1
|
Wang T, Yao Y, Gao X, Luan H, Wang X, Liu L, Sun C. Genetic association of lipids and lipid-lowering drug target genes with breast cancer. Discov Oncol 2025; 16:331. [PMID: 40095250 PMCID: PMC11914663 DOI: 10.1007/s12672-025-02041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Although several preclinical and epidemiological studies have shown that blood lipids and lipid-lowering drugs can reduce the risk of breast cancer, this finding remains controversial. This study aimed to explore the causal relationship between dyslipidemia,lipid-lowering drugs, and breast cancer. We also aimed to evaluate the potential impact of lipid-lowering drug targets on breast cancer. METHOD Data of 431 lipid- and lipid-related phenotypes were obtained from genome-wide association study (GWAS), and mendelian randomization (MR) analyses were performed using two independent breast cancer datasets as endpoints. Genetic variants associated with genes encoding lipid-lowering drug targets were extracted from the Global Lipid Genetics Consortium. Expression quantitative trait loci data in relevant tissues were used to further validate lipid-lowering drug targets that reached significance and combined with bioinformatics approaches for molecular expression and prognostic exploration. Further mediation analyses were performed to explore potential mediators. RESULT In two independent datasets, phosphatidylcholine (18:1_0:0 levels) was associated with breast cancer risk (discovery: odds ratio (OR) = 1.255 [95% confidence interval (CI) 1.120-1.406]; p = 8.936 × 10-5, replication: OR = 1.016 [95% CI, 1.003-1.030]; p = 0.017), HMG- CoA reductase (HMGCR) inhibition was genetically modeled and associated with a reduced risk of breast cancer (discovery: OR = 0.833 [95% CI 0.752-0.923], p = 5.12 × 10-4; replication: OR = 0.975 [95% CI 0.960-0.990], p = 1.65 × 10-3). There was a significant MR correlation between HMGCR expression in whole blood and breast cancer (OR = 1.11 [95% 1.01-1.22] p = 0.04). Bioinformatics analysis revealed that HMGCR expression higher in breast cancer tissues than in normal tissues, along with poor overall survival and relapse-free survival, and was associated with multiple immune cell infiltration. Finally, the mediation analysis showed that HMGCR inhibitors affected breast cancer through different immune cell phenotypes and C-reactive protein levels. CONCLUSION In this study, we found for the first time that phosphatidylcholine (18:1_0:0) levels are associated with breast cancer risk. We found that HMGCR inhibitors are associated with a reduced risk of breast cancer, and part of their action may be through pathways other than lipid-lowering, including modulation of immune function and reduction of inflammation represented by C-reactive protein levels.
Collapse
Affiliation(s)
- Tianhua Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xinhai Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Luan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Lijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
2
|
Atale N, Wells A. Statins as Secondary Preventive Agent to Limit Breast Cancer Metastatic Outgrowth. Int J Mol Sci 2025; 26:1300. [PMID: 39941069 PMCID: PMC11818786 DOI: 10.3390/ijms26031300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is a leading cause of mortality in breast cancer, as metastatic disease is often aggressive and resistant to conventional treatments. Cancer cells that spread to distant organs can enter a dormant phase for extended periods, sometimes years or decades. During this dormant phase, cancer cells avoid immune and pharmacological response. Thus, new approaches are needed to prevent these disseminated cells from becoming lethal cancers. Statins are known inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase that have been extensively used in patients with cardiovascular diseases to lower cholesterol. However, recent research has demonstrated their potential in anticancer therapies. Epidemiological evidence suggests that statins are associated with a reduction in breast cancer-specific mortality, although they do not appear to affect the incidence of primary tumors. In this review, we discuss the role of statins in metastasis and dormancy, their cytocidal and cytostatic effects and their interactions with different cell types in the tumor microenvironment. The exact mechanisms by which statins reduce mortality without influencing primary tumor growth remain unclear, also warranting further investigation into their potential role in metastasis and tumor dormancy, which could ultimately help patients to improve survival and quality of life.
Collapse
Affiliation(s)
- Neha Atale
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Alan Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Research and Development Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- Cell Biology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Jiang X, Wang M, Cui G, Wu Y, Wei Z, Yu S, Wang A, Zou W, Pan Y, Li X, Lu Y. Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156344. [PMID: 39729781 DOI: 10.1016/j.phymed.2024.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood. PURPOSE Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR. This investigation seeks to elucidate the role and mechanisms through which TMP counteracts MDR by attenuating CSC-like characteristics. METHODS Various assays, including flow cytometry, sphere formation, and Western blotting, were employed to evaluate TMP's effects on breast cancer stem cell (BCSC)-like phenotypes in vitro. In vivo, extreme limiting dilution assays and immunohistochemistry (IHC) were executed to assess the impacts of TMP on BCSC frequency and the levels of stemness markers. Mechanistically, RNA sequencing was performed to uncover the key biological processes involved in TMP's effects on BCSCs. Further experiments, encompassing micro scale thermophoresis (MST), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and amino acid mutation analyses, were utilized to identify the essential targets and corresponding binding sites of TMP. Finally, the effects of TMP on BCSC-like phenotypes were confirmed using cells with mutated amino acid residues, which allowed us to investigate the specificity of TMP's binding sites. To further evaluate the impact of TMP on drug resistance, doxorubicin-resistant MCF7 (MCF-7ADR) cells, along with corresponding cell lines harboring mutated amino acid residues, were employed. RESULTS TMP was found to inhibit BCSC-like properties both in vitro and in vivo, evidenced by a reduction in the CD44+/CD24- population, sphere formation capability, and expression of stemness markers. Mechanistic studies revealed that TMP targets 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. TMP binds to Asp-767 of HMGCR, thereby inhibiting its activity and reducing cholesterol synthesis. The influence of TMP on BCSC-like phenotypes was nullified by overexpression of wild-type HMGCR, while mutations in the binding site of HMGCR had no effect on TMP's inhibition of BCSC-like properties. Additionally, TMP mitigated MDR by targeting HMGCR. CONCLUSION These findings suggest that TMP alleviates MDR by reducing BCSC-like traits through targeting HMGCR and disruption of cholesterol biosynthesis in BC. This provides new insights into the mechanisms through which TMP alleviates MDR and offers new lead compound for exploring HMCGR antagonists.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Manli Wang
- The first Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guoliang Cui
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Suyun Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yanhong Pan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Gao K, Zhou T, Yin Y, Sun X, Jiang H, Li T. Atorvastatin inhibits glioma glycolysis and immune escape by modulating the miR-125a-5p/TXLNA axis. Hereditas 2024; 161:54. [PMID: 39726023 DOI: 10.1186/s41065-024-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Conventional treatments, including surgery, radiotherapy and chemotherapy, have many limitations in the prognosis of glioma patients. Atorvastatin (ATOR) has a significant inhibitory effect on glioma malignancy. Thus, ATOR may play a key role in the search for new drugs for the effective treatment of gliomas. METHODS U87 cells were treated with different doses of ATOR and transfected. Viability was assessed using MTT, proliferative ability was determined using the colony formation test, Bax and Bcl-2 were identified using Western blot, apoptosis was identified using flow cytometry, and U87 cell migration and invasion were detected using the Transwell assay. Glucose uptake, lactate secretion, and ATP production in U87 cell culture medium were quantified. The positive rates of IFN-γ and TNF-α in CD8T were measured through flow cytometry. Subcutaneous injection of U87 cells was carried out to construct an in vivo mouse model of gliom, followed by HE staining to assess the effects of ATOR and miR-125a-5p on tumor development. RESULTS ATOR blocked the viability, proliferation, migration, and invasion of U87 cells through the miR-125a-5p/TXLNA axis, and suppressed glycolysis and immune escape of glioma cells. Furthermore, overexpressing miR-125a-5p enhanced the anti-tumor effect of ATOR in vivo. CONCLUSION ATOR blocks glioma progression by modulating the miR-125a-5p/TXLNA axis, further demonstrating that ATOR provides an effective therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Kang Gao
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - Tao Zhou
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - YingChun Yin
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China
| | - XiaoJie Sun
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China
| | - HePing Jiang
- Department of Neurosurgery, Central Hospital of Zibo, Zibo City, Shandong Province, 255000, China
| | - TangYue Li
- Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China.
| |
Collapse
|
5
|
Anand S, Patel TN. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discov Oncol 2024; 15:779. [PMID: 39692821 DOI: 10.1007/s12672-024-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The progressive globalization of sedentary lifestyles and diets rich in lipids and processed foods has caused two major public health hazards-diabetes and obesity. The strong interlink between obesity and type 2 diabetes mellitus and their combined burden encompass them into a single term 'Diabesity'. They have also been tagged as the drivers for the onset of cancer. The clinical association between diabetes, obesity, and several types of human cancer demands an assessment of vital junctions correlating the three. This review focuses on revisiting the molecular axis linking diabetes and obesity to cancer through pathways that get imbalanced owing to metabolic upheaval. We also attempt to describe the functional disruptions of DNA repair mechanisms due to overwhelming oxidative DNA damage caused by diabesity. Genomic instability, a known cancer hallmark results when DNA repair does not work optimally, and as will be inferred from this review the obtruded metabolic homeostasis in diabetes and obesity creates a favorable microenvironment supporting metabolic reprogramming and enabling malignancies. Altered molecular and hormonal landscapes in these two morbidities provide a novel connection between metabolomics and oncogenesis. Understanding various aspects of the tumorigenic process in diabesity-induced cancers might help in the discovery of new biomarkers and prompt targeted therapeutic interventions.
Collapse
Affiliation(s)
- Shrikirti Anand
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
7
|
Lalchandani DS, Chenkual L, Sonpasare K, Rajdev B, Naidu VGM, Chella N, Porwal PK. Optimization of atorvastatin and quercetin-loaded solid lipid nanoparticles using Box-Behnken design. Nanomedicine (Lond) 2024; 19:1541-1555. [PMID: 39012199 PMCID: PMC11321401 DOI: 10.1080/17435889.2024.2364585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: The study explores the synergistic potential of atorvastatin (ATR) and quercetin (QUER)- loaded solid lipid nanoparticles (SLN) in combating breast cancer. Materials & methods: SLNs were synthesized using a high-shear homogenization method and optimized using Box-Behnken design. The SLNs were characterized and evaluated for their in vitro anticancer activity. Results: The optimized SLN exhibited narrow size distribution (PDI = 0.338 ± 0.034), a particle size of 72.5 ± 6.5 nm, higher entrapment efficiency (<90%), sustained release and spherical surface particles. The in vitro cytotoxicity studies showed a significant reduction in IC50 values on MDA-MB-231 cell lines. Conclusion: We report a novel strategy of repurposing well-known drugs and encapsulating them into SLNs as a promising drug-delivery system against breast cancer.
Collapse
Affiliation(s)
- Dimple S. Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Laltanpuii Chenkual
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Kailas Sonpasare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - VGM Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| |
Collapse
|
8
|
Yang C, Li L, Ye Z, Zhang A, Bao Y, Wu X, Ren G, Jiang C, Wang O, Wang Z. Mechanisms underlying neutrophils adhesion to triple-negative breast cancer cells via CD11b-ICAM1 in promoting breast cancer progression. Cell Commun Signal 2024; 22:340. [PMID: 38907234 PMCID: PMC11191284 DOI: 10.1186/s12964-024-01716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood. METHODS Clinical data were analyzed to investigate the role of neutrophils in breast cancer. In vivo mouse model and in vitro co-culture system were used for mechanism researches. Blocking experiments were further performed to identify therapeutic agents against TNBC. RESULTS TNBC cells secreted GM-CSF to sustain the survival of mature neutrophils and upregulated CD11b expression. Through CD11b, neutrophils specifically binded to ICAM1 on TNBC cells, facilitating adhesion. Transcriptomic sequencing combined with human and murine functional experiments revealed that neutrophils, through direct CD11b-ICAM1 interactions, activated the MAPK signaling pathway in TNBC cells, thereby enhancing tumor cell invasion and migration. Atorvastatin effectively inhibited ICAM1 expression in tumor cells, and tumor cells with ICAM1 knockout or treated with atorvastatin were unresponsive to neutrophil activation. The MAPK pathway and MMP9 expression were significantly inhibited in the tumor tissues of TNBC patients treated with atorvastatin. CONCLUSIONS Targeting CD11b-ICAM1 with atorvastatin represented a potential clinical approach to reduce the malignant characteristics of TNBC.
Collapse
Affiliation(s)
- Chenghui Yang
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Lili Li
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Zhiqiang Ye
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Anqi Zhang
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Yunjia Bao
- First Clinical College of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Xue Wu
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Guohong Ren
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Chao Jiang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310005, P. R. China
| | - Ouchen Wang
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China.
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
| |
Collapse
|
9
|
Glebavičiūtė G, Vijaya AK, Preta G. Effect of Statin Lipophilicity on the Proliferation of Hepatocellular Carcinoma Cells. BIOLOGY 2024; 13:455. [PMID: 38927335 PMCID: PMC11200858 DOI: 10.3390/biology13060455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The HMG-CoA reductase inhibitors, statins, are drugs used globally for lowering the level of cholesterol in the blood. Different clinical studies of statins in cancer patients have indicated a decrease in cancer mortality, particularly in patients using lipophilic statins compared to those on hydrophilic statins. In this paper, we selected two structurally different statins (simvastatin and pravastatin) with different lipophilicities and investigated their effects on the proliferation and apoptosis of hepatocellular carcinoma cells. Lipophilic simvastatin highly influences cancer cell growth and survival in a time- and concentration-dependent manner, while pravastatin, due to its hydrophilic structure and limited cellular uptake, showed minimal cytotoxic effects.
Collapse
Affiliation(s)
| | | | - Giulio Preta
- Institute of Biochemistry, Life Science Center, Vilnius University, LT-10257 Vilnius, Lithuania; (G.G.); (A.K.V.)
| |
Collapse
|
10
|
Gaber DM, Ibrahim SS, Awaad AK, Shahine YM, Elmallah S, Barakat HS, Khamis NI. A drug repurposing approach of Atorvastatin calcium for its antiproliferative activity for effective treatment of breast cancer: In vitro and in vivo assessment. Int J Pharm X 2024; 7:100249. [PMID: 38689601 PMCID: PMC11059436 DOI: 10.1016/j.ijpx.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer, the most common cancer among women, caused over 500,000 deaths in 2020. Conventional treatments are expensive and have severe side effects. Drug repurposing is a novel approach aiming to reposition clinically approved non-cancer drugs into newer cancer treatments. Atorvastatin calcium (ATR Ca) which is used for the treatment of hypercholesterolemia has potential to modulate cell growth and apoptosis. The study aimed at utilizing gelucire-based solid lipid nanoparticles (SLNs) and lactoferrin (Lf) as targeting ligand to enhance tumor targeting of atorvastatin calcium for effective management of breast cancer. Lf-decorated-ATR Ca-SLNs showed acceptable particle size and PDI values <200 nm and 0.35 respectively, entrapment efficiency >90% and sustained drug release profile with 78.97 ± 12.3% released after 24 h. In vitro cytotoxicity study on breast cancer cell lines (MCF-7) showed that Lf-decorated-ATR Ca-SLNs obviously improved anti-tumor activity by 2 to 2.5 folds compared to undecorated ATR Ca-SLNs and free drug. Further, In vivo study was also carried out using Ehrlich breast cancer model in mice. Caspase-3 apoptotic marker revealed superior antineoplastic and apoptosis-inducing activity in the groups treated with ATR Ca-SLNs either decorated/ undecorated with Lf in dosage 10 mg/kg/day p < 0.001 with superior activity for lactoferrin-decorated formulation.
Collapse
Affiliation(s)
- Dina M. Gaber
- Pharmaceutical Sciences Division (Pharmaceutics), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abu Kir Campus, Alexandria 1029, Egypt
| | - Sherihan S. Ibrahim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University Alexandria, 21311, Egypt
| | - Ashraf K. Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
| | - Yasmine M. Shahine
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt
| | - Salma Elmallah
- Pharmaceutical Sciences Division (Pharmaceutical Chemistry), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abu Kir Campus, Alexandria 1029, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| | - Noha I. Khamis
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt
| |
Collapse
|
11
|
Coradini D. Impact of De Novo Cholesterol Biosynthesis on the Initiation and Progression of Breast Cancer. Biomolecules 2024; 14:64. [PMID: 38254664 PMCID: PMC10813427 DOI: 10.3390/biom14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Cholesterol (CHOL) is a multifaceted lipid molecule. It is an essential structural component of cell membranes, where it cooperates in regulating the intracellular trafficking and signaling pathways. Additionally, it serves as a precursor for vital biomolecules, including steroid hormones, isoprenoids, vitamin D, and bile acids. Although CHOL is normally uptaken from the bloodstream, cells can synthesize it de novo in response to an increased requirement due to physiological tissue remodeling or abnormal proliferation, such as in cancer. Cumulating evidence indicated that increased CHOL biosynthesis is a common feature of breast cancer and is associated with the neoplastic transformation of normal mammary epithelial cells. After an overview of the multiple biological activities of CHOL and its derivatives, this review will address the impact of de novo CHOL production on the promotion of breast cancer with a focus on mammary stem cells. The review will also discuss the effect of de novo CHOL production on in situ and invasive carcinoma and its impact on the response to adjuvant treatment. Finally, the review will discuss the present and future therapeutic strategies to normalize CHOL biosynthesis.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, 20133 Milan, Italy
| |
Collapse
|
12
|
Centonze G, Natalini D, Grasso S, Morellato A, Salemme V, Piccolantonio A, D'Attanasio G, Savino A, Bianciotto OT, Fragomeni M, Scavuzzo A, Poncina M, Nigrelli F, De Gregorio M, Poli V, Arina P, Taverna D, Kopecka J, Dupont S, Turco E, Riganti C, Defilippi P. p140Cap modulates the mevalonate pathway decreasing cell migration and enhancing drug sensitivity in breast cancer cells. Cell Death Dis 2023; 14:849. [PMID: 38123597 PMCID: PMC10733353 DOI: 10.1038/s41419-023-06357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giacomo D'Attanasio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Olga Teresa Bianciotto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Fragomeni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Andrea Scavuzzo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matteo Poncina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Nigrelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Mario De Gregorio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT, London, UK
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy
| | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padova, Padua, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Italy; Molecular Biotechnology Center, Piazza Nizza 44, 10126, Torino, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
13
|
Tulk A, Watson R, Erdrich J. The Influence of Statin Use on Chemotherapeutic Efficacy in Studies of Mouse Models: A Systematic Review. Anticancer Res 2023; 43:4263-4275. [PMID: 37772570 PMCID: PMC10637576 DOI: 10.21873/anticanres.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND/AIM Using statins as antitumor agents is an approach to cancer therapy that has been explored extensively in specific cancer types. Reframing the query to how a statin interacts with the treatment regimen instead might provide new insight. Given that cell-cycle regulation influences tumorigenesis, it is possible that the cell-cycle phase which a given chemotherapy acts on influences the synergistic effects with adjuvant statin use. In this review, we outline the effect of statins in combination with chemotherapeutic drugs in in vivo animal model studies based on the class of chemotherapy and its relation to the cell cycle. MATERIALS AND METHODS This systematic review was conducted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 with 23 articles deemed eligible to be included. RESULTS Our review suggests that statins influence the success of chemotherapy treatments. Furthermore, enhanced efficacy was demonstrated with chemotherapeutic drugs that act at every phase of the cell cycle. CONCLUSION This type of compilation departs from the norm of describing statin influence on named cancer subtypes and instead catalogs how statins interact with categorical chemotherapy agents which might be beneficial for broader therapeutic decision-making across cancer subtypes, possibly contributing to pharmaceutical development, and thereby helping to maximize patient outcomes.
Collapse
Affiliation(s)
- Angela Tulk
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, U.S.A.;
| | - Raj Watson
- A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO, U.S.A
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, U.S.A
| |
Collapse
|
14
|
Löfling LL, Støer NC, Andreassen BK, Ursin G, Botteri E. Low-dose aspirin, statins, and metformin and survival in patients with breast cancers: a Norwegian population-based cohort study. Breast Cancer Res 2023; 25:101. [PMID: 37649039 PMCID: PMC10466817 DOI: 10.1186/s13058-023-01697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Previous studies assessed the prognostic effect of aspirin, statins, and metformin in breast cancer (BC) patients, with inconclusive results. METHODS We performed a nationwide population-based cohort study to evaluate if post-diagnostic use of low-dose aspirin, statins, and metformin was associated with BC-specific survival. Women aged ≥ 50 years and diagnosed with BC in 2004-2017, who survived ≥ 12 months after diagnosis (follow-up started 12 months after diagnosis), were identified in the Cancer Registry of Norway. The Norwegian Prescription Database provided information on prescriptions. Multivariable Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between post-diagnostic use and BC-specific survival, overall and by oestrogen receptor (ER) status. RESULTS A total of 26,190 patients were included. Of these, 5324 (20%), 7591 (29%), and 1495 (6%) were post-diagnostic users of low-dose aspirin, statins, and metformin, respectively. The median follow-up was 6.1 years, and 2169 (8%) patients died from BC. HRs for use, compared to no use, were estimated at 0.96 (95% CI 0.85-1.08) for low-dose aspirin (ER+: HR = 0.97, 95% CI 0.83-1.13; ER-: HR = 0.97, 95% CI 0.73-1.29, p value for interaction = 0.562), 0.84 (95% CI 0.75-0.94) for statins (ER+: HR = 0.95, 95% CI 0.82-1.09; ER-: HR = 0.77, 95% CI 0.60-1.00, p value for interaction = 0.259), and 0.70 (95% CI 0.51-0.96) for metformin (compared to use of non-metformin antidiabetics) (ER+: HR = 0.67, 95% CI 0.45-1.01; ER-: HR = 1.62, 95% CI 0.72-3.62, p value for interaction = 0.077). CONCLUSION We found evidence supporting an association between post-diagnostic use of statins and metformin and survival, in patients with BC. Our findings indicate potential differences according to ER status.
Collapse
Affiliation(s)
- L Lukas Löfling
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway
| | - Nathalie C Støer
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway
| | | | - Giske Ursin
- Cancer Registry of Norway, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Edoardo Botteri
- Department of Research, Cancer Registry of Norway, Postboks 5313 Majorstuen, 0304, Oslo, Norway.
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Oslo, Norway.
| |
Collapse
|
15
|
Correia AS, Marques L, Vale N. The Involvement of Hypoxia in the Response of Neuroblastoma Cells to the Exposure of Atorvastatin. Curr Issues Mol Biol 2023; 45:3333-3346. [PMID: 37185742 PMCID: PMC10137104 DOI: 10.3390/cimb45040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is a set of complex diseases, being one of the leading causes of death worldwide. Despite a lot of research on the molecular pathways and effective treatments, there are still huge gaps. Indeed, the development of new anti-cancer drugs is a complex process. To face this problem, drug repurposing is being increasingly applied. This approach aims to identify new indications for already approved drugs. In this regard, statins (clinically used for reducing cholesterol levels) are reported to induce anti-cancer effects, particularly by inducing apoptosis and altering the tumor microenvironment. Atorvastatin is a type of statin with several potentialities as an anti-cancer agent, supported by several studies. Our study aimed to explore the effect of this drug in SH-SY5Y human neuroblastoma cells. Additionally, we also aimed to understand how this drug acts under hypoxia and the inhibition of hypoxia-inducible factor-1 (HIF-1). For that purpose, we assessed cellular viability/morphology after exposure to different concentrations of atorvastatin, with or without chemically induced hypoxia with chloride cobalt (CoCl2) and with or without echinomycin (HIF-1α inhibitor). Our results supported the cytotoxic effects of atorvastatin. Additionally, we also revealed that besides these effects, under hypoxia, this drug induced proliferation of the neuroblastoma cells, supporting the importance of different stimuli and environment on the effect of drugs on cancer cells.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Chang WT, Lin HW, Lin SH, Li YH. Association of Statin Use With Cancer- and Noncancer-Associated Survival Among Patients With Breast Cancer in Asia. JAMA Netw Open 2023; 6:e239515. [PMID: 37083661 PMCID: PMC10122177 DOI: 10.1001/jamanetworkopen.2023.9515] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Importance In addition to protective effects on the cardiovascular system, statins may reduce the risk of breast cancer recurrence owing to potential anti-inflammatory benefits. Given that patients with breast cancer in Asia are relatively younger at diagnosis and most are free from traditional cardiovascular risk factors, it is uncertain whether the use of statins can improve survival. Objective To investigate the association of statin use with cancer- and noncancer-associated survival in patients with breast cancer. Design, Setting and Participants This cohort study used the Taiwanese National Health Insurance Research Database and National Cancer Registry to identify patients diagnosed with breast cancer from January 2012 to December 2017. Age, cancer stage, anticancer therapies, comorbidities, socioeconomic status, and cardiovascular drugs were matched by propensity score method. Statistical analyses, including Cox proportional hazards models, were performed from June 2022 to February 2023. The mean (SD) follow-up duration was 4.10 (2.96) years. Interventions Patients receiving statins within 6 months before the diagnosis of breast cancer were compared with those not receiving statins. Main Outcomes and Measures Outcomes included death, heart failure, and arterial and venous events. Results Overall, 7451 patients (mean [SD] age, 64.3 [9.4] years) treated with statins were matched with 7451 nonusers (mean [SD] age, 65.8 [10.8] years). Compared with nonusers, statin users had a significantly lower risk of all-cause death (adjusted hazard ratio [HR], 0.83; 95% CI, 0.77-0.91; P < .001). Notably, the risk reduction was mainly attributed to cancer-related death (adjusted HR, 0.83; 95% CI, 0.75-0.92; P < .001). Only a small number of patients died of cardiovascular causes, and the ratios were similar between statin users and nonusers. No significant differences were observed in cardiovascular outcomes, including heart failure and arterial and venous events, between statin users and nonusers. Using a time-dependent analysis, statin users also presented a significantly lower risk of cancer-related death (adjusted HR, 0.28; 95% CI, 0.24-0.32; P < .001) than nonusers, and notably, the risk was even lower in high-dose statin (HDS) users compared with non-HDS users (HDS users: adjusted HR, 0.84; 95% CI, 0.73-0.98; P = .002; non-HDS users: adjusted HR, 0.79; 95% CI, 0.68-0.91; P = 001). Conclusions and Relevance In this cohort study of Asian patients with breast cancer, statin use was associated with a reduced risk of cancer-associated death rather than cardiovascular death. Our findings provide evidence to support the use of statins in patients with breast cancer; however, randomized studies are necessary.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hui-Wen Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Ma Y, Lv M, Yuan P, Chen X, Liu Z. Dyslipidemia is associated with a poor prognosis of breast cancer in patients receiving neoadjuvant chemotherapy. BMC Cancer 2023; 23:208. [PMID: 36870942 PMCID: PMC9985843 DOI: 10.1186/s12885-023-10683-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Lipid metabolism disorders may be involved in the occurrence and development of breast cancer. This study aimed to investigate the serum lipid changes during neoadjuvant chemotherapy for breast cancer and the effect of dyslipidemia on the prognosis of breast cancer patients. METHODS We collected the data from 312 breast cancer patients who underwent surgery after receiving standard neoadjuvant therapy. χ2 test and T-test were employed to analyze the effect of chemotherapy on the serum lipid metabolism of patients. The effects of dyslipidemia on the disease-free survival (DFS) of patients with breast cancer were analyzed by χ2 test and COX regression analysis. RESULTS A total of 56 out of 312 patients (17.9%) suffered from relapse. The baseline serum lipid level of the patients was significantly correlated with their age and body mass index (BMI) (p < 0.05). Chemotherapy increased the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol, but decreased the level of high-density lipoprotein cholesterol (p < 0.001). Preoperative dyslipidemia was significantly associated with the axillary pCR rate (p < 0.05). COX regression analysis revealed that the full-course serum lipid level (HR = 1.896 [95%CI 1.069-3.360]; p = 0.029), N stage (HR = 4.416 [95%CI 2.348-8.308]; p < 0.001) and the total pCR rate (HR = 4.319 [95%CI 1.029-18.135]; p = 0.046) acted as prognostic factors affecting DFS in breast cancer. The relapse rate in patients with a high level of total cholesterol was higher than that in patients with a high level of triglycerides (61.9% vs 30.0%; p < 0.05). CONCLUSIONS Dyslipidemia deteriorated after chemotherapy. The full-course serum lipid level may thus serve as a blood marker for predicting breast cancer prognosis. Serum lipids should therefore be closely monitored in breast cancer patients throughout the treatment course, and patients with dyslipidemia should be treated in a timely manner.
Collapse
Affiliation(s)
- Youzhao Ma
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Zhengzhou, 450008, China
| | - Minhao Lv
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Zhengzhou, 450008, China
| | - Peng Yuan
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Zhengzhou, 450008, China
| | - Xiuchun Chen
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Zhengzhou, 450008, China.
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
18
|
Subedi L, Pandey P, Khadka B, Shim JH, Cho SS, Kweon S, Byun Y, Kim KT, Park JW. Enhancement of the anticancer effect of atorvastatin-loaded nanoemulsions by improving oral absorption via multivalent intestinal transporter-targeting lipids. Drug Deliv 2022; 29:3397-3413. [DOI: 10.1080/10717544.2022.2149896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
19
|
Warita T, Irie N, Zhou Y, Tashiro J, Sugiura A, Oltvai ZN, Warita K. Alterations in the omics profiles in mevalonate pathway-inhibited cancer cells. Life Sci 2022; 312:121249. [PMID: 36455649 DOI: 10.1016/j.lfs.2022.121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Statins, cholesterol-lowering drugs, are potential therapeutic agents for inhibiting cancer proliferation. However, the mechanisms that mediate the effects of statins, the homeostatic responses of tumor cells to statin therapy, and the modes underlying the antitumor effects of statins remain unclear. MAIN METHODS To uncover the effects of statins on cancer cells in vitro, we performed transcriptome and metabolome analyses on atorvastatin-treated statin-resistant and statin-sensitive lung cancer cells. KEY FINDINGS The results of Gene Ontology terms and pathway enrichment analyses showed that after 24 h of atorvastatin treatment, the expression of cell cycle- and DNA replication-related genes was significantly decreased in the statin-sensitive cancer cells. The results of metabolome analysis showed that the components of polyamine metabolism and purine metabolism, glycolysis, and pentose phosphate pathway were decreased in the statin-sensitive cancer cells. SIGNIFICANCE Differences in cellular properties between statin-sensitive and statin-resistant cancer cells revealed additional candidates for therapeutic targets in statin-treated cancer cells and suggested that inhibiting these metabolic pathways could improve efficacy. In conclusion, combining statins with inhibitors of polyamine metabolism (cell proliferation and protein translation), purine metabolism (DNA synthesis), glycolytic system (energy production), and pentose phosphate pathway (antioxidant stress) might enhance the anticancer effects of statins.
Collapse
Affiliation(s)
- Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Nanami Irie
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Yaxuan Zhou
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, 4-101 Koyama Minami, Tottori, Tottori 680-8553, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, 4-101 Koyama Minami, Tottori, Tottori 680-8553, Japan
| | - Zoltán N Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, 4-101 Koyama Minami, Tottori, Tottori 680-8553, Japan.
| |
Collapse
|
20
|
Watson R, Tulk A, Erdrich J. The Link Between Statins and Breast Cancer in Mouse Models: A Systematic Review. Cureus 2022; 14:e31893. [PMID: 36579200 PMCID: PMC9790759 DOI: 10.7759/cureus.31893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, have consistently demonstrated pleiotropic effects in both preclinical and clinical studies. Outside of inhibiting the production of cholesterol in cells, statins have shown antineoplastic properties most commonly in breast cancer. Clinical and epidemiological studies, however, are less definitive than preclinical studies regarding statins as potential adjuvant oncologic therapy. Our objective is to summarize mouse model studies that investigate the link between statins and breast cancer using a cancer care continuum framework to provide a clinically relevant picture of the potential use of statins in breast cancer. A systematic review of the PubMed database was performed to identify studies published between January 2007 and July 2022 that investigated the effects of statins on breast cancer prevention, treatment, and survivorship in mouse models. Overall, 58 studies were identified using our search strategy. Based on our inclusion and exclusion criteria, 26 mouse model studies were eligible to be included in our systematic review. In breast cancer mouse models, statins alone and in combination with anti-cancer therapies demonstrate proven antineoplastic effects across the cancer care continuum. The antineoplastic benefit of statins as single agents in mouse model studies helps inform their synergistic benefit that future clinical studies can test. Parameters such as statin timing, dose, and breast cancer subtype are key stepping stones in defining how statins could be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Raj Watson
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Angela Tulk
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| | - Jennifer Erdrich
- Department of Surgery, University of Arizona College of Medicine - Tucson, Tucson, USA
| |
Collapse
|
21
|
van Leeuwen JE, Ba-Alawi W, Branchard E, Cruickshank J, Schormann W, Longo J, Silvester J, Gross PL, Andrews DW, Cescon DW, Haibe-Kains B, Penn LZ, Gendoo DMA. Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins. Nat Commun 2022; 13:6323. [PMID: 36280687 PMCID: PMC9592602 DOI: 10.1038/s41467-022-33144-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
Statins, a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the mevalonate metabolic pathway, have demonstrated anticancer activity. Evidence shows that dipyridamole potentiates statin-induced cancer cell death by blocking a restorative feedback loop triggered by statin treatment. Leveraging this knowledge, we develop an integrative pharmacogenomics pipeline to identify compounds similar to dipyridamole at the level of drug structure, cell sensitivity and molecular perturbation. To overcome the complex polypharmacology of dipyridamole, we focus our pharmacogenomics pipeline on mevalonate pathway genes, which we name mevalonate drug-network fusion (MVA-DNF). We validate top-ranked compounds, nelfinavir and honokiol, and identify that low expression of the canonical epithelial cell marker, E-cadherin, is associated with statin-compound synergy. Analysis of remaining prioritized hits led to the validation of additional compounds, clotrimazole and vemurafenib. Thus, our computational pharmacogenomic approach identifies actionable compounds with pathway-specific activities.
Collapse
Affiliation(s)
- Jenna E. van Leeuwen
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wail Ba-Alawi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Emily Branchard
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Cruickshank
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wiebke Schormann
- grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - Joseph Longo
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Silvester
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Peter L. Gross
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8 Canada
| | - David W. Andrews
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - David W. Cescon
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1 Canada
| | - Benjamin Haibe-Kains
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4 Canada ,grid.419890.d0000 0004 0626 690XOntario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3 Canada
| | - Linda Z. Penn
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Deena M. A. Gendoo
- grid.6572.60000 0004 1936 7486Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
22
|
Money ME, Matthews CM, Tan-Shalaby J. Review of Under-Recognized Adjunctive Therapies for Cancer. Cancers (Basel) 2022; 14:4780. [PMID: 36230703 PMCID: PMC9563303 DOI: 10.3390/cancers14194780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Patients and providers may not be aware that several adjunctive measures can significantly improve the quality of life, response to treatment, and possibly outcomes for cancer patients. This manuscript presents a review of practical under-recognized adjunctive therapies that are effective including exercise; stress-reduction techniques such as mindfulness, massage, yoga, Tai Chi, breathing exercises; importance of sleep quality; diet modifications such as calorie restriction at the time of chemotherapy and avoidance of high carbohydrate foods; supplements such as aspirin, green tea, turmeric, and melatonin; and repurposed prescription medications such as metformin and statins. Each recommendation should be tailored to the individual patient to assure no contraindications.
Collapse
Affiliation(s)
- Mary E. Money
- Department of Medicine, University of Maryland School of Medicine, 665 W Baltimore Street S, Baltimore, MD 21201, USA
- Meritus Medical Center, 11116 Medical Campus Rd., Hagerstown, MD 21742, USA
| | - Carolyn M. Matthews
- Texas Oncology, PA and Charles A. Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX 75246, USA
- Gynecologic Oncology, Baylor Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX 75246, USA
| | - Jocelyn Tan-Shalaby
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15213, USA
- Department of Medicine, Veteran Affairs Pittsburgh Healthcare System, 4100 Allequippa St., Pittsburgh, PA 15240, USA
| |
Collapse
|
23
|
Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C, Defilippi P. Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Front Oncol 2022; 12:906670. [PMID: 35719918 PMCID: PMC9204587 DOI: 10.3389/fonc.2022.906670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Pietro Arina
- University College London (UCL), Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Chiara Riganti
- Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
24
|
崔 颖, 范 顺, 潘 迪, 巢 青. [Atorvastatin inhibits malignant behaviors and induces apoptosis in human glioma cells by up-regulating miR-146a and inhibiting the PI3K/Akt signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:899-904. [PMID: 35790441 PMCID: PMC9257370 DOI: 10.12122/j.issn.1673-4254.2022.06.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of atorvastatin (AVT) on biological behaviors and the miR-146a/PI3K/Akt signaling pathway in human glioma cells. METHODS Human glioma U251 cells were treated with 8.0 μmol/L AVT or transfected with a miR-146a inhibitor or a negative control fragment (miR-146a NC) prior to AVT treatment. RT-PCR was used to detect miR-146a expression in the cells, and the changes in cell proliferation rate, apoptosis, cell invasion and migration were detected using MTT assay, flow cytometry, and Transwell assay. Western blotting was performed to detect the changes in cellular expressions of proteins in the PI3K/Akt signaling pathway. RESULTS AVT treatment for 48 h resulted in significantly increased miR-146a expression and cell apoptosis (P < 0.01) and obviously lowered the cell proliferation rate, invasion index, migration index, and expressions of p-PI3K and p-Akt protein in U251 cells (P < 0.01). Compared with AVT treatment alone, transfection with miR-146a inhibitor prior to AVT treatment significantly reduced miR-146a expression and cell apoptosis (P < 0.01), increased the cell proliferation rate, promoted cell invasion and migration, and enhanced the expressions of p-PI3K and p-Akt proteins in the cells (P < 0.01); these effects were not observed following transfection with miR-146a NC group (P>0.05). CONCLUSION AVT can inhibit the proliferation, invasion and migration and promote apoptosis of human glioma cells possibly by up-regulating miR-146a expression and inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- 颖 崔
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 顺志 范
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 迪迪 潘
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 青 巢
- />蚌埠医学院第二附属医院神经外科,安徽 蚌埠 233000Department of Neurosurgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
25
|
Chen Y, Xu Y, Wang J, Prisinzano P, Yuan Y, Lu F, Zheng M, Mao W, Wan Y. Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Front Oncol 2022; 12:853063. [PMID: 35646709 PMCID: PMC9133486 DOI: 10.3389/fonc.2022.853063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid droplets are lipid-rich cytosolic organelles that play roles in cell signaling, membrane trafficking, and many other cellular activities. Recent studies revealed that lipid droplets in cancer cells have various biological functions, such as energy production, membrane synthesis, and chemoresistance, thereby fostering cancer progression. Accordingly, the administration of antilipemic agents could improve anti-cancer treatment efficacy given hydrophobic chemotherapeutic drugs could be encapsulated into lipid droplets and then expelled to extracellular space. In this study, we investigated whether statins could promote treatment efficacy of lipid droplet-rich ovarian SKOV-3 cells and the potential influences on generation and composition of cell-derived extracellular vesicles and particles (EVP). Our studies indicate that statins can significantly lower lipid biosynthesis. Moreover, statins can inhibit proliferation, migration, and invasion of SKOV-3 cells and enhance chemosensitivity in vitro and in vivo. Furthermore, statins can lower EVP secretion but enforce the release of cholesterol-enriched EVPs, which can further lower lipid contents in parental cells. It is the first time that the influence of statins on EVP generation and EVP-lipid composition is observed. Overall, we demonstrated that statins could inhibit lipid production, expel cholesterol to extracellular space via EVPs, and improve chemosensitivity.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peter Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yuhao Yuan
- Biophotonics and Translational Optical Imaging Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Fake Lu
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Yuan Wan, ; Wenjun Mao,
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- *Correspondence: Yuan Wan, ; Wenjun Mao,
| |
Collapse
|
26
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|
27
|
Preventing metastatic emergence of breast cancer. Aging (Albany NY) 2021; 13:22627-22628. [PMID: 34633294 PMCID: PMC8544339 DOI: 10.18632/aging.203631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
|