [PMID: 39841295 DOI: 10.1007/s00280-024-04745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models. METHODS To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued. Starting elimusertib dose was 20 mg BID days 1, 2, 15 and 16 every 28-day cycle, combined with irinotecan (150 mg/m2) and 5-FU (2000 mg/m2). RESULTS The trial was stopped after 10 accruals, with four DLT across 4 dose levels including grade 3 febrile neutropenia, mucositis, nausea, vomiting and grade 4 neutropenia. The most common grade 3/4 adverse events were neutropenia, leukopenia, lymphopenia and mucositis. Based on significant toxicities the trial was stopped. PK data for 5-FU and irinotecan were unremarkable and did not account for DLTs. Among the six response evaluable patients, four had stable disease as their best response. Median PFS was 7 months. A first case of ATRi chemotherapy combination related AML (t-AML) was observed. CONCLUSIONS The combination of elimusertib with FOLFIRI was associated with intolerable toxicity. Combination of ATR kinases with chemotherapies that target DNA replication may be associated with significant myelotoxicity. Ongoing ATRi trials should monitor for t-AML. CLINICALTRIALS GOV ID NCT04535401.
Collapse
Grants
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- U24CA247643 NCI, USA
- U24CA247643 NCI, USA
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- R01CA266172 NCI, USA
- U24CA247643 NCI, USA
- UM1CA186690 NCI, USA
Collapse
Affiliation(s)
- Anuradha Krishnamurthy
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Rhee
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Diwakar Davar
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan H Moy
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Susan M Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Julianne L Holleran
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joshua Deppas
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Carina Sclafani
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Schmitz
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steve Gore
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Montefiore Einstein Cancer Canter, Bronx, NY, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
| | - Liza C Villaruz
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Henklewska M, Pawlak A, Obmińska-Mrukowicz B. Targeting ATR Kinase as a Strategy for Canine Lymphoma and Leukaemia Treatment. Vet Comp Oncol 2024; 22:602-612. [PMID: 39300906 DOI: 10.1111/vco.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase is one of the main regulators of cell response to DNA damage and replication stress. Effectiveness of ATR targeting in human cancers has been confirmed in preclinical studies and ATR inhibitors are currently developed clinically in human oncology. In the presented study, we tested the anticancer efficacy of ATR inhibitor berzosertib in an in vitro model of canine haematopoietic cancers. Using MTT assay and flow cytometry, we assessed the cytotoxicity of berzosertib in four established canine lymphoma and leukaemia cell lines and compared it with its activity against noncancerous canine cells. Further, we estimated the level of apoptosis in berzosertib-treated cells via flow cytometry and assessed H2AX phosphorylation as a marker of DNA damage using western blot technique. In flow-cytometric analysis, we also evaluated potential synergism between berzosertib and chlorambucil and assessed the influence of berzosertib on cell cycle disturbances induced by the drug. The results demonstrated that berzosertib, even without additional DNA damaging agent, can be effective against canine lymphoma and leukaemia cells at concentrations that were harmless for noncancerous cells, although sensitivity of individual cancer cell lines varied greatly. Cell death occurred through caspase-dependent apoptosis via induction of DNA damage. Berzosertib also acted synergistically with chlorambucil, probably by preventing DNA damage repair as a consequence of S-phase arrest abrogation. In conclusion, ATR inhibition may provide a new therapeutic option for the treatment of canine lymphomas and leukaemias, but further studies are required to determine potential biomarkers of their susceptibility.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
McDonald HG, Kennedy A, Solomon AL, Williams CM, Reagan AM, Cassim E, Harper M, Burke E, Armstrong T, Gosky M, Cavnar M, Pandalai PK, Barry-Hundeyin M, Patel R, Nutalapati S, Moss J, Hull PC, Kolesar J, Pickarski JC, Kim J. Development of a Novel Protocol for Germline Testing in Pancreatic Cancer. Ann Surg Oncol 2024; 31:7705-7712. [PMID: 39133448 DOI: 10.1245/s10434-024-16011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Guidelines now recommend universal germline genetic testing (GGT) for all pancreatic ductal adenocarcinoma (PDAC) patients. Testing provides information on actionable pathogenic variants and guides management of patients and family. Since traditional genetic counseling (GC) models are time-intensive and GC resources are sparse, new approaches are needed to comply with guidelines without overwhelming available resources. METHODS A novel protocol was developed for physician-led GGT. Completed test kits were delivered to the GC team, who maintained a prospective database and mailed all orders. If results revealed pathogenic variants for PDAC, patients were offered comprehensive GC, whereas negative and variant of uncertain significance (VUS) test results were reported to patients via brief calls. RESULTS During protocol implementation between January 2020 and December 2022, 310 (81.5%) patients underwent GGT, with a physician compliance rate of 82.6% and patient compliance rate of 98.7%. Of 310 patients tested, 44 (14.2%) patients had detection of pathogenic variants, while 83 (26.8%) patients had VUS. Pathogenic variants included BRCA1/BRCA2/PALB2 (n = 18, 5.8%), ATM (n = 9, 2.9%), CFTR (n = 4, 1.3%), EPCAM/MLH1/MSH2/MSH6/PMS2 (n = 3, 1.0%), and CDKN2A (n = 2, 0.7%). The GC team successfully contacted all patients with pathogenic variants to discuss results and offer comprehensive GC. CONCLUSION Our novel protocol facilitated GGT with excellent compliance despite limited GC resources. This framework for GGT allocates GC resources to those patients who would benefit most from GC. As we continue to expand the program, we seek to implement methods to ensure compliance with cascade testing of high-risk family members.
Collapse
Affiliation(s)
- Hannah G McDonald
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Andrew Kennedy
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Angelica L Solomon
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Chelsey M Williams
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anna M Reagan
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Emily Cassim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Megan Harper
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Erin Burke
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Terra Armstrong
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Michael Gosky
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Michael Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Prakash K Pandalai
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Mautin Barry-Hundeyin
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Reema Patel
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Snigdha Nutalapati
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jessica Moss
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Pamela C Hull
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
| | - Jill Kolesar
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | | | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
9
|
Popova LV, Garfinkle EAR, Chopyk DM, Navarro JB, Rivaldi A, Shu Y, Lomonosova E, Phay JE, Miller BS, Sattuwar S, Mullen M, Mardis ER, Miller KE, Dedhia PH. Single Nuclei Sequencing Reveals Intratumoral Cellular Heterogeneity and Replication Stress in Adrenocortical Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615695. [PMID: 39554059 PMCID: PMC11565910 DOI: 10.1101/2024.09.30.615695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis and limited treatment options. Bulk genomic characterization of ACC has not yielded obvious therapeutic or immunotherapeutic targets, yet novel therapies are needed. We hypothesized that elucidating the intratumoral cellular heterogeneity by single nuclei RNA sequencing analyses would yield insights into potential therapeutic vulnerabilities of this disease. In addition to characterizing the immune cell and fibroblast landscape, our analyses of single nuclei gene expression profiles identified an adrenal cortex cell cluster exhibiting a program of replication stress and DNA damage response in primary and metastatic ACC. In vitro assessment of replication stress and DNA damage response using an ACC cell line and a series of newly-derived hormonally active patient-derived tumor organoids revealed ATR sensitivity. These findings provide novel mechanistic insight into ACC biology and suggest that an underlying dependency on ATR may be leveraged therapeutically in advanced ACC.
Collapse
|
10
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
11
|
Rathi S, Mladek AC, Oh JH, Dragojevic S, Burgenske DM, Zhang W, Talele S, Zhang W, Bakken KK, Carlson BL, Connors MA, He L, Hu Z, Sarkaria JN, Elmquist WF. Factors Influencing the Central Nervous System (CNS) Distribution of the Ataxia Telangiectasia Mutated and Rad3-Related Inhibitor Elimusertib (BAY1895344): Implications for the Treatment of CNS Tumors. J Pharmacol Exp Ther 2024; 391:346-360. [PMID: 39284626 PMCID: PMC11493447 DOI: 10.1124/jpet.123.002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro-in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited. SIGNIFICANCE STATEMENT: This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors.
Collapse
Affiliation(s)
- Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Sonja Dragojevic
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Danielle M Burgenske
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Katrina K Bakken
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Brett L Carlson
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Margaret A Connors
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Lihong He
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Zeng Hu
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| |
Collapse
|
12
|
Lu H, Klopp‐Schulze L, Mukker JK, Li D, Kuroki Y, Bolleddula J, Terranova N, Goteti K, Gao W, Strotmann R, Dong J, Venkatakrishnan K. Asia-inclusive drug development leveraging principles of ICH E5 and E17 guidelines: Case studies illustrating quantitative clinical pharmacology as a foundational enabler. Clin Transl Sci 2024; 17:e70050. [PMID: 39445632 PMCID: PMC11500040 DOI: 10.1111/cts.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the International Conference on Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) E17 guidelines in effect from 2018, the design of Asia-inclusive multiregional clinical trials (MRCTs) has been streamlined, thereby enabling efficient simultaneous global development. Furthermore, with the recent regulatory reforms in China and its drug administration joining the ICH as a full regulatory member, early participation of China in the global clinical development of novel investigational drugs is now feasible. This would also allow for inclusion of the region in the geographic footprint of pivotal MRCTs leveraging principles of the ICH E5 and E17. Herein, we describe recent case examples of model-informed Asia-inclusive global clinical development in the EMD Serono portfolio, as applied to the ataxia telangiectasia and Rad3-related inhibitors, tuvusertib and berzosertib (oncology), the toll-like receptor 7/8 antagonist, enpatoran (autoimmune diseases), the mesenchymal-epithelial transition factor inhibitor tepotinib (oncology), and the antimetabolite cladribine (neuroimmunological disease). Through these case studies, we illustrate pragmatic approaches to ethnic sensitivity assessments and the application of a model-informed drug development toolkit including population pharmacokinetic/pharmacodynamic modeling and pharmacometric disease progression modeling and simulation to enable early conduct of Asia-inclusive MRCTs. These examples demonstrate the value of a Totality of Evidence approach where every patient's data matter for de-risking ethnic sensitivity to inter-population variations in drug- and disease-related intrinsic and extrinsic factors, enabling inclusive global development strategies and timely evidence generation for characterizing benefit/risk of the proposed dosage in Asian populations.
Collapse
Affiliation(s)
- Hong Lu
- Merck Serono (Beijing) Pharmaceutical R&D Co., Ltd.BeijingChina
| | | | | | - Dandan Li
- Merck Serono (Beijing) Pharmaceutical R&D Co., Ltd.BeijingChina
| | | | | | - Nadia Terranova
- Ares Trading S.A. (an Affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| | - Kosalaram Goteti
- EMD Serono Research and Development Institute Inc.BillericaMassachusettsUSA
| | - Wei Gao
- EMD Serono Research and Development Institute Inc.BillericaMassachusettsUSA
| | | | - Jennifer Dong
- EMD Serono Research and Development Institute Inc.BillericaMassachusettsUSA
| | | |
Collapse
|
13
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Barnieh FM, Morais GR, Loadman PM, Falconer RA, El‐Khamisy SF. Hypoxia-Responsive Prodrug of ATR Inhibitor, AZD6738, Selectively Eradicates Treatment-Resistant Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403831. [PMID: 38976561 PMCID: PMC11425890 DOI: 10.1002/advs.202403831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility. Here, ICT10336 is reported, a newly developed hypoxia-responsive prodrug of ATR inhibitor, AZD6738, which is hypoxia-activated and specifically releases AZD6738 only in hypoxic conditions, in vitro. This hypoxia-selective release of AZD6738 inhibited ATR activation (T1989 and S428 phosphorylation) and subsequently abrogated HIF1a-mediated adaptation of hypoxic cancers cells, thus selectively inducing cell death in 2D and 3D cancer models. Importantly, in normal tissues, ICT10336 is demonstrated to be metabolically stable and less toxic to normal cells than its active parent agent, AZD6738. In addition, ICT10336 exhibited a superior and efficient multicellular penetration ability in 3D tumor models, and selectively eradicated cells at the hypoxic core compared to AZD6738. In summary, the preclinical data demonstrate a new strategy of tumor-targeted delivery of ATR inhibitors with significant potential of enhancing the therapeutic index.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Goreti Ribeiro Morais
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Paul M. Loadman
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Robert A. Falconer
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
| | - Sherif F. El‐Khamisy
- Institute of Cancer TherapeuticsFaculty of Life SciencesUniversity of BradfordRichmond RoadBradfordBD7 1DPUnited Kingdom
- School of Biosciences, the Healthy Lifespan Institute and the Institute of NeuroscienceUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
15
|
Deppas JJ, Kiesel BF, Guo J, Parise RA, Clump DA, D'Argenio DZ, Bakkenist CJ, Beumer JH. Non-linear IV pharmacokinetics of the ATR inhibitor berzosertib (M6620) in mice. Cancer Chemother Pharmacol 2024; 94:271-283. [PMID: 38743253 PMCID: PMC11390321 DOI: 10.1007/s00280-024-04675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The Ataxia Telangiectasia and Rad3-related (ATR) protein complex is an apical initiator of DNA damage response pathways. Several ATR inhibitors (ATRi) are in clinical development including berzosertib (formerly M6620, VX-970). Although clinical studies have examined plasma pharmacokinetics (PK) in humans, little is known regarding dose/exposure relationships and tissue distribution. To understand these concepts, we extensively characterized the PK of berzosertib in mouse plasma and tissues. METHODS A highly sensitive LC-MS/MS method was utilized to quantitate berzosertib in plasma and tissues. Dose proportionality was assessed in female BALB/c mice following single IV doses (2, 6, 20 or 60 mg/kg). A more extensive PK study was conducted in tumor-bearing mice following a single IV dose of 20 mg/kg to evaluate distribution to tissues. PK parameters were calculated by non-compartmental analysis (NCA). A compartmental model was developed to describe the PK behavior of berzosertib. Plasma protein binding was determined in vitro. RESULTS Increased doses of berzosertib were associated with less than proportional increases in early plasma concentrations and greater than proportional increase in tissue exposure, attributable to saturation of plasma protein binding. Berzosertib extensively distributed into bone marrow, tumor, thymus, and lymph nodes, however; brain and spinal cord exposure was less than plasma. CONCLUSION The nonlinear PK of berzosertib displayed here can be attributed to saturation of plasma protein binding and occurred at concentrations close to those observed in clinical trials. Our results will help to understand preclinical pharmacodynamic and toxicity data and to inform optimal dosing and deployment of berzosertib.
Collapse
Affiliation(s)
- Joshua J Deppas
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - D Andy Clump
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Z D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Patel V, Casimiro S, Abreu C, Barroso T, de Sousa RT, Torres S, Ribeiro LA, Nogueira-Costa G, Pais HL, Pinto C, Costa L, Costa L. DNA damage targeted therapy for advanced breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:678-698. [PMID: 38966174 PMCID: PMC11220312 DOI: 10.37349/etat.2024.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.
Collapse
Affiliation(s)
- Vanessa Patel
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Tiago Barroso
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Sofia Torres
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leonor Abreu Ribeiro
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Helena Luna Pais
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Conceição Pinto
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leila Costa
- Pharmacy Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
17
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
18
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Yap TA, Tolcher AW, Plummer R, Mukker JK, Enderlin M, Hicking C, Grombacher T, Locatelli G, Szucs Z, Gounaris I, de Bono JS. First-in-Human Study of the Ataxia Telangiectasia and Rad3-Related (ATR) Inhibitor Tuvusertib (M1774) as Monotherapy in Patients with Solid Tumors. Clin Cancer Res 2024; 30:2057-2067. [PMID: 38407317 PMCID: PMC11094421 DOI: 10.1158/1078-0432.ccr-23-2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Tuvusertib (M1774) is a potent, selective, orally administered ataxia telangiectasia and Rad3-related (ATR) protein kinase inhibitor. This first-in-human study (NCT04170153) evaluated safety, tolerability, maximum tolerated dose (MTD), recommended dose for expansion (RDE), pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of tuvusertib monotherapy. PATIENTS AND METHODS Ascending tuvusertib doses were evaluated in 55 patients with metastatic or locally advanced unresectable solid tumors. A safety monitoring committee determined dose escalation based on PK, PD, and safety data guided by a Bayesian 2-parameter logistic regression model. Molecular responses (MR) were assessed in circulating tumor DNA samples. RESULTS Most common grade ≥3 treatment-emergent adverse events were anemia (36%), neutropenia, and lymphopenia (both 7%). Eleven patients experienced dose-limiting toxicities, most commonly grade 2 (n = 2) or 3 (n = 8) anemia. No persistent effects on blood immune cell populations were observed. The RDE was 180 mg tuvusertib QD (once daily), 2 weeks on/1 week off treatment, which was better tolerated than the MTD (180 mg QD continuously). Tuvusertib median time to peak plasma concentration ranged from 0.5 to 3.5 hours and mean elimination half-life from 1.2 to 5.6 hours. Exposure-related PD analysis suggested maximum target engagement at ≥130 mg tuvusertib QD. Tuvusertib induced frequent MRs in the predicted efficacious dose range; MRs were enriched in patients with radiological disease stabilization, and complete MRs were detected for mutations in ARID1A, ATRX, and DAXX. One patient with platinum- and PARP inhibitor-resistant BRCA wild-type ovarian cancer achieved an unconfirmed RECIST v1.1 partial response. CONCLUSIONS Tuvusertib demonstrated manageable safety and exposure-related target engagement. Further clinical evaluation of tuvusertib is ongoing.
Collapse
Affiliation(s)
- Timothy A. Yap
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ruth Plummer
- Newcastle University and Northern Centre for Cancer Care, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom
| | | | - Marta Enderlin
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | - Zoltan Szucs
- Merck Serono Ltd., Feltham, UK, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Ioannis Gounaris
- Merck Serono Ltd., Feltham, UK, an affiliate of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
20
|
Wang Y, Wang R, Zhao Y, Cao S, Li C, Wu Y, Ma L, Liu Y, Yao Y, Jiao Y, Chen Y, Liu S, Zhang K, Wei M, Yang C, Yang G. Discovery of Selective and Potent ATR Degrader for Exploration its Kinase-Independent Functions in Acute Myeloid Leukemia Cells. Angew Chem Int Ed Engl 2024; 63:e202318568. [PMID: 38433368 DOI: 10.1002/anie.202318568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
ATR has emerged as a promising target for anti-cancer drug development. Several potent ATR inhibitors are currently undergoing various stages of clinical trials, but none have yet received FDA approval due to unclear regulatory mechanisms. In this study, we discovered a potent and selective ATR degrader. Its kinase-independent regulatory functions in acute myeloid leukemia (AML) cells were elucidated using this proteolysis-targeting chimera (PROTAC) molecule as a probe. The ATR degrader, 8 i, exhibited significantly different cellular phenotypes compared to the ATR kinase inhibitor 1. Mechanistic studies revealed that ATR deletion led to breakdown in the nuclear envelope, causing genome instability and extensive DNA damage. This would increase the expression of p53 and triggered immediately p53-mediated apoptosis signaling pathway, which was earlier and more effective than ATR kinase inhibition. Based on these findings, the in vivo anti-proliferative effects of ATR degrader 8 i were assessed using xenograft models. The degrader significantly inhibited the growth of AML cells in vivo, unlike the ATR inhibitor. These results suggest that the marked anti-AML activity is regulated by the kinase-independent functions of the ATR protein. Consequently, developing potent and selective ATR degraders could be a promising strategy for treating AML.
Collapse
Affiliation(s)
- Yubo Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Ruonan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yanli Zhao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Sheng Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Chen Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yanjie Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Lan Ma
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Ying Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhong Yao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jiao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Yukun Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
21
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
22
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
23
|
Burris HA, Berlin J, Arkenau T, Cote GM, Lolkema MP, Ferrer-Playan J, Kalapur A, Bolleddula J, Locatelli G, Goddemeier T, Gounaris I, de Bono J. A phase I study of ATR inhibitor gartisertib (M4344) as a single agent and in combination with carboplatin in patients with advanced solid tumours. Br J Cancer 2024; 130:1131-1140. [PMID: 38287179 PMCID: PMC10991509 DOI: 10.1038/s41416-023-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Gartisertib is an oral inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), a key kinase of the DNA damage response. We aimed to determine the safety and tolerability of gartisertib ± carboplatin in patients with advanced solid tumours. METHODS This phase I open-label, multicenter, first-in-human study comprised four gartisertib cohorts: A (dose escalation [DE]; Q2W); A2 (DE; QD/BID); B1 (DE+carboplatin); and C (biomarker-selected patients). RESULTS Overall, 97 patients were enroled into cohorts A (n = 42), A2 (n = 26), B1 (n = 16) and C (n = 13). The maximum tolerated dose and recommended phase II dose (RP2D) were not declared for cohorts A or B1. In cohort A2, the RP2D for gartisertib was determined as 250 mg QD. Gartisertib was generally well-tolerated; however, unexpected increased blood bilirubin in all study cohorts precluded further DE. Investigations showed that gartisertib and its metabolite M26 inhibit UGT1A1-mediated bilirubin glucuronidation in human but not dog or rat liver microsomes. Prolonged partial response (n = 1 [cohort B1]) and stable disease >6 months (n = 3) did not appear to be associated with biomarker status. Exposure generally increased dose-dependently without accumulation. CONCLUSION Gartisertib was generally well-tolerated at lower doses; however, unexpected liver toxicity prevented further DE, potentially limiting antitumour activity. Gartisertib development was subsequently discontinued. CLINICALTRIALS GOV: NCT02278250.
Collapse
Affiliation(s)
| | - Jordan Berlin
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Gregory M Cote
- Division of Hematology and Oncology, Mass General Cancer Center, Boston, MA, USA
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Utrecht, Netherlands
- Amgen Inc., Thousand Oaks, CA, USA
| | - Jordi Ferrer-Playan
- Global Clinical Development, Ares Trading SA, an affiliate of Merck KGaA, Eysins, Switzerland
| | - Anup Kalapur
- Global Patient Safety Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Jayaprakasam Bolleddula
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | | | | | - Ioannis Gounaris
- Global Clinical Development, Merck Serono Ltd., an affiliate of Merck KGaA, Feltham, UK
| | - Johann de Bono
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Royal Marsden, Hospital, London, UK
| |
Collapse
|
24
|
Chiappa M, Guffanti F, Grasselli C, Panini N, Corbelli A, Fiordaliso F, Damia G. Different Patterns of Platinum Resistance in Ovarian Cancer Cells with Homologous Recombination Proficient and Deficient Background. Int J Mol Sci 2024; 25:3049. [PMID: 38474294 DOI: 10.3390/ijms25053049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Platinum compounds are very active in first-line treatments of ovarian carcinoma. In fact, high rates of complete remission are achieved, but most patients eventually relapse with resistant disease. Many mechanisms underlying the platinum-resistant phenotype have been reported. However, there are no data in the same isogenic cell system proficient and deficient in homologous recombination (HR) on platinum-acquired resistance that might unequivocally clarify the most important mechanism associated with resistance. We generated and characterized cisplatin (DDP)-resistant murine ovarian ID8 cell lines in a HR-deficient and -proficient background. Specific upregulation of the NER pathway in the HR-proficient and -resistant cells and partial restoration of HR in Brca1-/--resistant cells were found. Combinations of different inhibitors of the DNA damage response pathways with cisplatin were strongly active in both resistant and parental cells. The data from the ID8 isogenic system are in line with current experimental and clinical evidence and strongly suggest that platinum resistance develops in different ways depending on the cell DNA repair status (i.e., HR-proficient or HR-deficient), and the upregulation and/or restoration of repair pathways are major determinants of DDP resistance.
Collapse
Affiliation(s)
- Michela Chiappa
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Federica Guffanti
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Chiara Grasselli
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| | - Giovanna Damia
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy
| |
Collapse
|
25
|
Mao X, Lee NK, Saad SE, Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Transl Lung Cancer Res 2024; 13:375-397. [PMID: 38496700 PMCID: PMC10938103 DOI: 10.21037/tlcr-23-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Despite significant advancements in screening, diagnosis, and treatment of non-small cell lung cancer (NSCLC), it remains the primary cause of cancer-related deaths globally. DNA damage is caused by the exposure to exogenous and endogenous factors and the correct functioning of DNA damage repair (DDR) is essential to maintain of normal cell circulation. The presence of genomic instability, which results from defective DDR, is a critical characteristic of cancer. The changes promote the accumulation of mutations, which are implicated in cancer cells, but these may be exploited for anti-cancer therapies. NSCLC has a distinct genomic profile compared to other tumors, making precision medicine essential for targeting actionable gene mutations. Although various treatment options for NSCLC exist including chemotherapy, targeted therapy, and immunotherapy, drug resistance inevitably arises. The identification of deleterious DDR mutations in 49.6% of NSCLC patients has led to the development of novel target therapies that have the potential to improve patient outcomes. Synthetic lethal treatment using poly (ADP-ribose) polymerase (PARP) inhibitors is a breakthrough in biomarker-driven therapy. Additionally, promising new compounds targeting DDR, such as ATR, CHK1, CHK2, DNA-PK, and WEE1, had demonstrated great potential for tumor selectivity. In this review, we provide an overview of DDR pathways and discuss the clinical translation of DDR inhibitors in NSCLC, including their application as single agents or in combination with chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Xinru Mao
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Nung Kion Lee
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| |
Collapse
|
26
|
Javed SR, Lord S, El Badri S, Harman R, Holmes J, Kamzi F, Maughan T, McIntosh D, Mukherjee S, Ooms A, Radhakrishna G, Shaw P, Hawkins MA. CHARIOT: a phase I study of berzosertib with chemoradiotherapy in oesophageal and other solid cancers using time to event continual reassessment method. Br J Cancer 2024; 130:467-475. [PMID: 38129525 PMCID: PMC10844302 DOI: 10.1038/s41416-023-02542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Berzosertib (M6620) is a highly potent (IC50 = 19 nM) and selective, first-in-class ataxia telangiectasia-mutated and Rad3-related protein kinase (ATR) inhibitor. This trial assessed the safety, preliminary efficacy, and tolerance of berzosertib in oesophageal cancer (A1 cohort) with RT and advanced solid tumours (A2 cohort) with cisplatin and capecitabine. METHODS Single-arm, open-label dose-escalation (Time-to-Event Continual Reassessment Method) trial with 16 patients in A1 and 18 in A2. A1 tested six dose levels of berzosertib with RT (35 Gy over 15 fractions in 3 weeks). RESULTS No dose-limiting toxicities (DLTs) in A1. Eight grade 3 treatment-related AEs occurred in five patients, with rash being the most common. The highest dose (240 mg/m2) was determined as the recommended phase II dose (RP2D) for A1. Seven DLTs in two patients in A2. The RP2D of berzosertib was 140 mg/m2 once weekly. The most common grade ≥3 treatment-related AEs were neutropenia and thrombocytopenia. No treatment-related deaths were reported. CONCLUSIONS Berzosertib combined with RT is feasible and well tolerated in oesophageal cancer patients at high palliative doses. Berzosertib with cisplatin and capecitabine was well tolerated in advanced cancer. Further investigation is warranted in a phase 2 setting. CLINICAL TRIALS IDENTIFIER EU Clinical Trials Register (EudraCT) - 2015-003965-27 ClinicalTrials.gov - NCT03641547.
Collapse
Affiliation(s)
- S R Javed
- Department of Oncology, University of Oxford, Oxford, UK
| | - S Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - S El Badri
- Department of Oncology, University of Oxford, Oxford, UK
| | - R Harman
- Department of Oncology, University of Oxford, Oxford, UK
| | - J Holmes
- Primary Care Clinical Trials Unit, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - F Kamzi
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - T Maughan
- Department of Oncology, University of Oxford, Oxford, UK
| | - D McIntosh
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - S Mukherjee
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A Ooms
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - P Shaw
- Velindre University NHS Trust, Cardiff, UK
| | - M A Hawkins
- UCL Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
27
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
28
|
Lozinski M, Bowden NA, Graves MC, Fay M, Day BW, Stringer BW, Tooney PA. ATR inhibition using gartisertib enhances cell death and synergises with temozolomide and radiation in patient-derived glioblastoma cell lines. Oncotarget 2024; 15:1-18. [PMID: 38227740 DOI: 10.18632/oncotarget.28551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - Nikola A Bowden
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Moira C Graves
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - Michael Fay
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
- GenesisCare, Newcastle, NSW, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Brett W Stringer
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| |
Collapse
|
29
|
Ura A, Hayashi T, Komura K, Hosoya M, Takamochi K, Sato E, Saito S, Wakai S, Handa T, Saito T, Kato S, Suzuki K, Yao T. Copy number loss of KDM5D may be a predictive biomarker for ATR inhibitor treatment in male patients with pulmonary squamous cell carcinoma. J Pathol Clin Res 2024; 10:e350. [PMID: 37974379 PMCID: PMC10766025 DOI: 10.1002/cjp2.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
A limited number of patients with lung squamous cell carcinoma (SCC) benefit clinically from molecular targeted drugs because of a lack of targetable driver alterations. We aimed to understand the prevalence and clinical significance of lysine-specific demethylase 5D (KDM5D) copy number loss in SCC and explore its potential as a predictive biomarker for ataxia-telangiectasia and Rad3-related (ATR) inhibitor treatment. We evaluated KDM5D copy number loss in 173 surgically resected SCCs from male patients using fluorescence in situ hybridization. KDM5D copy number loss was detected in 75 of the 173 patients (43%). Genome-wide expression profiles of the transcription start sites (TSSs) were obtained from 17 SCCs, for which the cap analysis of gene expression assay was performed, revealing that upregulated genes in tumors with the KDM5D copy number loss are associated with 'cell cycle', whereas downregulated genes in tumors with KDM5D copy number loss were associated with 'immune response'. Clinicopathologically, SCCs with KDM5D copy number loss were associated with late pathological stage (p = 0.0085) and high stromal content (p = 0.0254). Multiplexed fluorescent immunohistochemistry showed that the number of tumor-infiltrating CD8+ /T-bet+ T cells was lower in SCCs with KDM5D copy number loss than in wild-type tumors. In conclusion, approximately 40% of the male patients with SCC exhibited KDM5D copy number loss. Tumors in patients who show this distinct phenotype can be 'cold tumors', which are characterized by the paucity of tumor T-cell infiltration and usually do not respond to immunotherapy. Thus, they may be candidates for trials with ATR inhibitors.
Collapse
Affiliation(s)
- Ayako Ura
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Takuo Hayashi
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazumasa Komura
- Department of UrologyOsaka Medical and Pharmaceutical UniversityOsakaJapan
- Translational Research ProgramOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Masaki Hosoya
- Department of Clinical OncologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazuya Takamochi
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Eiichi Sato
- Department of PathologyInstitute of Medical Science (Medical Research Center), Tokyo Medical UniversityTokyoJapan
| | - Satomi Saito
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Susumu Wakai
- Division of Clinical LaboratoryNational Center for Global Health and MedicineTokyoJapan
| | - Takafumi Handa
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Tsuyoshi Saito
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Shunsuke Kato
- Department of Clinical OncologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kenji Suzuki
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Takashi Yao
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | | |
Collapse
|
30
|
Nian Q, Li Y, Li J, Zhao L, Rodrigues Lima F, Zeng J, Liu R, Ye Z. U2AF1 in various neoplastic diseases and relevant targeted therapies for malignant cancers with complex mutations (Review). Oncol Rep 2024; 51:5. [PMID: 37975232 PMCID: PMC10688450 DOI: 10.3892/or.2023.8664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
U2 small nuclear RNA auxiliary factor 1 (U2AF1) is a multifunctional protein that plays a crucial role in the regulation of RNA splicing during eukaryotic gene expression. U2AF1 belongs to the SR family of splicing factors and is involved in the removal of introns from mRNAs and exon-exon binding. Mutations in U2AF1 are frequently observed in myelodysplastic syndrome, primary myelofibrosis, chronic myelomonocytic leukaemia, hairy cell leukaemia and other solid tumours, particularly in lung, pancreatic, and ovarian carcinomas. Therefore, targeting U2AF1 for therapeutic interventions may be a viable strategy for treating malignant diseases. In the present review, the pathogenic mechanisms associated with U2AF1 in different malignant diseases were summarized, and the potential of related targeting agents was discussed. Additionally, the feasibility of natural product-based therapies directed against U2AF1 was explored.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yihui Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing 100730, P.R. China
| | - Jingwei Li
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400000, P.R. China
| | - Zhijun Ye
- Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
31
|
Qu Y, Qin S, Yang Z, Li Z, Liang Q, Long T, Wang W, Zeng D, Zhao Q, Dai Z, Ni Q, Zhao F, Kim W, Hou J. Targeting the DNA repair pathway for breast cancer therapy: Beyond the molecular subtypes. Biomed Pharmacother 2023; 169:115877. [PMID: 37951025 DOI: 10.1016/j.biopha.2023.115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
DNA repair is a vital mechanism in cells that protects against DNA damage caused by internal and external factors. It involves a network of signaling pathways that monitor and transmit damage signals, activating various cellular activities to repair DNA damage and maintain genomic integrity. Dysfunctions in this repair pathway are strongly associated with the development and progression of cancer. However, they also present an opportunity for targeted therapy in breast cancer. Extensive research has focused on developing inhibitors that play a crucial role in the signaling pathway of DNA repair, particularly due to the remarkable success of PARP1 inhibitors (PARPis) in treating breast cancer patients with BRCA1/2 mutations. In this review, we summarize the current research progress and clinical implementation of BRCA and BRCAness in targeted treatments for the DNA repair pathway. Additionally, we present advancements in diverse inhibitors of DNA repair, both as individual and combined approaches, for treating breast cancer. We also discuss the clinical application of DNA repair-targeted therapy for breast cancer, including the rationale, indications, and summarized clinical data for patients with different breast cancer subtypes. We assess their influence on cancer progression, survival rates, and major adverse reactions. Last, we anticipate forthcoming advancements in targeted therapy for cancer treatment and emphasize prospective areas of development.
Collapse
Affiliation(s)
- Yuting Qu
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, Guizhou Province, 563006, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151 Chungcheongnam-do, Republic of Korea
| | - Zhihui Yang
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, Guizhou Province, 563006, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Zhuolin Li
- GuiZhou University Medical College, Guiyang, Guizhou Province 550025, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Qinhao Liang
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, Guizhou Province, 563006, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Ting Long
- Guizhou Medical University, NO.9 Beijing Road, Guiyang, Guizhou Province 550004, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Weiyun Wang
- Guizhou University of Traditional Chinese Medicine, NO.50 Shi Dong Road, Guiyang, Guizhou Province 550002, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Dan Zeng
- Guizhou Medical University, NO.9 Beijing Road, Guiyang, Guizhou Province 550004, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Qing Zhao
- Guizhou Medical University, NO.9 Beijing Road, Guiyang, Guizhou Province 550004, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Zehua Dai
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Qing Ni
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151 Chungcheongnam-do, Republic of Korea.
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China.
| |
Collapse
|
32
|
Zhang H, Kreis J, Schelhorn SE, Dahmen H, Grombacher T, Zühlsdorf M, Zenke FT, Guan Y. Mapping combinatorial drug effects to DNA damage response kinase inhibitors. Nat Commun 2023; 14:8310. [PMID: 38097586 PMCID: PMC10721915 DOI: 10.1038/s41467-023-44108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
One fundamental principle that underlies various cancer treatments, such as traditional chemotherapy and radiotherapy, involves the induction of catastrophic DNA damage, leading to the apoptosis of cancer cells. In our study, we conduct a comprehensive dose-response combination screening focused on inhibitors that target key kinases involved in the DNA damage response (DDR): ATR, ATM, and DNA-PK. This screening involves 87 anti-cancer agents, including six DDR inhibitors, and encompasses 62 different cell lines spanning 12 types of tumors, resulting in a total of 17,912 combination treatment experiments. Within these combinations, we analyze the most effective and synergistic drug pairs across all tested cell lines, considering the variations among cancers originating from different tissues. Our analysis reveals inhibitors of five DDR-related pathways (DNA topoisomerase, PLK1 kinase, p53-inducible ribonucleotide reductase, PARP, and cell cycle checkpoint proteins) that exhibit strong combinatorial efficacy and synergy when used alongside ATM/ATR/DNA-PK inhibitors.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
34
|
Schnoell J, Sparr C, Al-Gboore S, Haas M, Brkic FF, Kadletz-Wanke L, Heiduschka G, Jank BJ. The ATR inhibitor berzosertib acts as a radio- and chemosensitizer in head and neck squamous cell carcinoma cell lines. Invest New Drugs 2023; 41:842-850. [PMID: 37934325 PMCID: PMC10663216 DOI: 10.1007/s10637-023-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Alterations in the DNA damage response play a crucial role in radio- and chemoresistance of neoplastic cells. Activation of the Ataxia telangiectasia and Rad3-related (ATR) pathway is an important DNA damage response mechanism in head and neck squamous cell carcinoma (HNSCC). Berzosertib, a selective ATR inhibitor, shows promising radio- and chemosensitizing effects in preclinical studies and is well tolerated in clinical studies. The aim of this study was to elucidate the effect of berzosertib treatment in combination with radiation and cisplatin in HNSCC. The HNSCC cell lines Cal-27 and FaDu were treated with berzosertib alone and in combination with radiation or cisplatin. Cell viability and clonogenic survival were evaluated. The effect of combination treatment was evaluated with the SynergyFinder or combination index. Apoptosis was assessed via measurement of caspase 3/7 activation and migration was evaluated using a wound healing assay. Berzosertib treatment decreased cell viability in a dose-dependent manner and increased apoptosis. The IC50 of berzosertib treatment after 72 h was 0.25-0.29 µM. Combination with irradiation treatment led to a synergistic increase in radiosensitivity and a synergistic or additive decrease in colony formation. The combination of berzosertib and cisplatin decreased cell viability in a synergistic manner. Additionally, berzosertib inhibited migration at high doses. Berzosertib displays a cytotoxic effect in HNSCC at clinically relevant doses. Further evaluation of combination treatment with irradiation and cisplatin is strongly recommended in HNSCC patients as it may hold the potential to overcome treatment resistance, reduce treatment doses and thus mitigate adverse events.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Carmen Sparr
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sega Al-Gboore
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Haas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Faris F Brkic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Wei W, Shi F, Xu Y, Jiao Y, Zhang Y, Ou Q, Wu X, Yang L, Lai J. The enrichment of Fanconi anemia/homologous recombination pathway aberrations in ATM/ATR-mutated NSCLC was accompanied by unique molecular features and poor prognosis. J Transl Med 2023; 21:874. [PMID: 38041093 PMCID: PMC10690992 DOI: 10.1186/s12967-023-04634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/14/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND ATM and ATR are two critical factors to regulate DNA damage response (DDR), and their mutations were frequently observed in different types of cancer, including non-small cell lung cancer (NSCLC). Given that the majority of identified ATM/ATR mutations were variants of uncertain significance, the clinical/molecular features of pathogenic ATM/ATR aberrations have not been comprehensively investigated in NSCLC. METHODS Next-generation sequencing (NGS) analyses were conducted to investigate the molecular features in 191 NSCLC patients who harbored pathogenic/likely pathogenic ATM/ATR mutations and 308 NSCLC patients who did not have any types of ATM/ATR variants. The results were validated using an external cohort of 2727 NSCLC patients (including 48 with ATM/ATR pathogenic mutations). RESULTS Most pathogenic ATM/ATR genetic alterations were frameshift and nonsense mutations that disrupt critical domains of the two proteins. ATM/ATR-mutated patients had significantly higher tumor mutational burdens (TMB; P < 0.001) and microsatellite instabilities (MSI; P = 0.023), but not chromosomal instabilities, than those without any ATM/ATR variations. In particular, KRAS mutations were significantly enriched in ATM-mutated patients (P = 0.014), whereas BRCA2 mutations (P = 0.014), TP53 mutations (P = 0.014), and ZNF703 amplification (P = 0.008) were enriched in ATR-mutated patients. Notably, patients with ATM/ATR pathogenic genetic alterations were likely to be accompanied by mutations in Fanconi anemia (FA) and homologous recombination (HR) pathways, which were confirmed using both the study (P < 0.001) and validation (P < 0.001) cohorts. Furthermore, the co-occurrence of FA/HR aberrations could contribute to increased TMB and MSI, and patients with both ATM/ATR and FA/HR mutations tended to have worse overall survival. CONCLUSIONS Our results demonstrated the unique clinical and molecular features of pathogenic ATM/ATR mutations in NSCLC, which helps better understand the cancerous involvement of these DDR regulators, as well as directing targeted therapies and/or immunotherapies to treat ATM/ATR-mutated NSCLC, especially those with co-existing FA/HR aberrations.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Zhang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Lingyi Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350025, Fujian, China.
| |
Collapse
|
36
|
Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics 2023; 15:2433. [PMID: 37896193 PMCID: PMC10610204 DOI: 10.3390/pharmaceutics15102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| |
Collapse
|
37
|
Abel ML, Takahashi N, Peer C, Redon CE, Nichols S, Vilimas R, Lee MJ, Lee S, Shelat M, Kattappuram R, Sciuto L, Pinkiert D, Graham C, Butcher D, Karim B, Kumar Sharma A, Malin J, Kumar R, Schultz CW, Goyal S, del Rivero J, Krishnamurthy M, Upadhyay D, Schroeder B, Sissung T, Tyagi M, Kim J, Pommier Y, Aladjem M, Raffeld M, Figg WD, Trepel J, Xi L, Desai P, Thomas A. Targeting Replication Stress and Chemotherapy Resistance with a Combination of Sacituzumab Govitecan and Berzosertib: A Phase I Clinical Trial. Clin Cancer Res 2023; 29:3603-3611. [PMID: 37227187 PMCID: PMC10524218 DOI: 10.1158/1078-0432.ccr-23-0536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Despite promising preclinical studies, toxicities have precluded combinations of chemotherapy and DNA damage response (DDR) inhibitors. We hypothesized that tumor-targeted chemotherapy delivery might enable clinical translation of such combinations. PATIENTS AND METHODS In a phase I trial, we combined sacituzumab govitecan, antibody-drug conjugate (ADC) that delivers topoisomerase-1 inhibitor SN-38 to tumors expressing Trop-2, with ataxia telangiectasia and Rad3-related (ATR) inhibitor berzosertib. Twelve patients were enrolled across three dose levels. RESULTS Treatment was well tolerated, with improved safety over conventional chemotherapy-based combinations, allowing escalation to the highest dose. No dose-limiting toxicities or clinically relevant ≥grade 4 adverse events occurred. Tumor regressions were observed in 2 patients with neuroendocrine prostate cancer, and a patient with small cell lung cancer transformed from EGFR-mutant non-small cell lung cancer. CONCLUSIONS ADC-based delivery of cytotoxic payloads represents a new paradigm to increase efficacy of DDR inhibitors. See related commentary by Berg and Choudhury, p. 3557.
Collapse
Affiliation(s)
- Melissa L. Abel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda MD, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meenakshi Shelat
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Robbie Kattappuram
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Danielle Pinkiert
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Justin Malin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shubhank Goyal
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jaydira del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Deep Upadhyay
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Brett Schroeder
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tristan Sissung
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda MD, USA
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jung Kim
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Sturm MJ, Henao-Restrepo JA, Becker S, Proquitté H, Beck JF, Sonnemann J. Synergistic anticancer activity of combined ATR and ribonucleotide reductase inhibition in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2023; 149:8605-8617. [PMID: 37097390 PMCID: PMC10374484 DOI: 10.1007/s00432-023-04804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Ewing's sarcoma is a highly malignant childhood tumour whose outcome has hardly changed over the past two decades despite numerous attempts at chemotherapy intensification. It is therefore essential to identify new treatment options. The present study was conducted to explore the effectiveness of combined inhibition of two promising targets, ATR and ribonucleotide reductase (RNR), in Ewing's sarcoma cells. METHODS Effects of the ATR inhibitor VE821 in combination with the RNR inhibitors triapine and didox were assessed in three Ewing's sarcoma cell lines with different TP53 status (WE-68, SK-ES-1, A673) by flow cytometric analysis of cell death, mitochondrial depolarisation and cell cycle distribution as well as by caspase 3/7 activity determination, by immunoblotting and by real-time RT-PCR. Interactions between inhibitors were evaluated by combination index analysis. RESULTS Single ATR or RNR inhibitor treatment produced small to moderate effects, while their combined treatment produced strong synergistic ones. ATR and RNR inhibitors elicited synergistic cell death and cooperated in inducing mitochondrial depolarisation, caspase 3/7 activity and DNA fragmentation, evidencing an apoptotic form of cell death. All effects were independent of functional p53. In addition, VE821 in combination with triapine increased p53 level and induced p53 target gene expression (CDKN1A, BBC3) in p53 wild-type Ewing's sarcoma cells. CONCLUSION Our study reveals that combined targeting of ATR and RNR was effective against Ewing's sarcoma in vitro and thus rationalises an in vivo exploration into the potential of combining ATR and RNR inhibitors as a new strategy for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Max-Johann Sturm
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Julián Andrés Henao-Restrepo
- Placenta Laboratory, Department of Obstetrics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Becker
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Proquitté
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - James F Beck
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Sonnemann
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
39
|
Igarashi T, Mazevet M, Yasuhara T, Yano K, Mochizuki A, Nishino M, Yoshida T, Yoshida Y, Takamatsu N, Yoshimi A, Shiraishi K, Horinouchi H, Kohno T, Hamamoto R, Adachi J, Zou L, Shiotani B. An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress. Nat Commun 2023; 14:4991. [PMID: 37591859 PMCID: PMC10435487 DOI: 10.1038/s41467-023-40578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Marianne Mazevet
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaaki Yasuhara
- Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akifumi Mochizuki
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Nishino
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Akihide Yoshimi
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, 567-0085, Japan
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
40
|
Ricciuti B, Elkrief A, Alessi J, Wang X, Li Y, Gupta H, Muldoon DM, Bertram AA, Pecci F, Lamberti G, Federico AD, Barrichello A, Vaz VR, Gandhi M, Lee E, Shapiro GI, Park H, Nishino M, Lindsay J, Felt KD, Sharma B, Cherniack AD, Rodig S, Gomez DR, Shaverdian N, Rakaee M, Bandlamudi C, Ladanyi M, Janne PA, Schoenfeld AJ, Sholl LM, Awad MM, Cheng ML. Clinicopathologic, Genomic, and Immunophenotypic Landscape of ATM Mutations in Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:2540-2550. [PMID: 37097610 PMCID: PMC11031845 DOI: 10.1158/1078-0432.ccr-22-3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE ATM is the most commonly mutated DNA damage and repair gene in non-small cell lung cancer (NSCLC); however, limited characterization has been pursued. EXPERIMENTAL DESIGN Clinicopathologic, genomic, and treatment data were collected for 5,172 patients with NSCLC tumors which underwent genomic profiling. ATM IHC was performed on 182 NSCLCs with ATM mutations. Multiplexed immunofluorescence was performed on a subset of 535 samples to examine tumor-infiltrating immune cell subsets. RESULTS A total of 562 deleterious ATM mutations were identified in 9.7% of NSCLC samples. ATM-mutant (ATMMUT) NSCLC was significantly associated with female sex (P = 0.02), ever smoking status (P < 0.001), non-squamous histology (P = 0.004), and higher tumor mutational burden (DFCI, P < 0.0001; MSK, P < 0.0001) compared with ATM-wild-type (ATMWT) cases. Among 3,687 NSCLCs with comprehensive genomic profiling, co-occurring KRAS, STK11, and ARID2 oncogenic mutations were significantly enriched among ATMMUT NSCLCs (Q < 0.05), while TP53 and EGFR mutations were enriched in ATMWT NSCLCs. Among 182 ATMMUT samples with ATM IHC, tumors with nonsense, insertions/deletions, or splice site mutations were significantly more likely to display ATM loss by IHC (71.4% vs. 28.6%; P < 0.0001) compared with tumors with only predicted pathogenic missense mutations. Clinical outcomes to PD-(L)1 monotherapy (N = 1,522) and chemo-immunotherapy (N = 951) were similar between ATMMUT and ATMWT NSCLCs. Patients with concurrent ATM/TP53 mutations had significantly improved response rate and progression-free survival with PD-(L)1 monotherapy. CONCLUSIONS Deleterious ATM mutations defined a subset of NSCLC with unique clinicopathologic, genomic, and immunophenotypic features. Our data may serve as resource to guide interpretation of specific ATM mutations in NSCLC.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Arielle Elkrief
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joao Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xinan Wang
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Yvonne Li
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Hersh Gupta
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Daniel M. Muldoon
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arrien A. Bertram
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alessandro Di Federico
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Adriana Barrichello
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Victor R. Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Malini Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Elinton Lee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I. Shapiro
- Center for DNA Damage and Repair (CDDR), Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hyesun Park
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James Lindsay
- ImmunoProfile, Brigham & Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen D. Felt
- ImmunoProfile, Brigham & Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bijaya Sharma
- ImmunoProfile, Brigham & Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D. Cherniack
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Daniel R. Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chaitanya Bandlamudi
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pasi A. Janne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Adam J. Schoenfeld
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael L. Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Oropeza E, Seker S, Carrel S, Mazumder A, Lozano D, Jimenez A, VandenHeuvel SN, Noltensmeyer DA, Punturi NB, Lei JT, Lim B, Waltz SE, Raghavan SA, Bainbridge MN, Haricharan S. Molecular portraits of cell cycle checkpoint kinases in cancer evolution, progression, and treatment responsiveness. SCIENCE ADVANCES 2023; 9:eadf2860. [PMID: 37390209 PMCID: PMC10313178 DOI: 10.1126/sciadv.adf2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..
Collapse
Affiliation(s)
- Elena Oropeza
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sabrina Carrel
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aloran Mazumder
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniel Lozano
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Athena Jimenez
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | - Nindo B. Punturi
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Research Service, Cincinnati Veteran's Affairs Medical Center, 3200 Vine St., Cincinnati, OH, USA
| | | | | | - Svasti Haricharan
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
42
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
43
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
44
|
Priya B, Ravi S, Kirubakaran S. Targeting ATM and ATR for cancer therapeutics: inhibitors in clinic. Drug Discov Today 2023:103662. [PMID: 37302542 DOI: 10.1016/j.drudis.2023.103662] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The DNA Damage and Response (DDR) pathway ensures accurate information transfer from one generation to the next. Alterations in DDR functions have been connected to cancer predisposition, progression, and response to therapy. DNA double-strand break (DSB) is one of the most detrimental DNA defects, causing major chromosomal abnormalities such as translocations and deletions. ATR and ATM kinases recognize this damage and activate proteins involved in cell cycle checkpoint, DNA repair, and apoptosis. Cancer cells have a high DSB burden, and therefore rely on DSB repair for survival. Therefore, targeting DSB repair can sensitize cancer cells to DNA-damaging agents. This review focuses on ATM and ATR, their roles in DNA damage and repair pathways, challenges in targeting them, and inhibitors that are in current clinical trials.
Collapse
Affiliation(s)
- Bhanu Priya
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Srimadhavi Ravi
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Sivapriya Kirubakaran
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India.
| |
Collapse
|
45
|
Li S, de Camargo Correia GS, Wang J, Manochakian R, Zhao Y, Lou Y. Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:2899. [PMID: 37296863 PMCID: PMC10251928 DOI: 10.3390/cancers15112899] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC) is the most common type and is still incurable for most patients at the advanced stage. Targeted therapy is an effective treatment that has significantly improved survival in NSCLC patients with actionable mutations. However, therapy resistance occurs widely among patients leading to disease progression. In addition, many oncogenic driver mutations in NSCLC still lack targeted agents. New drugs are being developed and tested in clinical trials to overcome these challenges. This review aims to summarize emerging targeted therapy that have been conducted or initiated through first-in-human clinical trials in the past year.
Collapse
Affiliation(s)
- Shenduo Li
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| | | | - Jing Wang
- Department of Medicine, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| | - Yujie Zhao
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| |
Collapse
|
46
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
47
|
Brownlie J, Kulkarni S, Algethami M, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Targeting DNA damage repair precision medicine strategies in cancer. Curr Opin Pharmacol 2023; 70:102381. [PMID: 37148685 DOI: 10.1016/j.coph.2023.102381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
DNA repair targeted therapeutics is a promising precision medicine strategy in cancer. The development and clinical use of PARP inhibitors has transformed lives for many patients with BRCA germline deficient breast and ovarian cancer as well as platinum sensitive epithelial ovarian cancers. However, lessons learnt from the clinical use of PARP inhibitors also confirm that not all patients respond either due to intrinsic or acquired resistance. Therefore, the search for additional synthetic lethality approaches is an active area of translational and clinical research. Here, we review the current clinical state of PARP inhibitors and other evolving DNA repair targets including ATM, ATR, WEE1 inhibitors and others in cancer.
Collapse
Affiliation(s)
- Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham Hospitals, Lyndon, West Bromwich B71 4HJ, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Emad A Rakha
- Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
48
|
Li Y, Wang X, Hou X, Ma X. Could Inhibiting the DNA Damage Repair Checkpoint Rescue Immune-Checkpoint-Inhibitor-Resistant Endometrial Cancer? J Clin Med 2023; 12:jcm12083014. [PMID: 37109350 PMCID: PMC10144486 DOI: 10.3390/jcm12083014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Endometrial cancer (EC) is increasingly undermining female health worldwide, with poor survival rates for advanced or recurrent/metastatic diseases. The application of immune checkpoint inhibitors (ICIs) has opened a window of opportunity for patients with first-line therapy failure. However, there is a subset of patients with endometrial cancer who remain insensitive to immunotherapy alone. Therefore, it is necessary to develop new therapeutic agents and further explore reliable combinational strategies to optimize the efficacy of immunotherapy. DNA damage repair (DDR) inhibitors as novel targeted drugs are able to generate genomic toxicity and induce cell death in solid tumors, including EC. Recently, growing evidence has demonstrated the DDR pathway modulates innate and adaptive immunity in tumors. In this review, we concentrate on the exploration of the intrinsic correlation between DDR pathways, especially the ATM-CHK2-P53 pathway and the ATR-CHK1-WEE1 pathway, and oncologic immune response, as well as the feasibility of adding DDR inhibitors to ICIs for the treatment of patients with advanced or recurrent/metastatic EC. We hope that this review will offer some beneficial references to the investigation of immunotherapy and provide a reasonable basis for "double-checkpoint inhibition" in EC.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
49
|
Elsakrmy N, Cui H. R-Loops and R-Loop-Binding Proteins in Cancer Progression and Drug Resistance. Int J Mol Sci 2023; 24:ijms24087064. [PMID: 37108225 PMCID: PMC10138518 DOI: 10.3390/ijms24087064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
50
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|