1
|
Carvalho R, Santos L, Conde I, Leitão R, Ferreira HR, Gomes C, Silva AP, Schmitt F, Carvalho-Maia C, Lobo J, Jerónimo C, Paredes J, Ribeiro AS. Nerve growth factor inducible (VGF) is a secreted mediator for metastatic breast cancer tropism to the brain. J Pathol 2024; 264:132-147. [PMID: 39072726 DOI: 10.1002/path.6319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
Brain metastases are one of the most serious clinical problems in breast cancer (BC) progression, associated with lower survival rates and a lack of effective therapies. Thus, to dissect the early stages of the brain metastatic process, we studied the impact of brain organotropic BC cells' secretomes on the establishment of the brain pre-metastatic niche (PMN). We found that BC cells with specific tropism to the brain caused significant blood-brain barrier (BBB) disruption, as well as microglial activation, in both in vitro and in vivo models. Further, we searched for a brain-organotropic metastatic signature, as a promising source for the discovery of new biomarkers involved in brain metastatic progression. Of relevance, we identified VGF (nerve growth factor inducible) as a key mediator in this process, also impacting the BBB and microglial functions both in vitro and in vivo. In a series of human breast tumors, VGF was found to be expressed in both cancer cells and the adjacent stroma. Importantly, VGF-positive tumors showed a significantly worse prognosis and were associated with HER2 (human epidermal growth factor receptor 2) overexpression and triple-negative molecular signatures. Further clinical validation in primary tumors from metastatic BC cases showed a significant association between VGF and the brain metastatic location, clearly and significantly impacting on the prognosis of BC patients with brain metastasis. In conclusion, our study reveals a unique secretome signature for BC with a tropism for the brain, highlighting VGF as a crucial mediator in this process. Furthermore, its specific impact as a poor prognostic predictor for BC patients with brain metastasis opens new avenues to target VGF to control the progression of brain metastatic disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rita Carvalho
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Liliana Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Conde
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ricardo Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Hugo Rs Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Fernando Schmitt
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- CINTESIS@RISE, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
| | - João Lobo
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal
| | - Joana Paredes
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Li Q, Li H, Zhu R, Cho WCS, Yao X, Leung FP, Tse G, Leung LK, Wong WT. TRPV2 calcium channel promotes breast cancer progression potential by activating autophagy. Cancer Cell Int 2024; 24:324. [PMID: 39334351 PMCID: PMC11438410 DOI: 10.1186/s12935-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer, the most prevalent and aggressive tumor affecting women, requires identification of disease determinants to facilitate the development of effective therapeutic strategies. Transient receptor potential vanilloid 2 (TRPV2), an ion channel highly permeable for calcium (Ca2+), is implicated in physiological and pathological processes. Nevertheless, the role of TRPV2 in breast cancer remains poorly elucidated. In this study, we found high levels of TRPV2 expression associated with advanced malignancy, thereby suggesting its potential as a biomarker for breast cancer staging. We demonstrated that TRPV2 activation promotes breast cancer cell proliferation, migration, and invasion, while silencing of TRPV2 suppresses breast cancer progression, highlighting the oncogenic role of TRPV2. Moreover, we reveal that TRPV2 facilitates cancer progression by modulating the CaMKKβ/AMPK/ULK1-autophagic axis through mediating calcium influx, providing new insights into TRPV2 as a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Qing Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Huixian Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ruiwen Zhu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Fung Ping Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, 999077, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lai Kwok Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
3
|
Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A, Behzadifard M. Concise review: breast cancer stems cells and their role in metastases. Ann Med Surg (Lond) 2024; 86:5266-5275. [PMID: 39238997 PMCID: PMC11374310 DOI: 10.1097/ms9.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been suggested to be responsible for the development of Breast cancer (BC). The aim of this study was to evaluate BCSCs and the target organs microenvironment immunophenotyping markers in common BC metastases, and therapeutic targets regarding to the mentioned criteria. Material and methods This narrative review involved searching international databases; PubMed, Google Scholar using predetermined keywords including breast cancer, breast cancer stem cells, breast cancer metastases, immunophenotyping, immunohistochemistry and metastases. The search results were assessed based on the title, abstract, and full text of the articles, and relevant findings were included in the review. Results BCSCs express high amounts of aldehyde dehydrogenase 1 (ALDH1), Ganglioside 2 (GD2), CD44 and CD133 but are negative for CD24 marker. CXCR4 and OPN have high expression in the cells and may contribute in BC metastasis to the bone. Nestin, CK5, prominin-1 (CD133) markers in BCSCs have been reported to correlate with brain metastasis. High expression of CD44 in BCSCs and CXCL12 expression in the liver microenvironment may contribute to BC metastasis to the liver. Aberrantly expressed vascular cell adhesion molecule-1 (VCAM-1) that binds to collagen and elastin fibers on pulmonary parenchyma, and CXCR4 of BCSCs and CXCL12 in lung microenvironment may promote the cells homing and metastasis to lung. Conclusion As in various types of BC metastases different markers that expressed by the cells and target organ microenvironment are responsible, BCSCs immunophenotyping can be used as target markers to predict the disease prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Amir Atashi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
| | - Alireza Momeni
- Department of hematology and Oncology, School of Medicine
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
4
|
Türker E, Andrade Mier MS, Faber J, Padilla Padilla SJ, Murenu N, Stahlhut P, Lang G, Lamberger Z, Weigelt J, Schaefer N, Tessmar J, Strissel PL, Blunk T, Budday S, Strick R, Villmann C. Breast Tumor Cell Survival and Morphology in a Brain-like Extracellular Matrix Depends on Matrix Composition and Mechanical Properties. Adv Biol (Weinh) 2024; 8:e2400184. [PMID: 38971965 DOI: 10.1002/adbi.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Indexed: 07/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most invasive type of breast cancer with high risk of brain metastasis. To better understand interactions between breast tumors with the brain extracellular matrix (ECM), a 3D cell culture model is implemented using a thiolated hyaluronic acid (HA-SH) based hydrogel. The latter is used as HA represents a major component of brain ECM. Melt-electrowritten (MEW) scaffolds of box- and triangular-shaped polycaprolactone (PCL) micro-fibers for hydrogel reinforcement are utilized. Two different molecular weight HA-SH materials (230 and 420 kDa) are used with elastic moduli of 148 ± 34 Pa (soft) and 1274 ± 440 Pa (stiff). Both hydrogels demonstrate similar porosities. The different molecular weight of HA-SH, however, significantly changes mechanical properties, e.g., stiffness, nonlinearity, and hysteresis. The breast tumor cell line MDA-MB-231 forms mainly multicellular aggregates in both HA-SH hydrogels but sustains high viability (75%). Supplementation of HA-SH hydrogels with ECM components does not affect gene expression but improves cell viability and impacts cellular distribution and morphology. The presence of other brain cell types further support numerous cell-cell interactions with tumor cells. In summary, the present 3D cell culture model represents a novel tool establishing a disease cell culture model in a systematic way.
Collapse
Affiliation(s)
- Esra Türker
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Mateo S Andrade Mier
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Jessica Faber
- Institute of Continuum Mechanics and Biomechanics, FAU Erlangen-Nürnberg, Egerlandstr. 5, 91058, Erlangen, Germany
| | - Selma J Padilla Padilla
- Department of Biomaterials, Engineering Faculty, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447, Bayreuth, Germany
| | - Nicoletta Murenu
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Zan Lamberger
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jeanette Weigelt
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Jörg Tessmar
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Pamela L Strissel
- Institute of Pathology, Krankenhausstrasse 8-10, 91054, Erlangen, Germany
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, FAU Erlangen-Nürnberg, Universitätsstr. 21/23, 91054, Erlangen, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Silvia Budday
- Institute of Continuum Mechanics and Biomechanics, FAU Erlangen-Nürnberg, Egerlandstr. 5, 91058, Erlangen, Germany
| | - Reiner Strick
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, FAU Erlangen-Nürnberg, Universitätsstr. 21/23, 91054, Erlangen, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| |
Collapse
|
5
|
Zhang Q, Yan X, Tian TL, Wu X. Case report: outcome of anlotinib treatment in breast cancer patient with brain metastases. Front Pharmacol 2024; 15:1381478. [PMID: 39224773 PMCID: PMC11366605 DOI: 10.3389/fphar.2024.1381478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Brain metastases (BM) represent a common and severe complication of breast cancer (BC), emerging in approximately 10%-16% of all BC patients. The prevalent approach for treating BC patients with BM encompasses a multimodal strategy, combining surgery, whole brain radiation therapy, and stereotactic radiosurgery. Yet, a concrete guideline for localized treatment strategies remains elusive, while systemic treatments like small-molecule-targeted therapy and immunotherapy are still in the clinical trial phase. This case study presents a significant clinical response to anlotinib treatment in a patient with estrogen receptor-negative, progesterone receptor-positive, and human epidermal growth factor receptor 2 (HER2)-positive breast cancer, complicated by BM. After the standard first-line treatment including albumin-bound paclitaxel, trastuzumab and pertuzumab, and a second-line treatment involving pyrotinib, capecitabine, and radiotherapy did not produce the desired results, the patient was then administered anlotinib in combination with pyrotinib and letrozole as a third-line treatment, which led to a partial response (PR). The findings suggest that anti-angiogenic therapy, specifically anlotinib, could be regarded as a promising therapeutic option for BC patients with BM.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Yan
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Lun Tian
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wu
- Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Carrasco-Tenezaca F, Moreira-Dinzey J, Manrai PA, Bearse M, Burela S, Podany P, Singh K, Pareja F, Zheng J, Muscato NE, Liang Y, Zhan H, Krishnamurti U, Dolezal D, Wang J, Harigopal M. Breast Carcinoma With Tubulopapillary Features Has a Distinct Immunophenotypic and Molecular Signature: A Report of Two Tumors and Literature Review. Int J Surg Pathol 2024; 32:1037-1045. [PMID: 37908113 DOI: 10.1177/10668969231209780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Breast carcinoma with tubulopapillary features is a newly described entity associated with poor prognosis with only 14 tumors reported in the literature. We report 2 additional tumors and identify novel immunohistochemical and molecular features of the tumor. The first tumor was from a 72-year-old woman with nonmetastatic breast carcinoma and the second was from a 32-year-old woman with metastatic breast carcinoma who received neoadjuvant therapy. Both tumors had high-grade nuclear features with a distinctive morphology characterized by infiltrating open glands with intratubular papillary and micropapillary projections in >90% of the invasive carcinoma. In addition to the usual predictors of aggressive behavior, both tumors showed a high expression of p16 and SOX10, which has not been previously described. Targeted tumor sequencing revealed pathogenic variants of TP53 in both tumors, in agreement with previous reports. Prior studies have shown a correlation between p16 and SOX10 expression with high-grade features and worse prognosis; typically seen in triple-negative carcinomas as demonstrated in both of our tumors. However, not all reported tumors of breast carcinoma with tubulopapillary features have demonstrated a triple-negative profile as there are a few reports of tumors with estrogen receptor and/or human epidermal growth factor 2 expression. Due to their distinct morphologic and molecular characteristics, breast carcinoma with tubulopapillary features may represent a new breast cancer histologic subtype.
Collapse
Affiliation(s)
| | | | - Padmini A Manrai
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Mayara Bearse
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | | | - Peter Podany
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Kamaljeet Singh
- Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Nicole E Muscato
- Department of Pathology, Lawrence and Memorial Hospital, New London, CT, USA
| | - Yuanxin Liang
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Haiying Zhan
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Uma Krishnamurti
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Darin Dolezal
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Jianhui Wang
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
7
|
Yakati V, Shevde LA, Rao SS. Matrix stiffness influences response to chemo and targeted therapy in brain metastatic breast cancer cells. Biomater Sci 2024; 12:3882-3895. [PMID: 38912649 DOI: 10.1039/d4bm00342j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Breast cancer is the most common malignancy accounting for 12.5% of all newly diagnosed cancer cases across the globe. Breast cancer cells are known to metastasize to distant organs (i.e., brain), wherein they can exhibit a dormant phenotype for extended time periods. These dormant cancer cells exhibit reduced proliferation and therapeutic resistance. However, the mechanisms by which dormant cancer cells exhibit resistance to therapy, in the context of brain metastatic breast cancer (BMBC), is not well understood. Herein, we utilized hyaluronic acid (HA) hydrogels with varying stiffnesses to study drug responsiveness in dormant vs. proliferative BMBC cells. It was found that cells cultured on soft HA hydrogels (∼0.4 kPa) that showed a non-proliferative (dormant) phenotype exhibited resistance to Paclitaxel or Lapatinib. In contrast, cells cultured on stiff HA hydrogels (∼4.5 kPa) that showed a proliferative phenotype exhibited responsiveness to Paclitaxel or Lapatinib. Moreover, dormancy-associated resistance was found to be due to upregulation of the serum/glucocorticoid regulated kinase 1 (SGK1) gene which was mediated, in part, by the p38 signaling pathway. Accordingly, SGK1 inhibition resulted in a dormant-to-proliferative switch and response to therapy. Overall, our study demonstrates that matrix stiffness influences dormancy-associated therapy response mediated, in part, via the p38/SGK1 axis.
Collapse
Affiliation(s)
- Venu Yakati
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
8
|
Leena Panigrahi L, Samal P, Ranjan Sahoo S, Sahoo B, Pradhan AK, Mahanta S, Rath SK, Arakha M. Nanoparticle-mediated diagnosis, treatment, and prevention of breast cancer. NANOSCALE ADVANCES 2024; 6:3699-3713. [PMID: 39050943 PMCID: PMC11265592 DOI: 10.1039/d3na00965c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
By virtue of their advanced physicochemical properties, nanoparticles have attracted significant attention from researchers for application in diverse fields of medical science. Breast cancer, presenting a high risk of morbidity and mortality, frequently occurs in women and is considered a malignant tumor. Globally, breast cancer is considered the second leading cause of death. Accordingly, its poor prognosis, invasive metastasis, and relapse have motivated oncologists and nano-medical researchers to develop highly potent nanotherapies to cure this deadly disease. In this case, nanoparticles have emerged as responsive platforms for breast cancer management, providing new approaches to improve the diagnostic accuracy, deliver targeted therapies, and limit the progression of this disease. Recently, smart nano-carriers encapsulating drugs, ligands, and tracking probes have been developed for the specific therapy of breast cancers. Further, efforts have been devoted to developing various nano-systems with minimal toxicity. The aim of this review is to present a background on novel nanotheranostic methods that can be employed to diagnose and treat breast cancers and encourage readers to focus on the development of novel nanomedicine for breast cancers and other deadly diseases. In this context, we discuss different methods for the diagnosis, treatment, and prevention of breast cancers using different metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Pallavi Samal
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Sameer Ranjan Sahoo
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Banishree Sahoo
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Arun Kumar Pradhan
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Sailendra Mahanta
- School of Pharmacy, The Assam Kaziranga University Koraikhowa, NH-37 Jorhat Assam 785 006 India
| | - Sandip Kumar Rath
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta Georgia USA
| | - Manoranjan Arakha
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| |
Collapse
|
9
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
10
|
Wang C, Nagayach A, Patel H, Dao L, Zhu H, Wasylishen AR, Fan Y, Kendler A, Guo Z. Utilizing human cerebral organoids to model breast cancer brain metastasis in culture. Breast Cancer Res 2024; 26:108. [PMID: 38951862 PMCID: PMC11218086 DOI: 10.1186/s13058-024-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Metastasis, the spread, and growth of malignant cells at secondary sites within a patient's body, accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and the leading cause of cancer lethality in women in the United States. It is estimated that 10-16% breast cancer patients will have brain metastasis. Current therapies to treat patients with breast cancer brain metastasis (BCBM) remain palliative. This is largely due to our limited understanding of the fundamental molecular and cellular mechanisms through which BCBM progresses, which represents a critical barrier for the development of efficient therapies for affected breast cancer patients. METHODS Previous research in BCBM relied on co-culture assays of tumor cells with rodent neural cells or rodent brain slice ex vivo. Given the need to overcome the obstacle for human-relevant host to study cell-cell communication in BCBM, we generated human embryonic stem cell-derived cerebral organoids to co-culture with human breast cancer cell lines. We used MDA-MB-231 and its brain metastatic derivate MDA-MB-231 Br-EGFP, other cell lines of MCF-7, HCC-1806, and SUM159PT. We leveraged this novel 3D co-culture platform to investigate the crosstalk of human breast cancer cells with neural cells in cerebral organoid. RESULTS We found that MDA-MB-231 and SUM159PT breast cancer cells formed tumor colonies in human cerebral organoids. Moreover, MDA-MB-231 Br-EGFP cells showed increased capacity to invade and expand in human cerebral organoids. CONCLUSIONS Our co-culture model has demonstrated a remarkable capacity to discern the brain metastatic ability of human breast cancer cells in cerebral organoids. The generation of BCBM-like structures in organoid will facilitate the study of human tumor microenvironment in culture.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Aarti Nagayach
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Harsh Patel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lan Dao
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hui Zhu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amanda R Wasylishen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ziyuan Guo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Mitry MMA, Dallas ML, Boateng SY, Greco F, Osborn HMI. Selective activation of prodrugs in breast cancer using metabolic glycoengineering and the tetrazine ligation bioorthogonal reaction. Bioorg Chem 2024; 147:107304. [PMID: 38643563 DOI: 10.1016/j.bioorg.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Increasing the selectivity of chemotherapies by converting them into prodrugs that can be activated at the tumour site decreases their side effects and allows discrimination between cancerous and non-cancerous cells. Herein, the use of metabolic glycoengineering (MGE) to selectively label MCF-7 breast cancer cells with tetrazine (Tz) activators for subsequent activation of prodrugs containing the trans-cyclooctene (TCO) moiety by a bioorthogonal reaction is demonstrated. Three novel Tz-modified monosaccharides, Ac4ManNTz 7, Ac4GalNTz 8, and Ac4SiaTz 16, were used for expression of the Tz activator within sialic-acid rich breast cancer cells' surface glycans through MGE. Tz expression on breast cancer cells (MCF-7) was evaluated versus the non-cancerous L929 fibroblasts showing a concentration-dependant effect and excellent selectivity with ≥35-fold Tz expression on the MCF-7 cells versus the non-cancerous L929 fibroblasts. Next, a novel TCO-N-mustard prodrug and a TCO-doxorubicin prodrug were analyzed in vitro on the Tz-bioengineered cells to probe our hypothesis that these could be activated via a bioorthogonal reaction. Selective prodrug activation and restoration of cytotoxicity were demonstrated for the MCF-7 breast cancer cells versus the non-cancerous L929 cells. Restoration of the parent drug's cytotoxicity was shown to be dependent on the level of Tz expression where the Ac4ManNTz 7 and Ac4GalNTz 8 derivatives (20 µM) lead to the highest Tz expression and full restoration of the parent drug's cytotoxicity. This work suggests the feasibility of combining MGE and tetrazine ligation for selective prodrug activation in breast cancer.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK; Dept. of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK.
| | - Samuel Y Boateng
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK.
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK.
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD. UK.
| |
Collapse
|
12
|
Li X, Luo K, Zhang N, Chen W, Li B, Lu Z, Chen Y, Wu K. Prediction of Lymphovascular invasion status in breast cancer based on magnetic resonance imaging radiomics features. Magn Reson Imaging 2024; 109:91-95. [PMID: 38467265 DOI: 10.1016/j.mri.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE This study intended to investigate the feasibility and effectiveness of using clinical magnetic resonance imaging (MRI) radiomics features to predict lymphovascular invasion (LVI) status in breast cancer (BC) patients. METHODS A total of 182 BC patients were retrospectively collected and randomly divided into a training set (n = 127) and a validation set (n = 55) in a 7:3 ratio. Based on pathological examination results, the training set was further divided into LVI group (n = 60) and non-LVI group (n = 67), and the validation set was divided into LVI group (n = 24) and non-LVI group (n = 31). General data and MRI examination indicators were compared. Multivariate logistic regression was utilized to analyze MRI radiomics features and clinically relevant indicators that were significant in the baseline information of patients in training set, independent risk factors were identified, and a logistic regression model was built. The accuracy of logistic model was validated using ROC curves in training and validation sets. RESULTS Age, pathohistological classification, tumor length, tumor width, presence or absence of Magnetic Resonance Spectroscopy (MRS) cho peak, presence or absence of spicule sign, peritumoral enhancement, and peritumoral edema were statistically significant (P < 0.05) between the two groups. Multivariate logistic regression analysis presented that spicule and peritumoral edema were independent risk factors for LVI in BC patients (P < 0.05). The ROC curve illustrated that AUC of the logistic regression model in the training set was 0.807 (95%CI: 0.730-0.885) and that in the validation set was 0.837 (95%CI: 0.731-0.944). CONCLUSION Radiomics features of spicule sign and peritumoral edema were independent risk factors for LVI in BC patients. A logistic regression model based on these factors, along with age, could accurately predict LVI occurrence in BC patients, providing data support for diagnosis and modeling of LVI in BC patients.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kangwei Luo
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Na Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bin Li
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhendong Lu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yixian Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kangwei Wu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
13
|
Onigbinde S, Peng W, Solomon J, Adeniyi M, Nwaiwu J, Fowowe M, Daramola O, Purba W, Mechref Y. O-Glycome Profiling of Breast Cancer Cell Lines to Understand Breast Cancer Brain Metastasis. J Proteome Res 2024; 23:1458-1470. [PMID: 38483275 PMCID: PMC11299836 DOI: 10.1021/acs.jproteome.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
14
|
Wu Y, Yang F, Luo S, Li X, Gu Z, Fan R, Cao Y, Wang L, Song X. Single-cell RNA sequencing reveals epithelial cells driving brain metastasis in lung adenocarcinoma. iScience 2024; 27:109258. [PMID: 38433899 PMCID: PMC10905006 DOI: 10.1016/j.isci.2024.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Brain metastases (BM) of lung adenocarcinoma (LUAD) are the most common intracranial malignancy leading to death. However, the cellular origins and drivers of BM from LUAD have not been clarified. Cellular composition was characterized by single-cell sequencing analysis of primary lung adenocarcinoma (pLUAD), BM and lymph node metastasis (LNM) samples in GSE131907. Our study briefly analyzed the tumor microenvironment (TME), focusing on the role of epithelial cells (ECs) in BM. We have discovered a population of brain metastasis-associated epithelial cells (BMAECs) expressing SPP1, SAA1, and CDKN2A, and it has been observed that this population is mainly composed of aneuploid cells from pLUAD, playing a crucial role in brain metastasis. Our study concluded that both LNM and BM in LUAD originated from pLUAD lesions, but there is currently insufficient evidence to prove a direct association between BM lesions and LNM lesions, which provides inspiration for further investigation of the TME in BM.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Gu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Fan
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Xu D, Hu Z, Wang K, Hu S, Zhou Y, Zhang S, Chen Y, Pan T. Why does HER2-positive breast cancer metastasize to the brain and what can we do about it? Crit Rev Oncol Hematol 2024; 195:104269. [PMID: 38272149 DOI: 10.1016/j.critrevonc.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women. However, in the middle and late stages, some people develop distant metastases, which considerably lower the quality of life and life expectancy. The brain is one of the sites where metastasis frequently happens. According to epidemiological research, brain metastases occur at a late stage in 30-50% of patients with HER2-positive breast cancer, resulting in a poor prognosis. Additionally, few treatments are available for HER2-positive brain metastatic breast cancer, and the mortality rate is remarkable owing to the complexity of the brain's anatomical structure and physiological function. In this review, we described the stages of the brain metastasis of breast cancer, the relationship between the microenvironment and metastatic cancer cells, and the unique molecular and cellular mechanisms. It involves cancer cells migrating, invading, and adhering to the brain; penetrating the blood-brain barrier; interacting with brain cells; and activating signal pathways once inside the brain. Finally, we reviewed current clinically used treatment approaches for brain metastasis in HER2-positive breast cancer; summarized the traditional treatment, targeted treatment, immunotherapy, and other treatment modalities; compared the benefits and drawbacks of each approach; discussed treatment challenges; and emphasized the importance of identifying potential targets to improve patient survival rates and comprehend brain metastasis in breast cancer.
Collapse
Affiliation(s)
- Dongyan Xu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengfang Hu
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Kaiyue Wang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shiyao Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shizhen Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tao Pan
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
16
|
Kalita B, Coumar MS. Deciphering Breast Cancer Metastasis Cascade: A Systems Biology Approach Integrating Transcriptome and Interactome Insights for Target Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:148-161. [PMID: 38484298 DOI: 10.1089/omi.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.
Collapse
Affiliation(s)
- Bikashita Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
17
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
18
|
Buczek D, Zaucha R, Jassem J. Neurotoxicity-sparing radiotherapy for brain metastases in breast cancer: a narrative review. Front Oncol 2024; 13:1215426. [PMID: 38370347 PMCID: PMC10869626 DOI: 10.3389/fonc.2023.1215426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024] Open
Abstract
Breast cancer brain metastasis (BCBM) has a devastating impact on patient survival, cognitive function and quality of life. Radiotherapy remains the standard management of BM but may result in considerable neurotoxicity. Herein, we describe the current knowledge on methods for reducing radiation-induced cognitive dysfunction in patients with BCBM. A better understanding of the biology and molecular underpinnings of BCBM, as well as more sophisticated prognostic models and individualized treatment approaches, have appeared to enable more effective neuroprotection. The therapeutic armamentarium has expanded from surgery and whole-brain radiotherapy to stereotactic radiosurgery, targeted therapies and immunotherapies, used sequentially or in combination. Advances in neuroimaging have allowed more accurate screening for intracranial metastases, precise targeting of intracranial lesions and the differentiation of the effects of treatment from disease progression. The availability of numerous treatment options for patients with BCBM and multidisciplinary approaches have led to personalized treatment and improved therapeutic outcomes. Ongoing studies may define the optimal sequencing of available and emerging treatment options for patients with BCBM.
Collapse
|
19
|
Xu J, Gao F, Liu W, Guan X. Cell-cell communication characteristics in breast cancer metastasis. Cell Commun Signal 2024; 22:55. [PMID: 38243240 PMCID: PMC10799417 DOI: 10.1186/s12964-023-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/02/2023] [Indexed: 01/21/2024] Open
Abstract
Breast cancer, a highly fatal disease due to its tendency to metastasize, is the most prevalent form of malignant tumors among women worldwide. Numerous studies indicate that breast cancer exhibits a unique predilection for metastasis to specific organs including the bone, liver, lung, and brain. However, different types of, The understanding of the heterogeneity of metastatic breast cancer has notably improved with the recent advances in high-throughput sequencing techniques. Focusing on the modification in the microenvironment of the metastatic organs and the crosstalk between tumor cells and in situ cells, noteworthy research points include the identification of two distinct modes of tumor growth in bone metastases, the influence of type II pneumocyte on lung metastases, the paradoxical role of Kupffer cells in liver metastases, and the breakthrough of the blood-brain barrier (BBB) breach in brain metastases. Overall, this review provides a comprehensive overview of the characteristics of breast cancer metastases, shedding light on the pivotal roles of immune and resident cells in the development of distinct metastatic foci.
Collapse
Affiliation(s)
- Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weici Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
20
|
Liu L, Jiang D, Bai S, Zhang X, Kang Y. Research progress of exosomes in drug resistance of breast cancer. Front Bioeng Biotechnol 2024; 11:1214648. [PMID: 38239920 PMCID: PMC10794616 DOI: 10.3389/fbioe.2023.1214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/24/2023] [Indexed: 01/22/2024] Open
Abstract
Since breast cancer is a heterogeneous disease, there are currently a variety of treatment methods available, including chemotherapy, endocrine therapy, molecular targeted therapy, immunotherapy, radiation therapy, etc. Breast cancer recurrence and metastasis, despite many treatment modalities, constitute a considerable threat to patients' survival time and pose a clinical challenge that is difficult to tackle precisely. Exosomes have a very special and crucial role in the treatment of drug resistance in breast cancer as a carrier of intercellular communication in the tumor microenvironment. Exosomes and breast cancer treatment resistance have been linked in a growing number of clinical investigations in recent years. This paper covers the status of research on exosomes in the treatment of breast cancer drug resistance and offers theoretical guidance for investigating new strategies to treat breast cancer drug resistance.
Collapse
Affiliation(s)
- Lihui Liu
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shi Bai
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xinfeng Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhang Q, Hu W, Guo M, Zhang X, Zhang Q, Peng F, Yan L, Hu Z, Tangthianchaichana J, Shen Y, Hu H, Du S, Lu Y. MMP-2 Responsive Peptide Hydrogel-Based Nanoplatform for Multimodal Tumor Therapy. Int J Nanomedicine 2024; 19:53-71. [PMID: 38187906 PMCID: PMC10771791 DOI: 10.2147/ijn.s432112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Responsive drug delivery systems hold great promise for tumor treatment as they focus on therapeutic agents directly, thus minimizing systemic toxicities and drug leakage. In this study, we covalently bound a matrix metalloproteinases-2 (MMP-2) enzyme-sensitive peptide to a tissue-penetrating peptide to rationally design a MMP-2 responsive multifunctional peptide hydrogel platform (aP/IR@FMKB) for cancer photothermal-chemo-immunotherapy. The constructed aP/IR@FMKB with bufalin (BF) loaded in trimethyl chitosan nanoparticles (TB NPs), photothermal agent IR820, and immune checkpoint inhibitor aPD-L1 by self-assembly could be dissociated in the presence of MMP-2 enzyme, triggering content release. Methods TB NPs, IR820, and aPD-L1 were encapsulated by intermolecular self-assembly and enzyme-sensitive nanogels (aP/IR@FMKB) were constructed. The in vitro cytotoxicity of the blank gels and their ability to induce immunogenic cell death (ICD) in aP/IR@FMKB were evaluated using 4T1 cells. The promotion of deep tumor penetration and enzyme responsiveness was analyzed using a 3D cell model. The retention and antitumor activity at the tumor sites were examined using the primary tumor model. To assess the antitumor effect of aP/IR@FMKB induced by the immune response and its mechanism of action, recurrent tumor and distal tumor models were constructed. Results This hydrogel system demonstrated exceptional photothermal performance and displayed prolonged local retention. Furthermore, the induction of ICD through IR820 and TB NPs sensitized the PD-L1 blockade, resulting in a remarkable 3.5-fold and 5.2-fold increase in the frequency of intratumor-infiltrating CD8+ T-cells in the primary tumor and distal tumor, respectively. Additionally, this system demonstrated remarkable efficacy in suppressing primary, distal, and recurrent tumors, underscoring its potential as a highly potent therapeutic strategy. Conclusion This innovative design of the responsive hydrogel can effectively modulate the tumor immune microenvironment while also demonstrating sensitivity to the PD-1/PD-L1 blockade. This significant finding highlights the promising potential of this hydrogel in the field of multimodal tumor therapy.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Wenjun Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Mingxue Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xinyu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Qin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Fengqi Peng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Liwen Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Zucheng Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | | | - Yan Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Haiyan Hu
- School of Pharmacy, Beijing Health Vocational College, Beijing, 101100, People’s Republic of China
| | - Shouying Du
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Yang Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| |
Collapse
|
22
|
Zhang C, Zhang X, Feng C, Yang Y, Xie M, Feng Y, Wu Z, Xu H, Wu C, Ma T. Bone metastasis is a late-onset and unfavorable event in survivors of gastric cancer after radical gastrectomy: Results from a clinical observational cohort. CANCER PATHOGENESIS AND THERAPY 2024; 2:50-57. [PMID: 38188221 PMCID: PMC10768531 DOI: 10.1016/j.cpt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024]
Abstract
Background The timing and incidence of recurrent bone metastasis (BM) after radical gastrectomy in patients with gastric cancer (GC) as well as the survival of these patients were not fully understood. The aim of this study was to analyze the data of an observational GC cohort and identify patients who underwent curative gastrectomy and had recurrent BM to describe and clarify the pattern and profile of BM evolution after surgery. Methods Data were retrieved from a hospital-based GC cohort, and patients who underwent upfront radical gastrectomy were selected. The time points of specific organ metastatic events were recorded, and the person-year incidence rate of metastatic events was calculated. The latency period of BM events after gastrectomy was measured and compared with that of the other two most common metastatic events, liver metastasis (LM) and distant lymph node metastasis (LNM), using analysis of variance. Propensity score matching and subgroup analysis were used for sensitivity analysis. Results A total of 1324 GC cases underwent radical gastrectomy between January 2011 and December 2021. Of these, 67 BM, 218 LM, and 248 LNM occurred before the last follow-up. The incidence of BM events was 1.7/100 person-years, which was approximately 3-fold lower than that of LM and distant LNM events (5.5 and 6.3 per 100 person-years, respectively). BM events had a significantly longer latency (median time, 16.5 months) than LM and LNM events (11.1 and 12.0 months, respectively). Recurrent BM led to a worse prognosis (median survival, 4.5 months) than those of LM and LNM events (median survival, 7.7 and 7.1 months, respectively). However, no difference in overall survival after gastrectomy was observed among the groups. Conclusions Compared with other common metastatic events, BM in GC after gastrectomy is a late-onset event indicating poor survival. Trial registration No. ChiCTR1800019978; http://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Provincial Cancer Institute/Anhui Provincial Office for Cancer Prevention and Control, Hefei, Anhui 230022, China
| | - Xiaopeng Zhang
- Department of Noncommunicable Diseases and Health Education, Hefei Center for Disease Control and Prevention, Hefei, Anhui 230091, China
| | - Chong Feng
- Department of Noncommunicable Diseases and Health Education, Hefei Center for Disease Control and Prevention, Hefei, Anhui 230091, China
| | - Yahui Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Minmin Xie
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ying Feng
- Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Zhijun Wu
- Department of Oncology, Ma’anshan Municipal People’s Hospital, Ma’anshan, Anhui 243099, China
| | - Hui Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Provincial Cancer Institute/Anhui Provincial Office for Cancer Prevention and Control, Hefei, Anhui 230022, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| | - Tai Ma
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
23
|
Ma Y, Qi Y, Zhou Z, Yan Y, Chang J, Zhu X, Han J, Wu H, Tao Y, Fan F. Shenqi Fuzheng injection modulates tumor fatty acid metabolism to downregulate MDSCs infiltration, enhancing PD-L1 antibody inhibition of intracranial growth in Melanoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155171. [PMID: 37925891 DOI: 10.1016/j.phymed.2023.155171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Addressing brain metastases in cancer presents substantial challenges due to limited therapeutic options and high mortality rates. In clinical practice, the amalgamation of traditional Chinese medicine with other treatment modalities has exhibited noteworthy efficacy in managing disease progression and enhancing quality of life. OBJECTIVE To substantiate the regulatory effects of Shenqi Fuzheng Injection (SFI) on the microenvironment of melanoma brain metastases and appraise whether SFI augments the anti-tumour effects of immune checkpoint inhibitors, with a specific focus on investigating the mechanisms underlying SFI's actions. METHODS Initially, we established a B16-F10 brain transplant tumour model in C57BL/6 mice using a stereotaxic apparatus. The efficacy of the drug was evaluated through in vivo imaging technology, HE staining, and immunofluorescence. Mass Cytometry (CyTOF) and flow cytometry were employed to analyse the impact of SFI on immune cell subpopulations in the tumour microenvironment. Subsequently, transcriptome sequencing and metabolomics were utilised to examine the effects of SFI on melanoma-related genes and metabolism. Molecular docking, Western Blot, and ELISA assays were conducted to investigate the targets of SFI in intervening in melanoma fatty acid metabolism. Finally, the anti-tumour effects of SFI in combination with immune checkpoint inhibitors were scrutinised in the brain transplant tumour model. RESULTS The pharmacological findings demonstrated that SFI inhibits the growth of melanoma brain transplant tumours in a dose-dependent manner. CyTOF, flow cytometry, and immunofluorescence results revealed that SFI significantly diminishes the levels of Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in the tumour microenvironment while enhancing the levels of CD8+T and CD4+ T cells. Subsequently, transcriptomic and metabolomic findings, both in vitro and in vivo, indicate that SFI significantly inhibits the arachidonic acid metabolism process in melanoma cells. Molecular docking and biological experiments showed that SFI inhibits the expression of D6D and the activity of COX-2, leading to a reduction in downstream PGE2 production. Lastly, SFI significantly enhances the anti-tumour effects of PD-L1 antibody against intracranial melanoma. CONCLUSION SFI improves the tumour immune microenvironment in melanoma by intervening in fatty acid metabolism, thereby reducing levels of MDSCs and Tregs while increasing levels of CD8+ T and CD4+ T cells. Ultimately, this augmentation leads to enhanced anti-tumour effects of the immune checkpoint inhibitor PD-L1 antibody.
Collapse
Affiliation(s)
- Yue Ma
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yanan Qi
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Zhihua Zhou
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yuanyuan Yan
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jingwen Chang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xinyi Zhu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jingjing Han
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, 283 South Jiefang Road, Yancheng, Jiangsu 224005, China.
| | - Yu Tao
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
24
|
Xiao Q, Zhang W, Jing J, Zhong T, Li D, Zhou J, Liu P, Duan Z, Gao H, Shen L. Patterns of de novo metastasis and survival outcomes by age in breast cancer patients: a SEER population-based study. Front Endocrinol (Lausanne) 2023; 14:1184895. [PMID: 38027167 PMCID: PMC10657995 DOI: 10.3389/fendo.2023.1184895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background The role of age in metastatic disease, including breast cancer, remains obscure. This study was conducted to determine the role of age in patients with de novo metastatic breast cancer. Methods Breast cancer patients diagnosed with distant metastases between 2010 and 2019 were retrieved from the Surveillance, Epidemiology, and End Results database. Comparisons were performed between young (aged ≤ 40 years), middle-aged (41-60 years), older (61-80 years), and the oldest old (> 80 years) patients. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were estimated using multivariate Cox proportional hazard models. Survival analysis was performed by the Kaplan-Meier method. Results This study included 24155 (4.4% of all patients) de novo metastatic breast cancer patients. The number of young, middle-aged, older, and the oldest old patients were 195 (8.3%), 9397 (38.9%), 10224 (42.3%), and 2539 (10.5%), respectively. The 5-year OS rate was highest in the young (42.1%), followed by middle-aged (34.8%), older (28.3%), and the oldest old patients (11.8%). Multivariable Cox regression analysis showed that middle-aged (aHR, 1.18; 95% CI, 1.10-1.27), older (aHR, 1.42; 95% CI, 1.32-1.52), and the oldest old patients (aHR, 2.15; 95% CI, 1.98-2.33) had worse OS than young patients. Consistently, middle-aged (aHR, 1.16; 95% CI, 1.08-1.25), older (aHR, 1.32; 95% CI, 1.23-1.43), and the oldest old patients (aHR, 1.86; 95% CI, 1.71-2.03) had worse BCSS than young patients. Conclusion This study provided clear evidence that de novo metastatic breast cancer had an age-specific pattern. Age was an independent risk factor for mortality in patients with de novo metastatic breast cancer.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Breast and Thyroid Surgery, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weixiao Zhang
- Department of Nutrition, Chongqing Jiangbei Hospital of traditional Chinese medicine, Chongqing, China
| | - Jingfeng Jing
- Department of Breast and Thyroid Surgery, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Tingting Zhong
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
| | - Daxue Li
- Department of Breast and Thyroid Surgery, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Pan Liu
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Zhongxu Duan
- Department of Breast and Thyroid Surgery, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Han Gao
- Department of Breast and Thyroid Surgery, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Liyuan Shen
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
25
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
26
|
Li R, Dong X, Chen S, Tan J, Chen X, Liu J, Wen T, Ru X. Tn antigen promotes breast cancer metastasis via impairment of CASC4. Cell Biol Int 2023; 47:1854-1867. [PMID: 37493437 DOI: 10.1002/cbin.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
Breast cancer is one of the most serious and deadly cancers in women worldwide, with distant metastases being the leading cause of death. Tn antigen, a tumor-associated carbohydrate antigen, was frequently detected in breast cancer, but its exact role in breast cancer metastasis has not been well elucidated. Here we investigated the impact of Tn antigen expression on breast cancer metastasis and its underlying mechanisms. The expression of Tn antigen was induced in two breast cancer cell lines by deleting T-synthase or Cosmc, both of which are required for normal O-glycosylation. It showed that Tn-expressing cancer cells promoted epithelial-mesenchymal transition (EMT) and metastatic features as compared to Tn(-) control cells both in vitro and in vivo. Mechanistically, we found that cancer susceptibility candidate 4 (CASC4), a heavily O-glycosylated protein, was significantly downregulated in both Tn(+) cells. Overexpression of CASC4 suppressed Tn-induced activation of EMT and cancer metastasis via inhibition of Cdc42 signaling. Furthermore, we confirmed that O-glycosylation is essential for the functional role of CASC4 because defective O-glycosylated CASC4 (mutant CASC4, which lacks nine O-glycosylation sites) exerted marginal metastatic-suppressing effects in comparison with WT CASC4. Collectively, these data suggest that Tn-mediated aberrant O-glycosylation contributes to breast cancer metastasis via impairment of CASC4 expression and function.
Collapse
Affiliation(s)
- Ruijun Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xichen Dong
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shibin Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingyu Tan
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiangyu Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoli Ru
- Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Farina J, Angelico G, Vecchio GM, Salvatorelli L, Magro G, Puzzo L, Palicelli A, Zanelli M, Altieri R, Certo F, Spadola S, Zizzo M, Barbagallo GMV, Caltabiano R, Broggi G. Brain Metastases from Breast Cancer Histologically Exhibit Solid Growth Pattern with at Least Focal Comedonecrosis: A Histopathologic Study on a Monocentric Series of 30 Cases. Diagnostics (Basel) 2023; 13:3141. [PMID: 37835885 PMCID: PMC10572254 DOI: 10.3390/diagnostics13193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Since there are no morphological clues capable of making a pathologist suspect a possible mammary origin of a metastatic lesion without adequate clinical information, the histologic diagnosis of brain metastasis from BC is still based on the immunohistochemical expression of mammary gland markers such as GATA-3, ERs, PgRs and HER-2. The present retrospective study aimed to select purely morphological features capable of suggesting the mammary origin of a metastatic carcinoma in the brain. The following histological features were collected from a series of 30 cases of brain metastases from breast cancer: (i) a solid growth pattern; (ii) the presence of comedonecrosis; and (iii) glandular differentiation. Our results showed that most cases histologically exhibited a solid growth pattern with at least focal comedonecrosis, producing an overall morphology closely reminiscent of mammary high-grade ductal carcinoma in situ. Although the above-mentioned morphological parameters are not strictly specific to a mammary origin, they may have an important diagnostic utility for leading pathologists to suspect a possible breast primary tumor and to include GATA-3, ERs, PgRs and HER-2 in the immunohistochemical panel.
Collapse
Affiliation(s)
- Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Giada Maria Vecchio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Lidia Puzzo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| |
Collapse
|
28
|
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee MC, Yang D, Kim J, Peiris-Pagès M, Simpson KL, Dive C, Preusser M, Toland A, Kong C, Das M, Winslow MM, Pasca AM, Sage J. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol 2023; 25:1506-1519. [PMID: 37783795 PMCID: PMC11230587 DOI: 10.1038/s41556-023-01241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Siqi C Brough
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wojciech Michno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chioma J Madubata
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Peiris-Pagès
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Angus Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Sun S, Wang YH, Gao X, Wang HY, Zhang L, Wang N, Li CM, Xiong SQ. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front Bioeng Biotechnol 2023; 11:1253048. [PMID: 37771575 PMCID: PMC10523396 DOI: 10.3389/fbioe.2023.1253048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The treatment of breast cancer (BC) is a serious challenge due to its heterogeneous nature, multidrug resistance (MDR), and limited therapeutic options. Nanoparticle-based drug delivery systems (NDDSs) represent a promising tool for overcoming toxicity and chemotherapy drug resistance in BC treatment. No bibliometric studies have yet been published on the research landscape of NDDS-based treatment of BC. In this review, we extracted data from 1,752 articles on NDDS-based treatment of BC published between 2012 and 2022 from the Web of Science Core Collection (WOSCC) database. VOSviewer, CiteSpace, and some online platforms were used for bibliometric analysis and visualization. Publication trends were initially observed: in terms of geographical distribution, China and the United States had the most papers on this subject. The highest contributing institution was Sichuan University. In terms of authorship and co-cited authorship, the most prolific author was Yu Zhang. Furthermore, Qiang Zhang and co-workers have made tremendous achievements in the field of NDDS-based BC treatment. The article titled "Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications" had the most citations. The Journal of Controlled Release was one of the most active publishers in the field. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries" was the most cited reference. We also analysed "hot" and cutting-edge research for NDDSs in BC treatment. There were nine topic clusters: "tumour microenvironment," "nanoparticles (drug delivery)," "breast cancer/triple-negative breast cancer," "combination therapy," "drug release (pathway)," "multidrug resistance," "recent advance," "targeted drug delivery", and "cancer nanomedicine." We also reviewed the core themes of research. In summary, this article reviewed the application of NDDSs in the treatment of BC.
Collapse
Affiliation(s)
- Sheng Sun
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye-hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He-yong Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Chun-mei Li
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Shao-quan Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Qu F, Liu Q, Lu R, Li W. Disitamab Vedotin (RC48) combined with bevacizumab for treatment of HR-negative/HER2-positive metastatic breast cancer with liver and brain involvement: A case report. Front Oncol 2023; 13:1245701. [PMID: 37711199 PMCID: PMC10498115 DOI: 10.3389/fonc.2023.1245701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Background The overexpression of human epidermal growth factor receptor 2 (HER2) is strongly correlated with an elevated risk of developing distant metastases, particularly brain metastases, in breast cancer (BC) cases. RC48 (also known as Disitamab vedotin), represents a promising antibody-drug conjugate (ADC), that comprises three well-defined components: hertuzumab against the prominent tumor target-HER2, monomethyl auristatin E (MMAE) and a cleavable linker. Preclinical studies have demonstrated its robust antitumor activity in BC patient-derived xenograft models with HER2-positive or HER2-low expression. Additionally, antiangiogenic drugs like bevacizumab have shown potential efficacy on advanced BC via inhibiting pathological neovascularizationits. Case presentation Here, we will share our experience in treating a 49-year-old woman initially diagnosed with stage IV breast cancer characterized by hormone receptor (HR)-negativity and HER2-positivity. This complex case entailed brain and liver metastases, and the patient exhibited resistance to various HER2-targeted treatment regimens. Finally, the patient received RC48 plus bevacizumab as the advanced forth-line treatment, which was well tolerated with no observed toxicities. Subsequent radiological assessments revealed remarkable regression in the brain metastatic lesions, classified as having partial response based on the RECIST 1.1 system. The period of progression-free survival (PFS) was 7 months. Conclusion The present study underscores the efficacy of systemic treatment with RC48 in conjunction, showcasing substantial enhancement in both radiographic indicators and clinical symptomatology among patients with brain metastatic breast cancer (BMBC). More specifically, the sequential application of ADCs in combination with antiangiogenics presents a novel avenue for advancing the treatment landscape of metastatic BC.
Collapse
Affiliation(s)
- Fei Qu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Qian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Zhang X, Wang C, Yu J, Bu J, Ai F, Wang Y, Lin J, Zhu X. Extracellular vesicles in the treatment and diagnosis of breast cancer: a status update. Front Endocrinol (Lausanne) 2023; 14:1202493. [PMID: 37534210 PMCID: PMC10393036 DOI: 10.3389/fendo.2023.1202493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death in women. Currently, the treatment of breast cancer is limited by the lack of effectively targeted therapy and patients often suffer from higher severity, metastasis, and resistance. Extracellular vesicles (EVs) consist of lipid bilayers that encapsulate a complex cargo, including proteins, nucleic acids, and metabolites. These bioactive cargoes have been found to play crucial roles in breast cancer initiation and progression. Moreover, EV cargoes play pivotal roles in converting mammary cells to carcinogenic cells and metastatic foci by extensively inducing proliferation, angiogenesis, pre-metastatic niche formation, migration, and chemoresistance. The present update review mainly discusses EVs cargoes released from breast cancer cells and tumor-derived EVs in the breast cancer microenvironment, focusing on proliferation, metastasis, chemoresistance, and their clinical potential as effective biomarkers.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Caizheng Wang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fulv Ai
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Benjamin M, Malakar P, Sinha RA, Nasser MW, Batra SK, Siddiqui JA, Chakravarti B. Molecular signaling network and therapeutic developments in breast cancer brain metastasis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100079. [PMID: 36536947 PMCID: PMC7613958 DOI: 10.1016/j.adcanc.2022.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women worldwide. It has surpassed lung cancer as the leading cause of cancer-related death. Breast cancer brain metastasis (BCBM) is becoming a major clinical concern that is commonly associated with ER-ve and HER2+ve subtypes of BC patients. Metastatic lesions in the brain originate when the cancer cells detach from a primary breast tumor and establish metastatic lesions and infiltrate near and distant organs via systemic blood circulation by traversing the BBB. The colonization of BC cells in the brain involves a complex interplay in the tumor microenvironment (TME), metastatic cells, and brain cells like endothelial cells, microglia, and astrocytes. BCBM is a significant cause of morbidity and mortality and presents a challenge to developing successful cancer therapy. In this review, we discuss the molecular mechanism of BCBM and novel therapeutic strategies for patients with brain metastatic BC.
Collapse
Affiliation(s)
- Mercilena Benjamin
- Lab Oncology, Dr. B.R.A.I.R.C.H. All India Institute of Medical Sciences, New Delhi, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, West Bengal, 700103, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| |
Collapse
|
33
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Ivanova M, Porta FM, Giugliano F, Frascarelli C, Sajjadi E, Venetis K, Cursano G, Mazzarol G, Guerini-Rocco E, Curigliano G, Criscitiello C, Fusco N. Breast Cancer with Brain Metastasis: Molecular Insights and Clinical Management. Genes (Basel) 2023; 14:1160. [PMID: 37372340 DOI: 10.3390/genes14061160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer-related death among women. Brain metastases are a primary contributor to mortality, as they often go undetected until late stages due to their dormant nature. Moreover, the clinical management of brain metastases is complicated by the relevant issue of blood-brain barrier penetration. The molecular pathways involved in the formation, progression, and colonization of primary breast tumors and subsequent brain metastases are diverse, posing significant hurdles due to the heterogeneous nature of breast cancer subtypes. Despite advancements in primary breast cancer treatments, the prognosis for patients with brain metastases remains poor. In this review, we aim to highlight the biological mechanisms of breast cancer brain metastases by evaluating multi-step genetic pathways and to discuss currently available and emerging treatment strategies to propose a prospective overview of the management of this complex disease.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
35
|
Heitkamp A, Madesta F, Amberg S, Wahaj S, Schröder T, Bechstein M, Meyer L, Broocks G, Hanning U, Gauer T, Werner R, Fiehler J, Gellißen S, Kniep HC. Discordant and Converting Receptor Expressions in Brain Metastases from Breast Cancer: MRI-Based Non-Invasive Receptor Status Tracking. Cancers (Basel) 2023; 15:cancers15112880. [PMID: 37296843 DOI: 10.3390/cancers15112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Discordance and conversion of receptor expressions in metastatic lesions and primary tumors is often observed in patients with brain metastases from breast cancer. Therefore, personalized therapy requires continuous monitoring of receptor expressions and dynamic adaptation of applied targeted treatment options. Radiological in vivo techniques may allow receptor status tracking at high frequencies at low risk and cost. The present study aims to investigate the potential of receptor status prediction through machine-learning-based analysis of radiomic MR image features. The analysis is based on 412 brain metastases samples from 106 patients acquired between 09/2007 and 09/2021. Inclusion criteria were as follows: diagnosed cerebral metastases from breast cancer; histopathology reports on progesterone (PR), estrogen (ER), and human epidermal growth factor 2 (HER2) receptor status; and availability of MR imaging data. In total, 3367 quantitative features of T1 contrast-enhanced, T1 non-enhanced, and FLAIR images and corresponding patient age were evaluated utilizing random forest algorithms. Feature importance was assessed using Gini impurity measures. Predictive performance was tested using 10 permuted 5-fold cross-validation sets employing the 30 most important features of each training set. Receiver operating characteristic areas under the curves of the validation sets were 0.82 (95% confidence interval [0.78; 0.85]) for ER+, 0.73 [0.69; 0.77] for PR+, and 0.74 [0.70; 0.78] for HER2+. Observations indicate that MR image features employed in a machine learning classifier could provide high discriminatory accuracy in predicting the receptor status of brain metastases from breast cancer.
Collapse
Affiliation(s)
- Alexander Heitkamp
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Frederic Madesta
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sophia Amberg
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Schohla Wahaj
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Tanja Schröder
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Lukas Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Tobias Gauer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Helge C Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
36
|
Li X, Jing M, Dai Y, Xing X. Tumor-to-tumor metastasis: A case report of metastasis of nasopharyngeal carcinoma to meningioma and review of the literature. Medicine (Baltimore) 2023; 102:e33500. [PMID: 37058069 PMCID: PMC10101248 DOI: 10.1097/md.0000000000033500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
RATIONALE Tumor to tumor metastasis is a rare phenomenon clinically, especially tumor to meningioma metastasis. Here, we present an unusual case of metastasis of nasopharyngeal carcinoma to meningioma. PATIENT CONCERNS A 55-year-old man, with a history of nasopharyngeal carcinoma, developed neurological symptoms. DIAGNOSIS Computed tomography and magnetic resonance imaging revealed a mass on left temporoparietal lobe, indicating the presence of meningioma. The pathologist diagnosed the metastasis of nasopharyngeal carcinoma (differentiated non-keratinizing squamous cell carcinoma) to meningioma. INTERVENTIONS Chemotherapy and immunotherapy were performed following the resection. OUTCOMES The patient has been well and no relapses has been observed. LESSONS Doctors should be aware of the presence of tumor-to-tumor metastasis, which is a rare phenomenon. A positive history of primary extracranial tumor should raise the suspicion of potential tumor-to-tumor metastasis.
Collapse
Affiliation(s)
- Xue Li
- Department of Pathology, First People’s Hospital of Neijiang, Neijiang, China
| | - Min Jing
- Department of Pathology, First People’s Hospital of Neijiang, Neijiang, China
| | - Yanbo Dai
- Department of Pathology, First People’s Hospital of Neijiang, Neijiang, China
| | - Xiaoming Xing
- Department of Radiology, First People’s Hospital of Neijiang, Neijiang, China
| |
Collapse
|
37
|
Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential. Int J Mol Sci 2023; 24:ijms24087087. [PMID: 37108248 PMCID: PMC10138870 DOI: 10.3390/ijms24087087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood-brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential.
Collapse
Affiliation(s)
- Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xueyi Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yufan Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
38
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
39
|
Zhou HL, Chen DD. Prognosis of Patients With Triple-negative Breast Cancer: A Population-based Study From SEER Database. Clin Breast Cancer 2023; 23:e85-e94. [PMID: 36669957 DOI: 10.1016/j.clbc.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) was a particularly aggressive subtype of breast cancer associated with poor prognosis. This retrospective study was conducted to investigate the clinical features, prognostic factors, and benefits of surgery of patients with TNBC. METHODS From 2010 to 2015, 33654 female patients with TNBC were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. The patients were randomly divided into the training and validation cohorts. Univariate and multivariable cox regression were performed to identify prognostic factors, based on which a nomogram was constructed. Validation of the nomogram was assessed by concordance index (c-index) and calibration curves. Survival curves were plotted according to metastatic burdens and risk groups differentiated by nomogram. RESULTS Patients of younger age (<65 years old), white race, married status, lower grade, lower TNM stage and primary tumor surgery tended to have better outcome. The C-index and calibration curves displayed high discrimination in the training and validation sets (C-index 0.794 and 0.793, respectively), indicating suitable external performance of the nomogram model. Patients of bone-only metastases as well as bone and liver metastases showed superior cancer-specific survival (CSS) time if surgery of primary tumor was performed. Besides, patients of all risk groups showed better CSS when receiving surgery. CONCLUSION This study provided population-based prognostic analysis in patients with TNBC and constructed a predicting nomogram with a robust discrimination. The findings of potential benefit of surgery to CSS would shed some lights on the treatment tactics of patients with TNBC.
Collapse
Affiliation(s)
- Hong-Lu Zhou
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, People's Republic of China
| | - Dan-Dan Chen
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, People's Republic of China.
| |
Collapse
|
40
|
Hao R, Zhang L, Si Y, Zhang P, Wang Y, Li B, Hu J, Qi Y. A novel feedback regulated loop of circRRM2-IGF2BP1-MYC promotes breast cancer metastasis. Cancer Cell Int 2023; 23:54. [PMID: 36966311 PMCID: PMC10039515 DOI: 10.1186/s12935-023-02895-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with breast cancer (BC). Studies demonstrate that circular RNAs (circRNAs) were involved in BC progression, while the molecular mechanisms remain largely unclear. METHODS The microArray circRNA profiles were used to explore the differential expression circRNAs in BC and paracancerous normal tissues, and the quantitative reverse transcription-polymerase chain reaction was used to validate their expression level in clinical samples and cell lines. Nuclear/cytosolic fractionation and fluorescence in situ hybridization (FISH) assays were performed to examine circRRM2 (hsa_circ_0052582) subcellular location. The scratch wound healing and transwell assays were conducted to evaluate the impact of circRRM2 on BC cell migration and invasion. We predicted miRNAs that might bind with cricRRM2 and the downstream target genes using bioinformatics analysis and explored their expression levels and prognostic value in BC. FISH, RNA immunoprecipitation, Co-immunoprecipitation, Western blot, and rescue experiments were implemented to figure out circRRM2 function and underlying mechanisms in BC. RESULTS The present study revealed several aberrant circRNAs in BC tissues and observed that circRRM2 was upregulated in tumor tissues of 40 patients with BC. High circRRM2 was significantly associated with advanced N stage in patients with BC. Gain- and loss- of function experiments revealed that circRRM2 promoted the migration and invasion of cells and functioned as an oncogene in BC. Mechanism studies showed that circRRM2 competed with miR-31-5p/miR-27b-3p to upregulate the IGF2BP1 expression. Furthermore, IGF2BP1 upregulated the circRRM2 level via interacting with MYC, which functioned as the transcriptional factor of circRRM2. Thus, the positive feedback loop that was composed of circRRM2/IGF2BP1/MYC was identified. CONCLUSION This study confirms that upregulated circRRM2 functions an oncogenic role in BC metastasis. The positive feedback loop of circRRM2/IGF2BP1/MYC enforces the circRRM2 expression, which might offer a potential target for BC treatment.
Collapse
Affiliation(s)
- Ran Hao
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Zhang
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yangming Si
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Peng Zhang
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Military Nursing, NCO School, Army Medical University, Shijiazhuang, Hebei, China
| | - Yipeng Wang
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bangchao Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Hu
- Department of Science and Technology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yixin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
41
|
Ji J, Liu W, Xu Y, Xu Z, Lv M, Feng J, Lv J, He X, Zhang Z, Xie M, Jing A, Wang X, Ma J, Liu B. WXJ-202, a novel Ribociclib derivative, exerts antitumor effects against breast cancer through CDK4/6. Front Pharmacol 2023; 13:1072194. [PMID: 36744210 PMCID: PMC9894725 DOI: 10.3389/fphar.2022.1072194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) are key regulatory proteins in the cell division and proliferative cycle in humans. They are overactive in many malignant tumors, particularly in triple-negative breast cancer (TNBC). Inhibition of CDK4/6 targets can have anti-tumor effects. Here, we designed and synthesized a novel derivative of Ribociclib that could affect CDK4/6, named WXJ-202. This study aimed to investigate the effects of compound WXJ-202 on proliferation, apoptosis, and cell cycle arrest in human breast cancer cell lines and their molecular mechanisms. We assayed cell viability with methyl thiazolyl tetrazolium (MTT) assay. Clone formation, migration, and invasion ability were assayed by clone formation assay, wound healing assay, and transwell invasion assay. The effect of compound WXJ-202 on apoptosis and cell cycle was detected by flow cytometry analysis. Western blotting was performed to detect the expression of proteins related to the CDK4/6-Rb-E2F pathway. The anti-cancer effects were studied in vivo transplantation tumor models. WXJ-202 was shown to inhibit cell proliferation, colony formation, migration, and invasion, as well as induce apoptosis and cycle arrest in breast cancer cells. The levels of proteins related to the CDK4/6-Rb-E2F pathway, such as CDK4, CDK6, and p-Rb, were decreased. Finally, studies had shown that compound WXJ-202 exhibited significant anti-tumor activity in transplantation tumor models. In this research, the compound WXJ-202 was shown to have better anti-tumor cell proliferative effects and could be used as a potential candidate against TNBC tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiujun Wang
- *Correspondence: Xiujun Wang, ; Jinming Ma, ; Bin Liu,
| | - Jinming Ma
- *Correspondence: Xiujun Wang, ; Jinming Ma, ; Bin Liu,
| | - Bin Liu
- *Correspondence: Xiujun Wang, ; Jinming Ma, ; Bin Liu,
| |
Collapse
|
42
|
Li X, Zhang C, Wu E, Han L, Deng X, Shi Z. UPLC-Q-TOF/MS-Based Metabolomics Approach Reveals Osthole Intervention in Breast Cancer 4T1 Cells. Int J Mol Sci 2023; 24:ijms24021168. [PMID: 36674685 PMCID: PMC9861432 DOI: 10.3390/ijms24021168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Osthole (OST) is a simple coumarin derivative with pharmacological effects in many types of cancer cells. However, its role and its mechanism of action in breast cancer 4T1 cells remain unclear. In this study, we explored the effects and potential mechanisms of action of OST in 4T1 cells. The MTT, PI, and Annexin V-FITC/PI methods were used to evaluate the effects of OST-treated and untreated 4T1 cells on viability, cell cycle, and apoptosis, respectively. UPLC-Q-TOF/MS combined with multivariate data analysis was used to screen potential biomarkers relevant to the therapeutic mechanisms of OST. Additionally, mTOR, SREBP1, and FASN protein levels were detected using western blotting in OST-treated and untreated 4T1 cells. OST inhibited 4T1 cell proliferation, blocked the cells from remaining in S-phase, and induced apoptosis. In 4T1 cells, OST mainly affected the phospholipid biosynthesis, methyl histidine metabolism, pyrimidine metabolism, and β-oxidation of very long chain fatty acid pathways, suggesting that metabolic changes related to lipid metabolism-mediated signaling systems were the most influential pathways, possibly via inhibition of mTOR/SREBP1/FASN signaling. Our findings reveal biomarkers with potential therapeutic effects in breast cancer and provide insight into the therapeutic and metabolic mechanisms of OST in 4T1 cells.
Collapse
Affiliation(s)
- Xiuyun Li
- School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chenglun Zhang
- School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Enhui Wu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liang Han
- School of Health, Guangdong Light and Health Engineering R&D Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangliang Deng
- School of Chinese Medicine, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.D.); (Z.S.)
| | - Zhongfeng Shi
- School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.D.); (Z.S.)
| |
Collapse
|
43
|
Liu S, Jia Y, Chai J, Ge H, Huang R, Li A, Cheng H. A Predictive Model for the Early Death of Breast Cancer With Synchronous Liver Metastases: A Population-Based Study. Cancer Control 2023; 30:10732748231202851. [PMID: 37724916 PMCID: PMC10510350 DOI: 10.1177/10732748231202851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Breast cancer liver metastasis (BCLM) is a severe condition often resulting in early death. The identification of prognostic factors and the construction of accurate predictive models can guide clinical decision-making. METHODS A large sample of data from the Surveillance, Epidemiology, and End Results (SEER) database was analyzed, including 3711 patients diagnosed with de novo BCLM between 2010 and 2015. Predictive models were developed using histograms, and stepwise regression addressed variable collinearity. Internal validation was performed, and results were compared to similar studies. RESULTS In this study of 3711 BCLM patients, 2571 didn't have early death. Out of the 1164 who died early, 1086 had cancer-specific early death. Prognostic factors for early death, including age, race, tumor size, and lymph node involvement, were identified. A nomogram based on these factors was constructed, accurately predicting early all-cause and cancer-specific death. CONCLUSIONS Valuable insights into the prognosis of BCLM patients were provided, and important prognostic factors for early death were identified. The developed nomogram can assist clinicians in identifying high-risk patients for early death and inform treatment decisions.
Collapse
Affiliation(s)
- Shaochun Liu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yingxue Jia
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jiaying Chai
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Han Ge
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Runze Huang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Anlong Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Huaidong Cheng
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
- Shenzhen Clinical Medical School of Southern Medical University
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
44
|
Kondapaneni RV, Shevde LA, Rao SS. A Biomimetic Hyaluronic Acid Hydrogel Models Mass Dormancy in Brain Metastatic Breast Cancer Spheroids. Adv Biol (Weinh) 2023; 7:e2200114. [PMID: 36354182 DOI: 10.1002/adbi.202200114] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Approximately 90% of breast cancer related mortalities are due to metastasis to distant organs. At the metastatic sites, cancer cells are capable of evading death by exhibiting cellular or mass dormancy. However, the mechanisms involved in attaining dormancy at the metastatic site are not well understood. This is partly due to the lack of experimental models to study metastatic site-specific interactions, particularly in the context of brain metastatic breast cancer (BMBC). Herein, an in vitro hyaluronic acid (HA) hydrogel-based model is developed to study mass dormancy in BMBC. HA hydrogels with a stiffness of ≈0.4 kPa are utilized to mimic the brain extracellular matrix. MDA-MB-231Br or BT474Br3 BMBC spheroids are prepared and cultured on top of HA hydrogels or in suspension for 7 days. HA hydrogel induced a near mass dormant state in spheroids by achieving a balance between proliferating and dead cells. In contrast, these spheroids displayed growth in suspension cultures. The ratio of %p-ERK to %p-p38 positive cells is significantly lower in HA hydrogels compared to suspension cultures. Further, it is demonstrated that hydrogel induced mass dormant state is reversible. Overall, such models provide useful tools to study dormancy in BMBC and could be employed for drug screening.
Collapse
Affiliation(s)
- Raghu Vamsi Kondapaneni
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
45
|
Li Z, Shi Y, Wu L, Zhang H, Xue J, Li W, Wang X, Zhang L, Wang Q, Duo L, Wang M, Wang G. Establishment and verification of a nomogram to predict tumor-specific mortality risk in triple-negative breast cancer: a competing risk model based on the SEER cohort study. Gland Surg 2022; 11:1961-1975. [PMID: 36654948 PMCID: PMC9840986 DOI: 10.21037/gs-22-650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the worst prognosis, and traditional survival analysis methods are biased when predicting mortality. To predict the risk of death in patients with triple-negative breast cancer more precisely, a competing risk model was developed. Methods The clinicopathological data of the TNBC patients from 2010 to 2015 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. The data were assigned into a training set and testing set at a ratio of 7:3 in a randomized pattern. Univariate and multivariate competing risk models were applied to find the independent prognostic factors. A prediction nomogram for cancer-specific mortality (CSM) risk was constructed. The accuracy and discrimination of the nomogram were assessed using receiver operating characteristic (ROC) area under the curve (AUC), concordance index (C-index), and a calibration curve using the training and testing sets, respectively. Results A total of 28,430 TNBC patients were randomly grouped into the training set (n=19,900) and the testing set (n=8,530). The median time for follow-up was 59 [1-107] months. A total of 7,014 (24.67%) patients died, among whom 4,801 (68.45%) died from breast cancer and 2,213 (31.55%) due to non-breast cancer events. The independent risk factors were primary site of tumor, grade, tumor-node-metastasis (TNM) stage, T stage, approach of surgery, chemotherapy, axillary lymph node metastases, brain metastases, and liver metastases. The prediction nomogram was constructed by using the aforementioned variables. The 1-, 3-, and 5-year AUC of CSM were predicted to be 0.856, 0.81, and 0.782, respectively, in the training set, and 0.856, 0.81, and 0.782 in the testing set, respectively. The C-index of the nomogram was 0.801 and 0.799 in the training and testing sets, respectively. As confirmed by the validation and training calibration curves, the nomogram was consistent with the results. Conclusions We used competing risk models to identify risk factors for CSM and constructed a CSM risk prediction nomogram for TNBC patients, that may be utilized to predict CSM risk in TNBC patients clinically and assist in the creation of individualised clinical treatment options.
Collapse
Affiliation(s)
- Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China;,Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China;,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun Shi
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lihua Wu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiapeng Xue
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenfang Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ligen Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Long Duo
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
46
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
47
|
Klaas E, Mohamed S, Poe J, Reddy R, Dagra A, Lucke-Wold B. Innovative Approaches for Breast Cancer Metastasis to the Brain. ARCHIVES OF MEDICAL CASE REPORTS AND CASE STUDY 2022; 6:147. [PMID: 36468085 PMCID: PMC9717593 DOI: 10.31579/2692-9392/147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Breast cancer metastasis is a continued concern for patients with recent development in our understanding of disease progression. In this paper, we highlight the pathophysiology behind breast cancer metastasis. Blood brain barrier disruption plays a critical component in progression. We then investigate the current treatment strategies and recommended guidelines. This focuses on radiation and medical management. Finally, we address the role of surgical intervention. The data is organized into tables and figures to highlight key components. Finally, we address emerging treatments and pre-clinical data. The paper will serve as a user-friendly guide for clinicians and researchers to help formulate a strategy to manage breast cancer metastasis patients sufficiently.
Collapse
Affiliation(s)
| | | | - Jordan Poe
- College of Medicine, University of Florida
| | | | | | | |
Collapse
|
48
|
Lorusso G, Wyss CB, Kuonen F, Vannini N, Billottet C, Duffey N, Pineau R, Lan Q, Wirapati P, Barras D, Tancredi A, Lyck R, Lehr HA, Engelhardt B, Delorenzi M, Bikfalvi A, Rüegg C. Connexins orchestrate progression of breast cancer metastasis to the brain by promoting FAK activation. Sci Transl Med 2022; 14:eaax8933. [PMID: 36070364 DOI: 10.1126/scitranslmed.aax8933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Christof B Wyss
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - François Kuonen
- Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research (LICR), Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Epalinges 1066, Switzerland
| | | | - Nathalie Duffey
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Raphael Pineau
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Qiang Lan
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - David Barras
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Alessandro Tancredi
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Hans-Anton Lehr
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Andreas Bikfalvi
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Curzio Rüegg
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
49
|
Joun I, Nixdorf S, Deng W. Advances in lipid-based nanocarriers for breast cancer metastasis treatment. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:893056. [PMID: 36062261 PMCID: PMC9433809 DOI: 10.3389/fmedt.2022.893056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer (BC) is the most common cancer affecting women worldwide, with over 2 million women diagnosed every year, and close to 8 million women currently alive following a diagnosis of BC in the last 5-years. The side effects such as chemodrug toxicity to healthy tissues and drug resistance severely affect the quality of life of BC patients. To overcome these limitations, many efforts have been made to develop nanomaterial-based drug delivery systems. Among these nanocarriers, lipid-based delivery platforms represented one of the most successful candidates for cancer therapy, improving the safety profile and therapeutic efficacy of encapsulated drugs. In this review we will mainly discuss and summarize the recent advances in such delivery systems for BC metastasis treatment, with a particular focus on targeting the common metastatic sites in bone, brain and lung. We will also provide our perspectives on lipid-based nanocarrier development for future clinical translation.
Collapse
Affiliation(s)
- Ingrid Joun
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Sheri Nixdorf
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Deng
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
- *Correspondence: Wei Deng
| |
Collapse
|
50
|
Cioce M, Sacconi A, Donzelli S, Bonomo C, Perracchio L, Carosi M, Telera S, Fazio VM, Botti C, Strano S, Blandino G. Breast cancer metastasis: is it a matter of OMICS and proper ex-vivo models? Comput Struct Biotechnol J 2022; 20:4003-4008. [PMID: 35983233 PMCID: PMC9355905 DOI: 10.1016/j.csbj.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Genomics has greatly increased the understanding of the study of breast cancer (BC) and has shaped the concept of intra-tumor heterogeneity, currently recognized as a propelling force for cancer progression. In this context, knowledge and understanding of metastatic breast cancer (mBC) has somehow lagged behind that of primary breast cancer. This may be explained by the relative scarcity of matched mBC samples, however it is possible that the mutation spectrum obtained from primary BC does not capture the full complexity of the metastatic disease. Here, we provide a few examples supporting this possibility, from public databases. We evoke the need to perform an integrated multi-OMICS characterization of mBC, to obtain a broad understanding of this complex disease, whose evolution cannot be explained solely by genomics. Pertinent to this, we suggest that rather an infrequent use of Patient-Derived –Tumor-Organoids (PDTOs) may be influenced by assuming that the metastatic conditions of PDTOs growth (mPDTOs) should be similar to those of the tissue of origin. We challenge this view by suggesting that the use of “target-organ inspired” growth conditions for mPDTOs, may better fit the emerging knowledge of metastatic disease. Thus, the integrated use of multi-OMICS and of clinically relevant mPDTOs may allow a further understanding of such disease and foster therapeutically relevant advances. We believe that our points may be valid for other solid cancers.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Bonomo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Telera
- Neurosurgery Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Claudio Botti
- Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Corresponding author at: Translational Oncology Research UnitItalian National Cancer Institute Regina Elena Rome, Italy.
| |
Collapse
|