1
|
d’Amati A, Serio G, Quaranta A, Vimercati L, De Giorgis M, Lorusso L, Errede M, Longo V, Marzullo A, Ribatti D, Annese T. Analysis of TERT mRNA Levels and Clinicopathological Features in Patients with Peritoneal Mesothelioma. Cancers (Basel) 2025; 17:252. [PMID: 39858033 PMCID: PMC11764446 DOI: 10.3390/cancers17020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Telomerase reverse transcriptase (TERT) is the catalytic subunit of the telomerase enzyme responsible for telomere length maintenance and is an important cancer hallmark. Our study aimed to clarify the mRNA expression of TERT in peritoneal mesothelioma (PeM), and to explore the relationship between its expression and the clinicopathological parameters and prognosis of patients with PeM. METHODS In a cohort of 13 MpeM patients, we evaluated histotype, nuclear grade, mitotic count, necrosis, inflammation, Ki67, BAP1, MTAP and p16 expression by immunohistochemistry, p16/CDKN2A status by FISH and TERT mRNA expression by RNAscope. RESULTS Our results showed several statistical correlations between TERT mRNA-score and other investigated features: (i) a poor positive correlation with BAP1 score (r = 0.06340; p ≤ 0.0001); (ii) a moderate positive correlation with p16 FISH del homo (r = 0.6340; p ≤ 0.0001); (iii) a fair negative correlation with p16 FISH del hetero (r = -0.3965; p ≤ 0.0001); a negative poor correlation with MTAP (r = -0.2443; p ≤ 0.0001); and (iv) a negative fair correlation with inflammatory infiltrate (r = -0.5407; p = 0.0233). Moreover, patients survive for a significantly longer time if they have a low mitotic index adjusted (2-4 mitotic figures per 2 mm2) (p ≤ 0.0001), are male (p = 0.0152), lose BAP1 (p = 0.0152), are p16 positive and present no deletion or heterozygous for p16 (p ≤ 0.01). CONCLUSIONS TERT is highly expressed in PeM, but it is not one of the crucial factors in evaluating the prognosis of patients. Nevertheless, the results validate the prognostic significance of the mitotic index, BAP1 loss and p16/CDKN2A status.
Collapse
Affiliation(s)
- Antonio d’Amati
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy;
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Gabriella Serio
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Andrea Quaranta
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Occupational Health Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Michelina De Giorgis
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Mariella Errede
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Vito Longo
- Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Andrea Marzullo
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.S.); (A.Q.); (A.M.)
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| | - Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy;
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy; (M.D.G.); (L.L.); (M.E.); (D.R.)
| |
Collapse
|
2
|
Fanaroff RE, Yang SR, Tan KS, Adusumilli PS, Bodd F, Bowman A, Chang J, Offin MD, Reiner A, Rekhtman N, Rusch VW, Travis WD, Zauderer MG, Ladanyi M, Sauter JL. Correlation of Histologic Features with Gene Alterations in Pleural Mesothelioma. Mod Pathol 2025:100706. [PMID: 39788204 DOI: 10.1016/j.modpat.2025.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Histologic features, including architectural patterns, cytologic features, and 2021 World Health Organization nuclear grade have been shown to have prognostic significance in epithelioid diffuse pleural mesothelioma (DPM). Biphasic and sarcomatoid DPM, regardless of morphology, have worse outcomes. These prognostic findings are well-established but correlation of architectural patterns, cytologic features, and nuclear grade with genetic alterations has not been well studied. To investigate relationships between histologic findings and genomic alterations, 128 treatment-naïve DPM specimens (70% epithelioid, 23% biphasic and 6.3% sarcomatoid) with next generation sequencing data were retrospectively reviewed. Alterations in BAP1 were the most common genomic alteration (n=62, 48%), followed by CDKN2A (n=49, 38%) and NF2 (n=38, 30%). NF2 alterations were significantly more frequent in biphasic DPM (53% in biphasic versus 25% in sarcomatoid and 22% in epithelioid; p=0.005). In epithelioid DPM, TP53 alterations were associated with presence of prognostically unfavorable histology, including micropapillary or solid architecture, pleomorphic features and high nuclear grade. Tumors with low tumor infiltrating lymphocytes had a higher rate of BAP1 alterations compared to tumors with higher levels of tumor infiltrating lymphocytes (67% versus 30%; p=0.002). The findings of this study enhance our understanding of the relationships among prognostically significant histologic and molecular features of DPM and provide preliminary data to support increased integration of these findings in clinical diagnosis of pleural mesothelioma.
Collapse
Affiliation(s)
- Rachel E Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Francis Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Anita Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Jason Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Allison Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
3
|
Gilbert A, Wieland R, Zacher N, Rieger K, Berry GJ, Novoa R. Metastatic Mesothelioma of the Tunica Vaginalis Presenting as Scrotal and Abdominal Nodules: A Case Report and Review of the Literature. Am J Dermatopathol 2025; 47:e6-e11. [PMID: 39481034 DOI: 10.1097/dad.0000000000002848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ABSTRACT Mesothelioma of the tunica vaginalis testis (MMTVT) is a rare neoplasm comprising <3% of all cases of malignant mesothelioma (MM). MMTVT derives from the tunica vaginalis testis, an outpouching of the mesothelial-lined abdominal peritoneum that detaches from the abdominal cavity after the descent of the testis. Similar to pleural mesothelioma, asbestos exposure is a known risk factor. However, MMTVT has a better prognosis than pleural mesothelioma. Cutaneous metastases from MMTVT are exceedingly rare. Herein, we describe a case of a 67-year-old man with a history of asbestos exposure presenting with scrotal pain and indurated plaques on his lower abdomen and scrotum. Histologic sections showed a sheet-like dermal proliferation comprising epithelioid cells with necrosis and increased mitotic activity. The clinical and histologic differential diagnosis was broad, including metastatic carcinoma, melanoma, sarcoma, germ cell tumor, hematologic malignancy, neuroendocrine carcinoma, and malignant mesothelioma. By immunohistochemistry, the neoplastic cells were positive for WT1, D2-40, and AE1/AE3, with rare positivity for calretinin, consistent with a diagnosis of mesothelioma. Additional immunohistochemical studies provided no support for the other diagnostic considerations listed above. BAP1 showed retained nuclear expression (normal) by immunohistochemistry. A DNA sequencing panel identified copy number losses in CDKN2A, MTAP, CDKN2B, and NF2, which are frequently identified genetic alterations in malignant mesothelioma. Subsequent testicular imaging demonstrated a diffusely thickened scrotal wall with an enlarged left testicle. Overall, this represents a case of malignant mesothelioma presenting with cutaneous metastases to the scrotum and lower abdomen, with clinical and imaging features suggestive of primary MMTVT. The International Mesothelioma Interest Group recommends using at least 2 mesothelial markers, such as calretinin, WT1, CK5/6 or D2-40, and 2 epithelial markers, such as claudin-4, CEA, MOC-31, as well as a broad-spectrum cytokeratin stain (AE1/AE3) as part of an initial immunohistochemical panel. Metastatic mesothelioma should be included in the differential diagnosis of malignant epithelioid dermal tumors with unusual staining patterns.
Collapse
Affiliation(s)
- Aubre Gilbert
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | | |
Collapse
|
4
|
Salaroglio IC, Aviles P, Kopecka J, Merlini A, Napoli F, Righi L, Novello S, Sullivan H, Cuevas C, Scagliotti GV, Riganti C. Ecteinascidin synthetic analogues: a new class of selective inhibitors of transcription, exerting immunogenic cell death in refractory malignant pleural mesothelioma. J Exp Clin Cancer Res 2024; 43:327. [PMID: 39709435 DOI: 10.1186/s13046-024-03253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a highly chemo-refractory and immune-evasive tumor that presents a median overall survival of 12-14 months when treated with chemotherapy and immunotherapy. New anti-tumor therapies as well as the concomitant reactivation of immune destruction are urgently needed to treat patients with this tumor. The aim of this work is to investigate the potential effect of ecteinascidin derivatives as lurbinectedin as new first-line treatment option in MPM, alone and in combination with immunotherapy. METHODS The antitumor activity of ecteinascidin synthetic analogues: lurbinectedin, ecubectedin and PM54 was evaluated in an array of patient-derived MPM cells in terms of cell proliferation, cell cycle, apoptosis, DNA damage and repair. Immunoblot was used to assess the cGAS/STING pathway. ELISA and flow cytometry-based assays were used to evaluate immunogenic cell death parameters and the effect on the immunophenotype in autologous peripheral blood monocyte-MPM cells co-cultures. Patient-derived xenografts (PDX) in humanized mice were used to evaluate the efficacy of ecteinascidins in vivo. RESULTS Lurbinectedin, ecubectedin, and PM54 were effective in reducing cell proliferation and migration, as well as inducing S-phase cell cycle arrest and DNA damage in malignant pleural mesothelioma cells. These effects were more pronounced compared to the standard first-line treatment (platinum-based plus pemetrexed). Mechanistically, the drugs downregulated DNA repair genes, activated the cGAS/STING pathway, and promoted the release of pro-inflammatory cytokines. They also induced immunogenic cell death of mesothelioma cells, enhancing the activation of anti-tumor CD8+T-cells and natural killer cells while reducing tumor-tolerant T-regulatory cells and myeloid-derived suppressor cells in ex vivo co-cultures. These promising results were also observed in humanized patient-derived xenograft models, where the drugs were effective in reducing tumor growth and increasing the ratio anti-tumor/pro-tumor infiltrating immune populations, either alone or combined with the anti-PD-1L atezolizumab. CONCLUSIONS Collectively, these findings reveal a previously unknown mechanism of action of ecteinascidins that merits further investigation for potential clinical applications in the treatment of MPM, as new first line treatment in monotherapy or in association with immunotherapy.
Collapse
Affiliation(s)
- I C Salaroglio
- Department of Oncology, Molecular Biotechnology Center "G. Tarone", University of Torino, Piazza Nizza 44, Torino, 10126, Italy
| | - P Aviles
- PharmaMar S.A, Avda de los Reyes 1, Colmenar Viejo, Madrid, 28770, Spain
| | - J Kopecka
- Department of Oncology, Molecular Biotechnology Center "G. Tarone", University of Torino, Piazza Nizza 44, Torino, 10126, Italy
| | - A Merlini
- Department of Oncology at San Luigi Gonzaga Hospital, Medical Oncology Unit, University of Torino, Regione Gonzole 10, Orbassano, 10043, Italy
| | - F Napoli
- Department of Oncology at San Luigi Gonzaga Hospital, Pathology Unit, University of Torino, Regione Gonzole 10, Orbassano, 10043, Italy
| | - L Righi
- Department of Oncology at San Luigi Gonzaga Hospital, Pathology Unit, University of Torino, Regione Gonzole 10, Orbassano, 10043, Italy
| | - S Novello
- Department of Oncology at San Luigi Gonzaga Hospital, Medical Oncology Unit, University of Torino, Regione Gonzole 10, Orbassano, 10043, Italy
| | - H Sullivan
- PharmaMar S.A, Avda de los Reyes 1, Colmenar Viejo, Madrid, 28770, Spain
| | - C Cuevas
- PharmaMar S.A, Avda de los Reyes 1, Colmenar Viejo, Madrid, 28770, Spain
| | - G V Scagliotti
- Department of Oncology at San Luigi Gonzaga Hospital, Medical Oncology Unit, University of Torino, Regione Gonzole 10, Orbassano, 10043, Italy.
| | - C Riganti
- Department of Oncology, Molecular Biotechnology Center "G. Tarone", University of Torino, Piazza Nizza 44, Torino, 10126, Italy.
| |
Collapse
|
5
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Vandenhoeck J, Ibrahim J, De Meulenaere N, Peeters D, Raskin J, Hendriks JMH, Van Schil P, van Meerbeeck J, Van Camp G, Op de Beeck K. Genome-wide DNA methylation analysis reveals a unique methylation pattern for pleural mesothelioma compared to healthy pleura and other lung diseases. Clin Epigenetics 2024; 16:176. [PMID: 39627815 PMCID: PMC11616176 DOI: 10.1186/s13148-024-01790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a rare and aggressive cancer type, typically diagnosed at advanced stages. Distinguishing PM from other lung diseases is often challenging. There is an urgent need for biomarkers that can enable early detection. Interest in the field of epigenetics has increased, particularly in the context of tumour development and biomarker discovery. This study aims to identify specific changes in DNA methylation from healthy pleural tissue to PM and to compare these methylation patterns with those found in other lung diseases. RESULTS EPIC methylation array data (850 K) were generated for 11 PM and 29 healthy pleura in-house collected samples. This is the first time such a large dataset of healthy pleura samples has been generated. Additional EPIC methylation array data (850 K) for pleural mesothelioma and other lung-related diseases were downloaded from public databases. We conducted pairwise differential methylation analyses across all tissue types, which facilitated the identification of significantly differentially methylated CpG sites. Extensive differential methylation between PM and healthy pleura was observed, identifying 81,968 differentially methylated CpG sites across all genomic regions. Among these, five CpG sites located within four genes (MIR21, RNF39, SPEN and C1orf101) exhibited the most significant and pronounced methylation differences between PM and healthy pleura. Moreover, our analysis delineated distinct methylation patterns specific to PM subtypes. Finally, the methylation profiles of PM were distinctly different from those of other lung cancers, enabling accurate differentiation. CONCLUSIONS DNA methylation analyses provide a robust method for distinguishing PM from healthy pleural tissues, and specific methylation patterns exist within PM subtypes. These methylation differences underscore their importance in understanding disease progression and may serve as viable biomarkers or therapeutic targets. Moreover, differential methylation patterns between PM and other lung cancers highlights its diagnostic potential. These findings necessitate further translational studies to explore their clinical applications.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Joe Ibrahim
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Nele De Meulenaere
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Dieter Peeters
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen M H Hendriks
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Jan van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium.
| |
Collapse
|
7
|
Xu D, Liang SQ, Su M, Yang H, Bruggmann R, Oberhaensli S, Yang Z, Gao Y, Marti TM, Wang W, Schmid RA, Shu Y, Dorn P, Peng RW. Crispr-mediated genome editing reveals a preponderance of non-oncogene addictions as targetable vulnerabilities in pleural mesothelioma. Lung Cancer 2024; 197:107986. [PMID: 39383772 DOI: 10.1016/j.lungcan.2024.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Pleural mesothelioma (PM) is an aggressive cancer with limited treatment options. In particular, the frequent loss of tumor suppressors, a key oncogenic driver of the disease that is therapeutically intractable, has hampered the development of targeted cancer therapies. Here, we interrogate the PM genome using CRISPR-mediated gene editing to systematically uncover PM cell susceptibilities and provide an evidence-based rationale for targeted cancer drug discovery. This analysis has allowed us to identify with high confidence numerous known and novel gene dependencies that are surprisingly highly enriched for non-oncogenic pathways involved in response to various stress stimuli, in particular DNA damage and transcriptional dysregulation. By integrating genomic analysis with a series of in vitro and in vivo functional studies, we validate and prioritize several non-oncogene addictions conferred by CDK7, CHK1, HDAC3, RAD51, TPX2, and UBA1 as targetable vulnerabilities, revealing previously unappreciated aspects of PM biology. Our findings support the growing consensus that stress-responsive non-oncogenic signaling plays a key role in the initiation and progression of PM and provide a functional blueprint for the development of unprecedented targeted therapies to combat this formidable disease.
Collapse
Affiliation(s)
- Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shun-Qing Liang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | | | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Occhipinti M, Brambilla M, Di Liello R, Ambrosini P, Lobianco L, Leporati R, Salvarezza M, Vitiello F, Marchesi S, Manglaviti S, Beninato T, Mazzeo L, Proto C, Prelaj A, Ferrara R, Della Corte CM, Lo Russo G, de Braud F, Ganzinelli M, Viscardi G. Unleashing precision: A review of targeted approaches in pleural mesothelioma. Crit Rev Oncol Hematol 2024; 203:104481. [PMID: 39159705 DOI: 10.1016/j.critrevonc.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
This review delves into the intricate landscape of pleural mesothelioma (PM), emphasizing the need for nuanced therapeutic strategies. While platinum-based chemotherapy remains a cornerstone, the advent of immune checkpoint inhibitors (ICIs), notably through the Checkmate 743 trial, has reshaped treatment paradigms. Challenges persist due to patient heterogeneity and a lack of specific biomarkers. Targeting genotypic and phenotypic alterations emerges as a promising avenue, demanding precision oncology in this rare disease. CDKN2A loss, prevalent in PM, may respond to CDK4/6 inhibitors. Defects in MMR and HR suggest tailored approaches with ICI or PARP inhibitors, respectively. Ongoing trials explore novel inhibitors and promising targets like mesothelin. Implementing these strategies requires overcoming challenges in patient selection, combination therapies, biomarker identification, and cost considerations. Collaboration is crucial for transforming these insights into impactful clinical interventions, heralding the era of personalized and precision medicine for PM.
Collapse
Affiliation(s)
- Mario Occhipinti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Brambilla
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | | | - Paolo Ambrosini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Lorenzo Lobianco
- Medical Oncology, Precision Medicine Department, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rita Leporati
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Salvarezza
- Medical Oncology, Precision Medicine Department, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabiana Vitiello
- Medical Oncology Unit, Ospedale Monaldi, AORN Ospedali dei Colli, Naples, Italy
| | - Silvia Marchesi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sara Manglaviti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Teresa Beninato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Mazzeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arsela Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Giuseppe Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Monica Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giuseppe Viscardi
- Medical Oncology Unit, Ospedale Monaldi, AORN Ospedali dei Colli, Naples, Italy
| |
Collapse
|
9
|
Zhu R, Liu X, Zhang X, Zhong Z, Qi S, Jin R, Gu Y, Wang Y, Ling C, Chen K, Ye D, Yu FX. Gene therapy for diffuse pleural mesotheliomas in preclinical models by concurrent expression of NF2 and SuperHippo. Cell Rep Med 2024; 5:101763. [PMID: 39368484 PMCID: PMC11513813 DOI: 10.1016/j.xcrm.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Diffuse pleural mesothelioma (DPM) is a lethal cancer with a poor prognosis and limited treatment options. The Hippo signaling pathway genes, such as NF2 and LATS1/2, are frequently mutated in DPM, indicating a tumor suppressor role in the development of DPM. Here, we show that in DPM cell lines lacking NF2 and in mice with a conditional Nf2 knockout, downregulation of WWC proteins, another family of Hippo pathway regulators, accelerates DPM progression. Conversely, the expression of SuperHippo, a WWC-derived minigene, effectively enhances Hippo signaling and suppresses DPM development. Moreover, the adeno-associated virus serotype 6 (AAV6) has been engineered to deliver both NF2 and SuperHippo genes into mesothelial cells, which substantially impedes tumor growth in xenograft and genetic DPM models and prolongs the median survival of mice. These findings serve as a proof of concept for the potential use of gene therapy targeting the Hippo pathway to treat DPM.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xincheng Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Maniam G, Tekin B, Gupta S, Nguyen G, Agrawal S. Local Cutaneous Scrotal Involvement of Paratesticular Mesothelioma. Am J Dermatopathol 2024; 46:e91-e95. [PMID: 39008503 DOI: 10.1097/dad.0000000000002802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
ABSTRACT Paratesticular mesothelioma (malignant mesothelioma arising from the tunica vaginalis of the testis) represents a small proportion of mesothelial neoplasms, and cutaneous involvement by paratesticular mesothelioma is very rare. Cutaneous involvement can manifest as scrotal subcutaneous nodules from regional spread, distant metastasis, or direct extension through surgical scars. Mesothelioma has 3 histopathologic classifications that include epithelioid, biphasic, and sarcomatoid, which is rarely seen in paratesticular mesothelioma. Given the rarity of this condition, cutaneous mesothelioma may be misdiagnosed as histologic mimics, such as metastatic adenocarcinoma or adnexal neoplasms; thus, appropriate immunohistochemical workup and clinical correlation are required to make an accurate diagnosis. In this case, a 75-year-old man with a history of paratesticular mesothelioma, status postorchiectomy, presented with right-sided scrotal swelling, erythema, and subcutaneous nodules. These nodules were identified as local recurrence with cutaneous involvement by paratesticular mesothelioma on histopathologic examination. This case highlights the clinical and histopathologic features of this diagnosis and underscores the importance of dermatopathologists being aware of this condition to ensure accurate diagnosis.
Collapse
Affiliation(s)
| | - Burak Tekin
- Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Sounak Gupta
- Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | | | - Shruti Agrawal
- Departments of Dermatology, and
- Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
11
|
Klebe S, Rathi V, Russell PA. Lung cancer caused by asbestos: What a reporting pathologist needs to know. Lung Cancer 2024; 195:107849. [PMID: 39089005 DOI: 10.1016/j.lungcan.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/03/2024]
Abstract
Asbestos is a carcinogen that can cause lung cancer. The suspicion that a lung cancer diagnosis may be associated with exposure to asbestos has no bearing on treatment. However, attributing an individual's lung cancer to asbestos exposure has important medicolegal implications and may impact public health measures and policy. Simultaneous exposure(s) to other carcinogens (such as tobacco smoke, silica and many others) adds complexity while trying to answer the causation question. The Helsinki criteria were formulated to assist attributing lung cancer to previous asbestos exposure. Surrogate markers can be used and include signs of asbestosis and pleural plaques. The most widely used criterion for the presence of asbestosis is interstitial fibrosis in conjunction with 2 or more asbestos bodies/1 cm2 tissue section by light microscopy. Identification of asbestos bodies ty light pr electron microscopy provides an important element for asbestos diagnosis. However, fibrosis may be subtle, and the distribution of asbestos bodies is not uniform throughout the lungs, some types of asbestos fibres have low biopersistence, and not all types of asbestos readily form asbestos bodies. Additional criteria require knowledge of exposure history, which is often unknown to pathologists, but reliance on morphology in isolation may lead to mis-classification of interstitial lung disease as idiopathic. While a smoking-related lung cancer signature has emerged, an asbestos-related lung cancer signature has not yet been identified. In this review we will discuss practice points for the surgical pathologist.
Collapse
Affiliation(s)
- S Klebe
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Bedford Park, SA 5042, Australia; Department of Anatomical Pathology, Flinders University, Bedford Park, SA 5042, Australia.
| | - Vivek Rathi
- LifeStrands Genomics and TissuPath Pathology, Mount Waverley, Victoria, Australia
| | - P A Russell
- LifeStrands Genomics and TissuPath Pathology, Mount Waverley, Victoria, Australia
| |
Collapse
|
12
|
Ma X, Lembersky D, Kim ES, Becich MJ, Testa JR, Bruno TC, Osmanbeyoglu HU. Spatial Landscape of Malignant Pleural and Peritoneal Mesothelioma Tumor Immune Microenvironments. CANCER RESEARCH COMMUNICATIONS 2024; 4:2133-2146. [PMID: 38994676 PMCID: PMC11328914 DOI: 10.1158/2767-9764.crc-23-0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Immunotherapies have demonstrated limited clinical efficacy in malignant mesothelioma treatment. We conducted multiplex immunofluorescence analyses on tissue microarrays (n = 3) from patients with malignant pleural mesothelioma (MPM, n = 88) and malignant peritoneal mesothelioma (MPeM, n = 25). Our study aimed to elucidate spatial distributions of key immune cell populations and their association with lymphocyte activation gene 3 (LAG3), BRCA1-associated protein 1 (BAP1), neurofibromatosis type 2 (NF2), and methylthioadenosine phosphorylase (MTAP), with MTAP serving as a cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/B) surrogate marker. Additionally, we examined the relationship between the spatial distribution of major immune cell types and prognosis and clinical characteristics of patients with malignant mesothelioma. We observed a higher degree of interaction between immune cells and tumor cells in MPM compared with MPeM. Notably, within MPM tumors, we detected a significantly increased interaction between tumor cells and CD8+ T cells in tumors with low BAP1 expression compared with those with high BAP1 expression. To support the broader research community, we have developed The Human Spatial Atlas of Malignant Mesothelioma, containing hematoxylin and eosin and multiplex immunofluorescence images with corresponding metadata. SIGNIFICANCE Considering the limited therapeutic options available to patients with malignant mesothelioma, there is substantial translational potential in understanding the correlation between the spatial architecture of the malignant mesothelioma tumor immune microenvironment and tumor biology. Our investigation reveals critical cell-cell interactions that may influence the immune response against malignant mesothelioma tumors, potentially contributing to the differential behaviors observed in MPM and MPeM. These findings represent a valuable resource for the malignant mesothelioma cancer research community.
Collapse
Affiliation(s)
- Xiaojun Ma
- UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - David Lembersky
- UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Elena S. Kim
- UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Michael J. Becich
- UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Tullia C. Bruno
- UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Hatice U. Osmanbeyoglu
- UPMC Hillman Cancer Center, Cancer Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania.
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
| |
Collapse
|
13
|
Reveneau MF, Masliah-Planchon J, Fernandez M, Ouikene A, Dron B, Dadamessi I, Dayen C, Golmard L, Chauffert B. Major response of a peritoneal mesothelioma to nivolumab and ipilimumab: a case report, molecular analysis and review of literature. Front Oncol 2024; 14:1410322. [PMID: 39091916 PMCID: PMC11291227 DOI: 10.3389/fonc.2024.1410322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPM) is a rare tumor associated with a poor prognosis and a lack of consensus regarding treatment strategies. While the Checkmate 743 trial demonstrated the superiority of first-line nivolumab and ipilimumab over chemotherapy in malignant pleural mesothelioma (MPlM), few studies have assessed the effectiveness of immunotherapy against MPM, due to its rarity. Here, we report a major and sustained 12-month response in a 74-year-old female patient who received the anti-PD-1 nivolumab and the anti-CTLA4 ipilimumab as first-line therapy for diffuse MPM. PD-L1 was expressed and BAP1 expression was lost, as shown by immunohistochemistry, however the BAP1 gene was not mutated. Our findings suggest a role for ICI in non-resectable diffuse MPM exhibiting PD-L1 overexpression and loss of BAP1 expression, and instill new hope in their treatment. To our knowledge, this is the second reported case of dual immunotherapy used as first-line in MPM with a major clinical response. To investigate the clinical outcome, we conducted additional molecular analyses of the MPM tumor and we reviewed the literature on immunotherapy in MPM to discuss the role of PD-L1 and BAP1.
Collapse
Affiliation(s)
- Marie-Florence Reveneau
- Department of Genetics, Institut Curie, Paris, France
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| | | | - Manuel Fernandez
- Department of Radiology, Saint Quentin Hospital, Saint Quentin, France
| | - Abdenour Ouikene
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| | - Bernard Dron
- Department of Digestive Surgery, Saint Quentin Hospital, Saint Quentin, France
| | - Innocenti Dadamessi
- Department of Digestive Surgery, Saint Quentin Hospital, Saint Quentin, France
| | - Charles Dayen
- Department of Pneumology, Saint Quentin Hospital, Saint Quentin, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
| | - Bruno Chauffert
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| |
Collapse
|
14
|
Agiannitopoulos K, Katseli A, Potska K, Ntogka C, Tsaousis GN, Tsoulos N, Kampoli K, Ntavatzikos A, Papadopoulou E, Nasioulas G, Koumarianou A. Germline Co-deletion of CDKN2A and CDKN2B Genes in Pleomorphic Xanthoastrocytoma: Case Report. In Vivo 2024; 38:1671-1676. [PMID: 38936911 PMCID: PMC11215628 DOI: 10.21873/invivo.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Gliomas are highly heterogeneous malignancies originating from diverse cell types within the brain. Although their precise etiology is frequently unknown, risk factors, such as chemical exposure, radiation, and specific uncommon genetic disorders have been identified. Diagnosis typically entails imaging tests, such as magnetic resonance imaging and computed tomography, complemented by a biopsy for confirmation, which may be further validated through genetic testing. CASE REPORT Next-generation sequencing technology revealed germline co-deletion deletion of cyclin-dependent kinase inhibitor 2 A and B genes (CDKN2A and CDKN2B) in a patient diagnosed with pleomorphic xanthoastrocytoma based on the tumor's molecular characteristics. Following this result, we performed focused genetic analysis with use of multiplex ligation-dependent probe amplification technology for the mother that revealed the same co-deletion. Moreover, due to the father's neuroendocrine pancreatic cancer, application of the NGS technology detected a pathogenic variant in the BRCA1-interacting helicase 1 (BRIP1) gene. Comprehensive multi-gene testing conducted within the familial context, marked by a varied spectrum of cancer type, revealed a constellation of genetic predispositions. CONCLUSION This case study underscores the critical importance of molecular testing for tumor characterization and highlights the pivotal role of genetic testing in facilitating early intervention and screening for at-risk family members. Furthermore, the identification of germline co-deletions in cancer lays the foundation for the development of targeted therapeutic strategies aimed at restoring normal cellular regulation and improving patient management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katerina Kampoli
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anastasios Ntavatzikos
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
15
|
Nie M, Sun Z, Li N, Zhou L, Wang S, Yuan M, Chen R, Zhao L, Li J, Bai C. Genomic and T cell repertoire biomarkers associated with malignant mesothelioma survival. Thorac Cancer 2024; 15:1502-1512. [PMID: 38798202 PMCID: PMC11219294 DOI: 10.1111/1759-7714.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is an exceedingly rare tumor with poor prognosis due to the limited availability of effective treatment. Immunotherapy has emerged as a novel treatment approach for MM, but less than 40% of the patients benefit from it. Thus, it is necessary to identify accurate and effective biomarkers that can predict the overall survival (OS) and immunotherapy efficacy for MM. METHODS DNA sequencing was used to identify the genomic landscape based on the data from 86 Chinese patients. T cell receptor (TCR) sequencing was used to characterize MM TCR repertoires of 28 patients between October 2016 and April 2023. RESULTS Patients with TP53, NF2, or CDKN2A variants at the genomic level, as well as those exhibiting lower Shannon index (<6.637), lower evenness (<0.028), or higher clonality (≥0.194) according to baseline tumor tissue TCR indexes, demonstrated poorer OS. Furthermore, patients with TP53, CDKN2A, or CDKN2B variants and those with a lower evenness (<0.030) in baseline tumor tissue showed worse immunotherapy efficacy. The present study is the first to identify five special TCR Vβ-Jβ rearrangements associated with MM immunotherapy efficacy. CONCLUSIONS The present study reported the largest-scale genomic landscape and TCR repertoire of MM in Chinese patients and identified genomic and TCR biomarkers for the prognosis and immunotherapy efficacy in MM. The study results might provide new insights for prospective MM trials using specific genes, TCR indexes, and TCR clones as biomarkers and offer a reference for future antitumor drugs based on TCR-specific clones.
Collapse
Affiliation(s)
- Muwen Nie
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ningning Li
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | | | | | | | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ji Li
- Department of Pathology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
16
|
Bertoli E, De Carlo E, Bortolot M, Stanzione B, Del Conte A, Spina M, Bearz A. Targeted Therapy in Mesotheliomas: Uphill All the Way. Cancers (Basel) 2024; 16:1971. [PMID: 38893092 PMCID: PMC11171080 DOI: 10.3390/cancers16111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mesothelioma (MM) is an aggressive and lethal disease with few therapeutic opportunities. Platinum-pemetrexed chemotherapy is the backbone of first-line treatment for MM. The introduction of immunotherapy (IO) has been the only novelty of the last decades, allowing an increase in survival compared to standard chemotherapy (CT). However, IO is not approved for epithelioid histology in many countries. Therefore, therapy for relapsed MM remains an unmet clinical need, and the prognosis of MM remains poor, with an average survival of only 18 months. Increasing evidence reveals MM complexity and heterogeneity, of which histological classification fails to explain. Thus, scientific focus on possibly new molecular markers or cellular targets is increasing, together with the search for target therapies directed towards them. The molecular landscape of MM is characterized by inactivating tumor suppressor alterations, the most common of which is found in CDKN2A, BAP1, MTAP, and NF2. In addition, cellular targets such as mesothelin or metabolic enzymes such as ASS1 could be potentially amenable to specific therapies. This review examines the major targets and relative attempts of therapeutic approaches to provide an overview of the potential prospects for treating this rare neoplasm.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| |
Collapse
|
17
|
Fen FU, Yang ZHANG, Hong SHEN. [Advances in Targeted Therapy for Malignant Pleural Mesothelioma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:391-398. [PMID: 38880927 PMCID: PMC11183316 DOI: 10.3779/j.issn.1009-3419.2024.102.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 06/18/2024]
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer with high malignancy and aggressiveness on the pleural, caused by the following risk factors including asbestos inhalation, genetic factors, and genetic mutation. The present chemotherapy, antiangiogenic therapy, and immunotherapy methods are ineffective and the survival time of patients is very short. There is an urgent need to find potential therapeutic targets for MPM. At present, it has been found the following types of targets: gene mutation targets such as BRCA associated protein 1 (BAP1) and cyclin-dependent kinase 2A (CDKN2A); epigenetic targets such as lysine (K)-specific demethylase 4A (KDM4A) and lysine-specific demethylase 1 (LSD1), and signal protein targets such as glucose-regulated protein 78 (GRP78) and signal transducer and activator of transcription 3 (STAT3). So far, available clinical trials include phase II clinical trials of histone methyltransferase inhibitor Tazemetostat, poly (ADP-ribose) polymerase (PARP) inhibitor Rucaparib and cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor Abemaciclib, as well as phase I clinical trials of mesothelin-targeting chimeric antigen receptor T-cell immunotherapy (CAR-T) cell injection in the thoracic cavity and TEA domain family member (TEAD) inhibitor VT3989 and IK-930, and the results of these trials have showed certain clinical efficacy.
.
Collapse
|
18
|
Hung YP, Chirieac LR. Molecular and Immunohistochemical Testing in Mesothelioma and Other Mesothelial Lesions. Arch Pathol Lab Med 2024; 148:e77-e89. [PMID: 38190277 DOI: 10.5858/arpa.2023-0213-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 01/10/2024]
Abstract
CONTEXT.— Molecular testing has increasingly been utilized in the evaluation of mesothelioma. Diffuse mesothelioma comprises multiple distinct genetic subgroups. While most diffuse mesotheliomas lack oncogenic kinase mutations and instead harbor alterations involving tumor suppressors and chromatin regulators, a minor subset of tumors is characterized by uncommon alterations such as germline mutations, genomic near-haploidization, ALK rearrangement, ATF1 rearrangement, or EWSR1::YY1 fusion. OBJECTIVE.— To provide updates on the salient molecular features of diffuse mesothelioma, mesothelioma in situ, and other mesothelial lesions: well-differentiated papillary mesothelial tumor, adenomatoid tumor, peritoneal inclusion cyst, and others. We consider the diagnostic, prognostic, and predictive utility of molecular testing in mesothelial lesions. DATA SOURCES.— We performed a literature review of recently described genetic features, molecular approaches, and immunohistochemical tools, including BAP1, MTAP, and merlin in mesothelioma and other mesothelial lesions. CONCLUSIONS.— Our evolving understanding of the molecular diversity of diffuse mesothelioma and other mesothelial lesions has led to considerable changes in pathology diagnostic practice, including the application of immunohistochemical markers such as BAP1, MTAP, and merlin (NF2), which are surrogates of mutation status. In young patients and/or those without significant asbestos exposure, unusual mesothelioma genetics such as germline mutations, ALK rearrangement, and ATF1 rearrangement should be considered.
Collapse
MESH Headings
- Humans
- Mesothelioma/diagnosis
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Immunohistochemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Neoplasms, Mesothelial/diagnosis
- Neoplasms, Mesothelial/genetics
- Neoplasms, Mesothelial/metabolism
- Neoplasms, Mesothelial/pathology
- Mesothelioma, Malignant/diagnosis
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/pathology
- Mesothelioma, Malignant/metabolism
- Mutation
- Tumor Suppressor Proteins
- Ubiquitin Thiolesterase
Collapse
Affiliation(s)
- Yin P Hung
- From the Department of Pathology, Massachusetts General Hospital. Boston (Hung)
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
| | - Lucian R Chirieac
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Chirieac)
| |
Collapse
|
19
|
Alnassar N, Derry JMJ, Banna GL, Gorecki DC. Differential expression of DMD transcripts as a novel prognostic biomarker in histologically diverse mesotheliomas. Transl Lung Cancer Res 2024; 13:733-748. [PMID: 38736495 PMCID: PMC11082705 DOI: 10.21037/tlcr-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
Background The identification of prognostic biomarkers is crucial for guiding treatment strategies in mesothelioma patients. The Duchenne muscular dystrophy (DMD) gene and its specific transcripts have been associated with patient survival in various tumours. In this study, we aimed to investigate the prognostic potential of DMD gene expression and its transcripts in mesothelioma patients. Methods We analysed The Cancer Genome Atlas (TCGA) mesothelioma RNAseq, mutation, and clinical data to assess the association between DMD gene expression and its transcripts (Dp427, Dp71 splice variants) and mesothelioma survival. We also evaluated the specific Dp71 transcript as a unique prognostic biomarker across mesothelioma subtypes. Additionally, we performed differential gene expression analysis between high and low DMD gene/transcript expression groups. Results The analysis included 57 epithelioid, 23 biphasic, two sarcomatoid, and five not otherwise specified (NOS) histological subtypes of mesothelioma samples. Univariate analysis revealed that high expression of the DMD gene and its Dp71 transcript was significantly associated with shorter survival in mesothelioma patients (P=0.003 and P<0.001, respectively). In a multivariate analysis, the association between Dp71 expression and survival remained significant [hazard ratio (HR) 2.29, 95% confidence interval (CI): 1.24-4.23, P=0.008] across all mesothelioma patients, and also among patients with mesotheliomas without deep CDKN2A deletions (HR 3.58, 95% CI: 1.31-9.80, P=0.01). Pathway analysis revealed enrichment of cell cycle (P=3.01×10-4) and homologous recombination (P=0.01) pathways in differentially expressed genes (DEGs) between high and low Dp71 groups. Furthermore, there were correlations between Dp71 transcript expression and tumour microenvironment (TME) cells, including a weak positive correlation with macrophages (R=0.32, P=0.002) specifically M2 macrophages (R=0.34, P=0.001). Conclusions Our findings indicate that the differential expression of specific DMD transcripts is associated with poor survival in mesothelioma patients. The specific Dp71 transcript can serve as a potential biomarker for predicting patient survival in diverse histological subtypes of mesothelioma. Further studies are needed to understand the role of specific dystrophin transcripts in cancer and TME cells, and their implications in the pathogenesis and progression of mesothelioma. Identifying patients at risk of poor survival based on DMD transcript expression can guide treatment strategies in mesothelioma, informing decisions regarding treatment intensity, follow-up schedules, eligibility for clinical trials, and ultimately, end-of-life care planning.
Collapse
Affiliation(s)
- Nancy Alnassar
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Giuseppe Luigi Banna
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Cosham, Portsmouth, UK
| | - Dariusz C. Gorecki
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
20
|
Nel AE, Pavlisko EN, Roggli VL. The Interplay Between the Immune System, Tumor Suppressor Genes, and Immune Senescence in Mesothelioma Development and Response to Immunotherapy. J Thorac Oncol 2024; 19:551-564. [PMID: 38000500 DOI: 10.1016/j.jtho.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.
Collapse
Affiliation(s)
- Andre E Nel
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California; Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | | | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
21
|
Papavassiliou KA, Sofianidi AA, Papavassiliou AG. YAP/TAZ-TEAD signalling axis: A new therapeutic target in malignant pleural mesothelioma. J Cell Mol Med 2024; 28:e18330. [PMID: 38606782 PMCID: PMC11010261 DOI: 10.1111/jcmm.18330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Hippo signalling pathway, a highly conserved signalling cassette, regulates organ size by controlling cell growth, apoptosis and stem cell self-renewal. The tumourigenic potential of this pathway is largely attributed to the activity of YAP/TAZ, which activate the TEAD1-4 transcription factors, leading to the expression of genes involved in cell proliferation and suppression of cell death. Aberrant regulation of the YAP/TAZ-TEAD signalling axis is commonly observed in malignant pleural mesothelioma (MPM), an insidious neoplasm of the pleural tissue that lines the chest cavity and covers the lungs with poor prognosis. Given the limited effectiveness of current treatments, targeting the YAP/TAZ-TEAD signalling cascade has emerged as a promising therapeutic strategy in MPM. Several inhibitors of the YAP/TAZ-TEAD signalling axis are presently undergoing clinical development, with the goal of advancing them to clinical use in the near future.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Amalia A. Sofianidi
- Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
22
|
Yun KM, Bazhenova L. Emerging New Targets in Systemic Therapy for Malignant Pleural Mesothelioma. Cancers (Basel) 2024; 16:1252. [PMID: 38610930 PMCID: PMC11011044 DOI: 10.3390/cancers16071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) is a heterogeneous cancer composed of distinct molecular and pathologic subtypes. Unfortunately, MPM is aggressive, and current therapies for advanced, unresectable disease remain limited to cytotoxic chemotherapy and immunotherapy. Our understanding of the genomic landscape of MPM is steadily growing, while the discovery of effective targeted therapies in MPM has advanced more slowly than in other solid tumors. Given the prevalence of alterations in tumor suppressor genes in MPM, it has been challenging to identify actionable targets. However, efforts to characterize the genetic signatures in MPM over the last decade have led to a range of novel targeted therapeutics entering early-phase clinical trials. In this review, we discuss the advancements made thus far in targeted systemic therapies in MPM and the future direction of targeted strategies in patients with advanced MPM.
Collapse
Affiliation(s)
- Karen M. Yun
- Division of Hematology-Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, CA 92093, USA;
| | | |
Collapse
|
23
|
Shimizu D, Ishibashi M, Yamada T, Toda Y, Hosogi S, Ashihara E. POLD1 Is Required for Cell Cycle Progression by Overcoming DNA Damage in Malignant Pleural Mesothelioma. Cancer Genomics Proteomics 2024; 21:158-165. [PMID: 38423601 PMCID: PMC10905272 DOI: 10.21873/cgp.20437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND/AIM The prognosis of patients with malignant pleural mesothelioma (MPM) remains poor due to lack of effective therapeutic targets. DNA damage caused by long-time exposure to asbestos fibers has been associated with the development of MPM, with mutations at genes encoding DNA damage repair (DDR)-related molecules frequently expressed in patients with MPM. The present study was designed to identify novel therapeutic targets in MPM using large public databases, such as The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression project (GTEx) focused on DDR pathways. MATERIALS AND METHODS The correlations between mRNA expression levels of DDR-related genes and overall survival (OS) were analyzed in mesothelioma patients in TCGA mesothelioma (TCGA-MESO) datasets. The anti-tumor effects of small interfering RNAs (siRNA) against DDR-related genes associated with OS were subsequently tested in MPM cell lines. RESULTS High levels of mRNA encoding DNA polymerase delta 1, catalytic subunit (POLD1) were significantly associated with reduced OS in patients with MPM (p<0.001, Log-rank test). In addition, siRNA targeting POLD1 (siPOLD1) caused cell cycle arrest at the G1/S checkpoint and induced apoptosis involving accumulation of DNA damage in MPM cell lines. CONCLUSION POLD1 plays essential roles in overcoming DNA damage and cell cycle progression at the G1/S checkpoint in MPM cells. These findings suggest that POLD1 may be a novel therapeutic target in MPM.
Collapse
Affiliation(s)
- Daiki Shimizu
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miku Ishibashi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Toda
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shigekuni Hosogi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Eishi Ashihara
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan;
| |
Collapse
|
24
|
Tagliamento M, Morfouace M, Loizides C, Oliveira J, Greillier L, Raimbourg J, Toffart AC, Chatellier T, Cloarec N, Sullivan I, Brasiuniene B, Duruisseaux M, Oselin K, Robert MS, Fernandes C, Poncin A, Blay JY, Besse B, Girard N. EORTC-SPECTA Arcagen study, comprehensive genomic profiling and treatment adaptation of rare thoracic cancers. NPJ Precis Oncol 2024; 8:37. [PMID: 38366021 PMCID: PMC10873296 DOI: 10.1038/s41698-024-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
Arcagen (NCT02834884) is a European prospective study aiming at defining the molecular landscape of rare cancers for treatment guidance. We present data from the cohort of rare thoracic tumors. Patients with advanced pleural mesothelioma (PM) or thymic epithelial tumors (TET) underwent genomic profiling with large targeted assay [>300 genes, tumor mutational burden (TMB), microsatellite instability (MSI) status] on formalin-fixed paraffin-embedded (FFPE) or plasma samples. EORTC molecular tumor board (MTB) advised for biomarker-guided treatments. 102 patients recruited from 8 countries between July 2019 and May 2022 were evaluable: 56 with PM, 46 with TET (23 thymomas, 23 thymic carcinomas). Molecular profiling was performed on 70 FFPE samples (42 PM, 28 TET), and 32 cases on ctDNA (14 PM, 18 TET), within a median turnaround time of 8 days from sample reception. We detected relevant molecular alterations in 66 out of 102 patients (65%; 79% PM, 48% TET), 51 of 70 FFPE samples (73%; 90% PM, 46% TET), and 15 of 32 plasma samples (47%; 43% PM, 50% TET). The most frequently altered genes were CDKN2A/B, BAP1, MTAP in PM and TP53, CDKN2A/B, SETD2 in TET. The TMB was low (mean 3.2 Muts/MB), 2 PM had MSI-high status. MTB advised molecular-guided treatment options in 32 situations, for 17 PM and 15 TET patients (75% clinical trial option, 22% off-label drug or compassionate use, 3% early access program). Molecular testing and MTB discussion were feasible for patients with rare thoracic cancers and allowed the broadening of treatment options for 30% of the cases.
Collapse
Affiliation(s)
- Marco Tagliamento
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy.
| | | | | | - Julio Oliveira
- Medical Oncology Department, Instituto Portugues de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | - Laurent Greillier
- Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Multidisciplinary Oncology and Therapeutic Innovations Department, Marseille, France
| | - Judith Raimbourg
- Department of Medical Oncology, Nantes Université, Institut de Cancerologie de l'Ouest, Saint-Herblain, France
| | | | - Thierry Chatellier
- Clinique Mutualiste de l'Estuaire - Centre d'Oncologie, Saint Nazaire, France
| | - Nicolas Cloarec
- Service d'Oncologie Médicale et Hématologie Clinique, Centre Hospitalier d'Avignon, Avignon, France
| | - Ivana Sullivan
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Birute Brasiuniene
- Department of Medical Oncology of National Cancer Institute, Faculty of Medicine of Vilnius University, Vilnius, Lithuania
| | - Michael Duruisseaux
- Department of Medical Oncology, CHU de Lyon - Hôpital Lyon Sud, Lyon, France
| | - Kersti Oselin
- Department of Chemotherapy, Clinic of Oncology and Hematology, North Estonia Medical Centre, Tallinn, Estonia
| | | | | | | | - Jean-Yves Blay
- Department of Medicine, Centre Léon Bérard, Lyon, France
| | - Benjamin Besse
- Paris-Saclay University, Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| |
Collapse
|
25
|
Oliveto S, Ritter P, Deroma G, Miluzio A, Cordiglieri C, Benvenuti MR, Mutti L, Raimondi MT, Biffo S. The Impact of 3D Nichoids and Matrix Stiffness on Primary Malignant Mesothelioma Cells. Genes (Basel) 2024; 15:199. [PMID: 38397189 PMCID: PMC10887956 DOI: 10.3390/genes15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant mesothelioma is a type of cancer that affects the mesothelium. It is an aggressive and deadly form of cancer that is often caused by exposure to asbestos. At the molecular level, it is characterized by a low number of genetic mutations and high heterogeneity among patients. In this work, we analyzed the plasticity of gene expression of primary mesothelial cancer cells by comparing their properties on 2D versus 3D surfaces. First, we derived from primary human samples four independent primary cancer cells. Then, we used Nichoids, which are micro-engineered 3D substrates, as three-dimensional structures. Nichoids limit the dimension of adhering cells during expansion by counteracting cell migration between adjacent units of a substrate with their microarchitecture. Tumor cells grow effectively on Nichoids, where they show enhanced proliferation. We performed RNAseq analyses on all the samples and compared the gene expression pattern of Nichoid-grown tumor cells to that of cells grown in a 2D culture. The PCA analysis showed that 3D samples were more transcriptionally similar compared to the 2D ones. The 3D Nichoids induced a transcriptional remodeling that affected mainly genes involved in extracellular matrix assembly. Among these genes responsible for collagen formation, COL1A1 and COL5A1 exhibited elevated expression, suggesting changes in matrix stiffness. Overall, our data show that primary mesothelioma cells can be effectively expanded in Nichoids and that 3D growth affects the cells' tensegrity or the mechanical stability of their structure.
Collapse
Affiliation(s)
- Stefania Oliveto
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (S.O.); (G.D.)
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Paolo Ritter
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Giorgia Deroma
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (S.O.); (G.D.)
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Annarita Miluzio
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Luciano Mutti
- Department of Applied Clinical Sciences and Biotechnology, DISCAB, Aquila University, 67100 L’ Aquila, Italy;
- Department of Biotechnology, SHRO, Temple University, Philadelphia, PA 19122, USA
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Stefano Biffo
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (S.O.); (G.D.)
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, 20122 Milan, Italy; (P.R.); (A.M.); (C.C.)
| |
Collapse
|
26
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
27
|
de Miguel-Perez D, Pickering EM, Malapelle U, Grier W, Pepe F, Pisapia P, Russo G, Pinto JA, Russo A, Troncone G, Culligan MJ, Scilla KA, Mehra R, Mohindra P, Arrieta O, Cardona AF, Del Re M, Sachdeva A, Hirsch FR, Wolf A, Friedberg JS, Rolfo C. Genomic profiling of tissue and blood predicts survival outcomes in patients with resected pleural mesothelioma. Eur J Cancer 2024; 196:113457. [PMID: 38008032 DOI: 10.1016/j.ejca.2023.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE Pleural mesothelioma (PM) is an aggressive tumor still considered incurable, in part due to the lack of predictive biomarkers. Little is known about the clinical implications of molecular alterations in resectable PM tissues and blood. Here, we characterized genetic alterations to identify prognostic and predictive biomarkers in patients with resected PM. EXPERIMENTAL DESIGN Targeted next-generation sequencing was performed in retrospective pleural tumor tissue and paired plasma samples from stage IB-IIIB resected PM. Association between prognosis and presence of specific mutations was validated in silico. RESULTS Thirty PM tissues and paired blood samples from 12 patients were analyzed. High tissue tumor mutational burden (TMB) (>10 mutations/Mb), tissue median minor allele frequency (MAF) (>9 mutations/Mb), and blood TMB (>6 mutations/Mb), tissue KMT2C, PBRM1, PKHD1,EPHB1 and blood LIFR mutations correlated with longer disease-free survival and/or overall survival. High concordance (>80%) between tissue and blood was found for some mutations. CONCLUSIONS Tissue TMB and MAF, blood TMB, and specific mutations correlated with outcomes in patients with resected PM and should be further studied to validate their role as prognostic biomarkers and potentially predictive factors for combinations with immune-checkpoint inhibitors. This suggest that molecular profiling could identify longer survivors in patients with resected PM.
Collapse
Affiliation(s)
- Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward M Pickering
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - William Grier
- Division of Pulmonary and Critical Care Medicine, University of Maryland Medical Center, Baltimore, MD, USA
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Joseph A Pinto
- Centro de Investigación Básica y Traslacional, Auna Ideas, Lima, Peru
| | - Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Melissa J Culligan
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, USA
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Andres F Cardona
- Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC) / Foundation for Clinical and Applied Cancer Research (FICMAC) / Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Marzia Del Re
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh Sachdeva
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Wolf
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph S Friedberg
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Yu M, Yang D, Chen C, Xia H. Effects of SETD2 on telomere length and malignant transformation property of Met-5A after one-month crocidolite exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:121-134. [PMID: 37899647 DOI: 10.1080/26896583.2023.2271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crocidolite is a carcinogen contributing to the pathogenesis of malignant mesothelioma. This study aimed to characterize the possible telomere-related events mediating the malignant transformation of mesothelial cells with and without SETD2 under crocidolite exposure. The crocidolite concentration resulting in 90% viable SETD2 knockout Met-5A (Met-5ASETD2-KO) and Met-5A were estimated to be 0.71 μg/cm2 and 1.8 μg/cm2, respectively, during 72 h of exposure, which was further employed in chronical crocidolite exposure during a 72 h exposure interval per time up to 1 month. Chronical crocidolite-exposed Met-5ASETD2-KO (chronical Cro-Met-5ASETD2-KO) had higher colony formation and increased telomerase reverse transcriptase (TERT) protein levels than chronical crocidolite-exposed Met-5A (chronical Cro-Met-5A) and Met-5ASETD2-KO. Chronical Cro-Met-5ASETD2-KO had longer telomere length (TL) than chronical Cro-Met-5A, although there were no changes in TL for either chronical Cro-Met-5A or chronical Cro-Met-5ASETD2-KO compared with their corresponding cells without crocidolite exposure. BIBR 1532, an inhibitor targeting TERT, partially reduced colony formation and TL for chronical Cro-Met-5ASETD2-KO, while BIBR 1532 reduced TL but had no effect on colony formation for chronical Cro-Met-5A. Therefore, SETD2 deficient mesothelial cells are susceptible to malignant transformation during chronical crocidolite exposure, and TERT-dependent TL modification likely partially drives SETD2 loss-mediated early onset of mesothelial malignant transformation.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Health & Radiation Hygiene, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, Zhejiang, China
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dan Yang
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chiyun Chen
- Department of Pulmonary and Critical Care Medicine, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, Zhejiang, China
| | - Hailing Xia
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Cerbone L, Orecchia S, Bertino P, Delfanti S, de Angelis AM, Grosso F. Clinical Next Generation Sequencing Application in Mesothelioma: Finding a Golden Needle in the Haystack. Cancers (Basel) 2023; 15:5716. [PMID: 38136262 PMCID: PMC10741845 DOI: 10.3390/cancers15245716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mesothelioma comprises a group of rare cancers arising from the mesothelium of the pleura, peritoneum, tunica vaginalis testis and pericardium. Mesothelioma is generally associated with asbestos exposure and has a dismal prognosis, with few therapeutic options. Several next generation sequencing (NGS) experiments have been performed on mesothelioma arising at different sites. These studies highlight a genomic landscape mainly characterized by a high prevalence (>20%) of genomic aberrations leading to functional losses in oncosuppressor genes such as BAP1, CDKN2A, NF2, SETD2 and TP53. Nevertheless, to date, evidence of the effect of targeting these alterations with specific drugs is lacking. Conversely, 1-2% of mesothelioma might harbor activating mutations in oncogenes with specifically approved drugs. The goal of this review is to summarize NGS applications in mesothelioma and to provide insights into target therapy of mesothelioma guided by NGS.
Collapse
Affiliation(s)
- Luigi Cerbone
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Sara Orecchia
- Molecular Pathology Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy;
| | - Pietro Bertino
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Sara Delfanti
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Antonina Maria de Angelis
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Federica Grosso
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| |
Collapse
|
30
|
Nash A, Creaney J. Genomic Landscape of Pleural Mesothelioma and Therapeutic Aftermaths. Curr Oncol Rep 2023; 25:1515-1522. [PMID: 38015374 PMCID: PMC10728264 DOI: 10.1007/s11912-023-01479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW In this article, we provide a comprehensive analysis of recent progress in the genetic characterisation of pleural mesothelioma, and the translation of these findings to clinical practice. RECENT FINDINGS Advancements in sequencing technology have allowed the identification of driver mutations and improved our understanding of how these mutations may shape the mesothelioma tumour microenvironment. However, the identification of frequently mutated regions including CDKN2A, BAP1 and NF2 have, to date, not yet yielded targeted therapy options that outperform standard chemo- and immunotherapies. Similarly, the association between mutational profile and the immune microenvironment or immunotherapy response is not well characterised. Further research into the link between tumour mutational profile and response to therapy is critical for identifying targetable vulnerabilities and stratifying patients for therapy.
Collapse
Affiliation(s)
- Alistair Nash
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
- Medical School, University of Western Australia, Perth, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia.
- Medical School, University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
- Department for Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia.
- The University of Western Australia, Level 5, Harry Perkins Building, QQ Block, QEII Medical Centre, 6 Verdun St., Nedlands, WA, 6009, Australia.
| |
Collapse
|
31
|
Dudek AZ, Xi MX, Scilla KA, Mamdani H, Creelan BC, Saltos A, Tanvetyanon T, Chiappori A. Phase 2 Trial of Nivolumab and Ramucirumab for Relapsed Mesothelioma: HCRN-LUN15-299. JTO Clin Res Rep 2023; 4:100584. [PMID: 38046376 PMCID: PMC10689266 DOI: 10.1016/j.jtocrr.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction We hypothesized that ramucirumab could increase previously reported objective response rate (ORR) of 11% of single-agent nivolumab in the second-line therapy of unresectable mesothelioma. Methods This was a cooperative group, single-arm, phase 2 trial enrolling patients with unresectable mesothelioma after progression on more than or equal to one pemetrexed-containing regimen. Ramucirumab and nivolumab were given intravenously every 14 days for up to 24 months. The primary end point was ORR; secondary end points were progression-free survival (PFS) rate at 24 weeks and overall survival (OS). Results Between April 2018 and October 2021, 34 patients were recruited. Median age was 72 (range: 40-89) years, 12% were women, and 79% of tumors had epithelial histology. Median follow-up was 10.2 months (interquartile range 19.6 mo [4.3-23.8]). ORR was 22.6% (95% confidence interval [CI]: 9.6%-41.1%) in all population and 43% (95% CI: 10%-82%) in patients with nonepithelioid histology. Of all patients, 45.2% (95% CI: 27.3%-64.0%) had stable disease. PFS rate at 24 weeks was 32% (95% CI: 17%-51%). Median PFS was 4.2 months (95% CI: 1.9-6.4 mo). Median OS was 12.5 months (95% CI: 6.3-23.5 mo). There was no grade greater than or equal to four toxicity. Programmed death-ligand 1 expression in the tumor did not correlate with benefit from treatment. Activation of tumor-infiltrating lymphocytes in response to treatment was associated with a trend toward improvement in PFS. Conclusions Nivolumab and ramucirumab combination was safe and generated PFS and OS rates and ORR that compare favorably with single-agent nivolumab in a similar patient population. The primary end point of 40% ORR was not reached. Further investigation of this regimen in mesothelioma with nonepithelioid histology may be warranted. Clinical Trial Information: NCT03502746.
Collapse
Affiliation(s)
- Arkadiusz Z. Dudek
- HealthPartners Institute, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Min X. Xi
- HealthPartners Institute, Minneapolis, Minnesota
| | - Katherine A. Scilla
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Hirva Mamdani
- Karmanos Cancer Center, Wayne State University, Detroit, Michigan
| | | | | | | | | |
Collapse
|
32
|
Zhao J, Reuther J, Scozzaro K, Hawley M, Metzger E, Emery M, Chen I, Barbosa M, Johnson L, O'Connor A, Washburn M, Hartje L, Reckase E, Johnson V, Zhang Y, Westheimer E, O'Callaghan W, Malani N, Chesh A, Moreau M, Daber R. Personalized Cancer Monitoring Assay for the Detection of ctDNA in Patients with Solid Tumors. Mol Diagn Ther 2023; 27:753-768. [PMID: 37632661 PMCID: PMC10590345 DOI: 10.1007/s40291-023-00670-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Highly sensitive molecular assays have been developed to detect plasma-based circulating tumor DNA (ctDNA), and emerging evidence suggests their clinical utility for monitoring minimal residual disease and recurrent disease, providing prognostic information, and monitoring therapy responses in patients with solid tumors. The Invitae Personalized Cancer Monitoring™ assay uses a patient-specific, tumor-informed variant signature identified through whole exome sequencing to detect ctDNA in peripheral blood of patients with solid tumors. METHODS The assay's tumor whole exome sequencing and ctDNA detection components were analytically validated using 250 unique human specimens and nine commercial reference samples that generated 1349 whole exome sequencing and cell-free DNA (cfDNA)-derived libraries. A comparison of tumor and germline whole exome sequencing was used to identify patient-specific tumor variant signatures and generate patient-specific panels, followed by targeted next-generation sequencing of plasma-derived cfDNA using the patient-specific panels with anchored multiplex polymerase chain reaction chemistry leveraging unique molecular identifiers. RESULTS Whole exome sequencing resulted in overall sensitivity of 99.8% and specificity of > 99.9%. Patient-specific panels were successfully designed for all 63 samples (100%) with ≥ 20% tumor content and 24 (80%) of 30 samples with ≥ 10% tumor content. Limit of blank studies using 30 histologically normal, formalin-fixed paraffin-embedded specimens resulted in 100% expected panel design failure. The ctDNA detection component demonstrated specificity of > 99.9% and sensitivity of 96.3% for a combination of 10 ng of cfDNA input, 0.008% allele frequency, 50 variants on the patient-specific panels, and a baseline threshold. Limit of detection ranged from 0.008% allele frequency when utilizing 60 ng of cfDNA input with 18-50 variants in the patient-specific panels (> 99.9% sensitivity) with a baseline threshold, to 0.05% allele frequency when using 10 ng of cfDNA input with an 18-variant panel with a monitoring threshold (> 99.9% sensitivity). CONCLUSIONS The Invitae Personalized Cancer Monitoring assay, featuring a flexible patient-specific panel design with 18-50 variants, demonstrated high sensitivity and specificity for detecting ctDNA at variant allele frequencies as low as 0.008%. This assay may support patient prognostic stratification, provide real-time data on therapy responses, and enable early detection of residual/recurrent disease.
Collapse
Affiliation(s)
- Jianhua Zhao
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA.
| | | | - Kaylee Scozzaro
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Megan Hawley
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Emily Metzger
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Matthew Emery
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Ingrid Chen
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | - Laura Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Alijah O'Connor
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Mike Washburn
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Luke Hartje
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Erik Reckase
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Verity Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Yuhua Zhang
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | | | - Nirav Malani
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Adrian Chesh
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Michael Moreau
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Robert Daber
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| |
Collapse
|
33
|
Yang D, Chen C, Xia H, Chen J, Yu M. Characteristics of transcription profile, adhesion and migration of SETD2-loss Met-5A mesothelial cells exposed with crocidolite. J Appl Toxicol 2023; 43:1511-1521. [PMID: 37147272 DOI: 10.1002/jat.4493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Asbestos is a fibrous silicate mineral exhibiting biopersistence and carcinogenic properties and contributes to mesothelioma. Despite the concept of gene-environmental interaction in pathogenesis of mesothelioma, the possible pathophysiological changes of mesothelial cells simultaneously with SET domain containing 2 (SETD2) loss and asbestos exposure remains obscure. Herein, CRISPR/Cas9-mediated SETD2 knockout Met-5A mesothelial cells (Met-5ASETD2-KO ) were established and exposed with crocidolite, an amphibole asbestos. Cell viability of Met-5ASETD2-KO appeared to dramatically decrease with ≥2.5 μg/cm2 crocidolite exposure as compared with Met-5A, although no cytotoxicity and apoptosis changes of Met-5ASETD2-KO and Met-5A was evident with 1.25 μg/cm2 crocidolite exposure for 48 h. RNA sequencing uncovered top 50 differentially expressed genes (DEGs) between 1.25 μg/cm2 crocidolite exposed Met-5ASETD2-KO (Cro-Met-5ASETD2-KO ) and 1.25 μg/cm2 crocidolite exposed Met-5A (Cro-Met-5A), and ITGA4, THBS2, MYL7, RAC2, CADM1, and CLDN11 appeared to be the primary DEGs involved with adhesion in gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Cro-Met-5ASETD2-KO had strong migration but mild adhesion behavior as compared with Cro-Met-5A. Additionally, crocidolite tended to increase migration of Met-5ASETD2-KO but inhibited migration of Met-5A when compared with their corresponding cells without crocidolite exposure, although no further adhesion property changes was evident for both cells in response to crocidolite. Therefore, crocidolite may affect adhesion-related gene expression and modify adhesion and migration behavior for SETD2-depleted Met-5A, which could provide preliminary insight regarding the potential role of SETD2 in the cell behavior of asbestos-related malignant mesothelial cell.
Collapse
Affiliation(s)
- Dan Yang
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chiyun Chen
- Department of Pulmonary and Critical Care Medicine, Cixi People's Hospital, Cixi, Zhejiang, China
| | - Hailing Xia
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junqiang Chen
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Min Yu
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Occupational Health & Radiation Hygiene, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
34
|
Rouka E, Jagirdar RM, Sarrigeorgiou I, Pitaraki E, Sinis SI, Varsamas C, Papazoglou ED, Kotsiou OS, Lymberi P, Giannou A, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Changes in expression of mesothelial BBS genes in 2D and 3D after lithium chloride and ammonium sulphate induction of primary cilium disturbance: a pilot study. Pharmacol Rep 2023; 75:1230-1239. [PMID: 37542187 PMCID: PMC10539424 DOI: 10.1007/s43440-023-00513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM), a rare and aggressive pleural tumor, has significant histological and molecular heterogeneity. Primary Cilium (PC), an organelle of emerging importance in malignancies, has been scarcely investigated in MPM. A critical molecular complex for the PC function is the BBSome and here we aimed at assessing its expression patterns in ordinary 2D and spheroid 3D cell cultures. METHODS A human benign mesothelial cell line (MeT-5A), MPM cell lines (M14K, epithelioid MPM; MSTO, biphasic MPM), and primary MPM cells (pMPM) were used. Primers specific for the human BBS1, 2, 4, 5, 7, 9, 18 transcripts were designed, and quantitative real-time PCR (qRT-PCR) was done with β-actin as the gene of reference. The relative gene expression across 2D and 3D cultures was analyzed by the expression factor (mean of 1/ΔCt values). With the 2-∆∆Ct method the gene expression fold changes were assessed from qRT-PCR data. Molecular changes using the PC-modulating drugs ammonium sulfate (AS) and lithium chloride (LC) were also determined. RESULTS PC was present in all cells used in the study at approximately 15% of the observed area. BBSome transcripts were differentially expressed in different dimensions of cell culture (2D vs. 3D) in all cell lines and pMPM. Treatment with AS and LC affected the expression of the ciliary BBS2 and BBS18 genes in the benign as well as in the MPM cells. CONCLUSIONS These data indicate distinct BBSome molecular profiles in human benign and MPM cells cultured in 2D and 3D dimensions and support the notion that PC genes should be investigated as potential MPM therapeutic targets.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500, Larissa, Greece
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Ioannis Sarrigeorgiou
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Charalambos Varsamas
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Eleftherios D Papazoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
- Laboratory of Human Pathophysiology, Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500, Larissa, Greece
| | - Peggy Lymberi
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Anastasios Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, UKE, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| |
Collapse
|
35
|
Schaefer IM, Mariño-Enríquez A, Hammer MM, Padera RF, Sholl LM. Recurrent Tumor Suppressor Alterations in Primary Pericardial Mesothelioma. Mod Pathol 2023; 36:100237. [PMID: 37295554 PMCID: PMC10529127 DOI: 10.1016/j.modpat.2023.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Primary pericardial mesotheliomas are extremely rare, accounting for <1% of all mesotheliomas, and their molecular genetic features and predisposing factors remain to be determined. Here, we report the clinicopathologic, immunohistochemical, and molecular genetic findings of 3 pericardial mesotheliomas without pleural involvement. Three cases diagnosed between 2004 and 2022 were included in the study and analyzed by immunohistochemistry and targeted next-generation sequencing (NGS); corresponding nonneoplastic tissue was sequenced in all cases. Two patients were female and 1 was male, aged between 66 and 75 years. Two patients each had prior asbestos exposure and were smokers. Histologic subtypes were epithelioid in 2 cases and biphasic in 1 case. Immunohistochemical staining identified expression of cytokeratin AE1/AE3 and calretinin in all cases, D2-40 in 2 cases, and WT1 in 1 case. Staining for tumor suppressors revealed loss of p16, MTAP, and Merlin (NF2) expression in 2 cases and loss of BAP1 and p53 in 1 case. Abnormal cytoplasmic BAP1 expression was observed in an additional case. Protein expression abnormalities correlated with NGS results, which showed concurrent complete genomic inactivation of CDKN2A/p16, CDKN2B, MTAP, and NF2 in 2 mesotheliomas and of BAP1 and TP53 in 1 mesothelioma each, respectively. In addition, 1 patient harbored a pathogenic BRCA1 germline mutation, which resulted in biallelic inactivation in the mesothelioma. All mesotheliomas were mismatch repair proficient and showed several chromosomal gains and losses. All patients died from disease. Our study demonstrates that pericardial mesotheliomas share common morphologic, immunohistochemical, and molecular genetic features with pleural mesothelioma, including recurrent genomic inactivation of canonical tumor suppressors. Our study adds new insights into the genetic landscape of primary pericardial mesothelioma and highlights BRCA1 loss as a potential contributing factor in a subset of cases, thereby contributing to refined precision diagnostics for this rare cancer.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Adrian Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark M Hammer
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Dietz MV, van Kooten JP, Paats MS, Aerts JGVJ, Verhoef C, Madsen EVE, Dubbink HJ, von der Thüsen JH. Molecular alterations and potential actionable mutations in peritoneal mesothelioma: a scoping review of high-throughput sequencing studies. ESMO Open 2023; 8:101600. [PMID: 37453150 PMCID: PMC10368826 DOI: 10.1016/j.esmoop.2023.101600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Peritoneal mesothelioma (PeM) is a rare malignancy with a poor prognosis. Currently there is a lack of effective systemic therapies. Due to the rarity of PeM, it is challenging to study new treatment options. Off-label use of targeted drugs could be an effective approach. This scoping review aims to explore the genomic landscape of PeM to identify potential therapeutic targets. MATERIALS AND METHODS A systematic literature search of Embase, Medline, Web of Science, the Cochrane Library, and Google Scholar was carried out up to 1 November 2022. Studies that reported on molecular alterations in PeM detected by high-throughput sequencing techniques were included. Genes that were altered in ≥1% of PeMs were selected for the identification of potential targeted therapies. RESULTS Thirteen articles were included, comprising 824 PeM patients. In total, 142 genes were altered in ≥1% of patients, of which 7 genes were altered in ≥10%. BAP1 was the most commonly altered gene (50%). Other commonly altered genes were NF2 (25%), CDKN2A (23%), CDKN2B (17%), PBRM1 (15%), TP53 (14%), and SETD2 (13%). In total, 17% of PeM patients were carriers of a germline mutation, mainly in BAP1 (7%). CONCLUSIONS This scoping review provides an overview of the mutational landscape of PeM. Germline mutations might be a larger contributor to the incidence of PeM than previously thought. Currently available targeted therapy options are limited, but several targeted agents [such as poly (ADP-ribose) polymerase (PARP), enhancer of zeste homolog 2 (EZH2), and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors] were identified that might provide new targeted therapy options in the future.
Collapse
Affiliation(s)
| | | | - M S Paats
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | - J G V J Aerts
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | | | | | - H J Dubbink
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
37
|
Offin M, Fitzgerald B, Zauderer MG, Doroshow D. The past, present, and future of targeted therapeutic approaches in patients with diffuse pleural mesotheliomas. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:21. [PMID: 38895597 PMCID: PMC11185317 DOI: 10.20517/2394-4722.2022.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Despite our growing understanding of the genomic landscape of diffuse pleural mesotheliomas (DPM), there has been limited success in targeted therapeutic strategies for the disease. This review summarizes attempts to develop targeted therapies in DPM, focusing on the following targets being clinically explored in recent and ongoing clinical trials: vascular endothelial growth factor, mesothelin, BRCA1-associated protein 1, Wilms tumor 1 protein, NF2/YAP/TAZ, CDKN2, methylthioadenosine phosphorylase, v-domain Ig suppressor T-cell activation, and argininosuccinate synthetase 1. Although preclinical data for these targets are promising, few have efficaciously translated to benefit our patients. Future efforts should seek to expand the availability of preclinical models that faithfully recapitulate DPM biology, develop clinically relevant biomarkers, and refine patient selection criteria for clinical trials.
Collapse
Affiliation(s)
- Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bailey Fitzgerald
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marjorie G. Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Deborah Doroshow
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Felley-Bosco E. Exploring the Expression of the «Dark Matter» of the Genome in Mesothelioma for Potentially Predictive Biomarkers for Prognosis and Immunotherapy. Cancers (Basel) 2023; 15:cancers15112969. [PMID: 37296931 DOI: 10.3390/cancers15112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Recent high-throughput RNA sequencing technologies have confirmed that a large part of the non-coding genome is transcribed. The priority for further investigations is nevertheless generally given in cancer to coding sequences, due to the obvious interest of finding therapeutic targets. In addition, several RNA-sequencing pipelines eliminate repetitive sequences, which are difficult to analyze. In this review, we shall focus on endogenous retroviruses. These sequences are remnants of ancestral germline infections by exogenous retroviruses. These sequences represent 8% of human genome, meaning four-fold the fraction of the genome encoding for proteins. These sequences are generally mostly repressed in normal adult tissues, but pathological conditions lead to their de-repression. Specific mesothelioma-associated endogenous retrovirus expression and their association to clinical outcome is discussed.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Zürich University Hospital, 8091 Zurich, Switzerland
| |
Collapse
|
39
|
Laure A, Rigutto A, Kirschner MB, Opitz L, Grob L, Opitz I, Felley-Bosco E, Hiltbrunner S, Curioni-Fontecedro A. Genomic and Transcriptomic Analyses of Malignant Pleural Mesothelioma (MPM) Samples Reveal Crucial Insights for Preclinical Testing. Cancers (Basel) 2023; 15:2813. [PMID: 37345150 DOI: 10.3390/cancers15102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Cell lines are extensively used to study cancer biology. However, the use of highly passaged commercial cell lines has to be questioned, as they do not closely resemble the originating tumor. To understand the reliability of preclinical models for Malignant pleural mesothelioma (MPM) studies, we have performed whole transcriptome and whole exome analyses of fresh frozen MPM tumors and compared them to cell lines generated from these tumors, as well as commercial cell lines and a preclinical MPM mouse model. Patient-derived cell lines were generated from digested fresh tumors and whole exome sequencing was performed on DNA isolated from formalin-fixed, paraffin-embedded (FFPE) tumor samples, corresponding patient-derived cell lines, and normal tissue. RNA sequencing libraries were prepared from 10 fresh frozen tumor samples, the 10 corresponding patient-derived cell lines, and 7 commercial cell lines. Our results identified alterations in tumor suppressor genes such as FBXW7, CDKN2A, CDKN2B, and MTAP, all known to drive MPM tumorigenesis. Patient-derived cell lines correlate to a high degree with their originating tumor. Gene expressions involved in multiple pathways such as EMT, apoptosis, myogenesis, and angiogenesis are upregulated in tumor samples when compared to patient-derived cell lines; however, they are downregulated in commercial cell lines compared to patient-derived cell lines, indicating significant differences between the two model systems. Our results show that the genome and transcriptome of tumors correlate to a higher degree with patient-derived cell lines rather than commercial cell lines. These results are of major relevance for the scientific community in regard to using cell lines as an appropriate model, resembling the pathway of interest to avoid misleading results for clinical applications.
Collapse
Affiliation(s)
- Alexander Laure
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
| | - Angelica Rigutto
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
| | - Michaela B Kirschner
- Department of Thoracic Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Linda Grob
- NEXUS Personalized Health Technologies, ETH Zurich, CH-8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Isabelle Opitz
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
- Department of Thoracic Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Stefanie Hiltbrunner
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Medical Oncology and Haematology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Alessandra Curioni-Fontecedro
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Medical Oncology and Haematology, University Hospital Zurich, CH-8091 Zurich, Switzerland
- Department of Oncology, HFR Fribourg-Hôpital Cantonal, CH-1708 Fribourg, Switzerland
| |
Collapse
|
40
|
Sekido Y, Sato T. NF2 alteration in mesothelioma. FRONTIERS IN TOXICOLOGY 2023; 5:1161995. [PMID: 37180489 PMCID: PMC10168293 DOI: 10.3389/ftox.2023.1161995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The NF2 tumor suppressor gene is a frequent somatically mutated gene in mesothelioma, with 30%-40% mesotheliomas showing NF2 inactivation. NF2 encodes merlin, a member of the ezrin, radixin, and moesin (ERM) family of proteins that regulate cytoskeleton and cell signaling. Recent genome analysis revealed that NF2 alteration may be a late event in mesothelioma development, suggesting that NF2 mutation confers a more aggressive phenotype to mesothelioma cells and may not be directly caused by asbestos exposure. The Hippo tumor-suppressive and mTOR prooncogenic signaling pathways are crucial cell-signaling cascades regulated by merlin. Although the exact role and timing of NF2 inactivation in mesothelioma cells remain to be elucidated, targeting the NF2/merlin-Hippo pathway may be a new therapeutic strategy for patients with mesothelioma.
Collapse
Affiliation(s)
- Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
41
|
Boumya S, Fallarini S, Siragusa S, Petrarolo G, Aprile S, Audrito V, La Motta C, Garavaglia S, Moro L, Pinton G. A Selective ALDH1A3 Inhibitor Impairs Mesothelioma 3-D Multicellular Spheroid Growth and Neutrophil Recruitment. Int J Mol Sci 2023; 24:ijms24076689. [PMID: 37047661 PMCID: PMC10094992 DOI: 10.3390/ijms24076689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3), one of the three members of the aldehyde dehydrogenase 1A subfamily, has been associated with increased progression and drug resistance in various types of solid tumours. Recently, it has been reported that high ALDH1A3 expression is prognostic of poor survival in patients with malignant pleural mesothelioma (MPM), an asbestos-associated chemoresistant cancer. We treated MPM cells, cultured as multicellular spheroids, with NR6, a potent and highly selective ALDH1A3 inhibitor. Here we report that NR6 treatment caused the accumulation of toxic aldehydes, induced DNA damage, CDKN2A expression and cell growth arrest. We observed that, in CDKN2A proficient cells, NR6 treatment induced IL6 expression, but abolished CXCL8 expression and IL-8 release, preventing both neutrophil recruitment and generation of neutrophil extracellular traps (NETs). Furthermore, we demonstrate that in response to ALDH1A3 inhibition, CDKN2A loss skewed cell fate from senescence to apoptosis. Dissecting the role of ALDH1A3 isoform in MPM cells and tumour microenvironment can open new fronts in the treatment of this cancer.
Collapse
Affiliation(s)
- Sara Boumya
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Sonia Siragusa
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | | | - Silvio Aprile
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation, University of Piemonte Orientale, 15121 Alessandria, Italy
| | | | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
42
|
Vannucchi M, Pennati V, Mencaroni C, Defraia C, Bardhi L, Castiglione F, Bellan C, Comin CE. KRAS Mutations Are Associated with Shortened Survival in Patients with Epithelioid Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:cancers15072072. [PMID: 37046732 PMCID: PMC10093256 DOI: 10.3390/cancers15072072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy of the pleural surface that includes three major histologic subtypes, epitheliod, sarcomatoid and biphasic. Epithelioid mesothelioma is usually associated with better prognosis. The genetic mechanisms driving MPM, the possible target mutations and the correlation with overall survival remain largely unsettled. We performed target exome sequencing in 29 cases of MPM aimed at identifying somatic mutations and, eventually, their correlation with phenotypic traits and prognostic significance. We found that KRAS mutations, occurring in 13.7% of cases, were associated with shortened median survival (7.6 versus 32.6 months in KRAS wild-type; p = 0.005), as it was the occurrence of any ≥3 mutations (7.6 versus 37.6 months; p = 0.049). Conversely, the presence of KDR single nucleotide polymorphism p.V297I (rs2305948) resulted in a favorable variable for survival (NR versus 23.4 months; p = 0.026). With the intrinsic limitations of a small number of cases and patient heterogeneity, results of this study contribute to the characterization of the mutation profile of MPM and the impact of selected somatic mutations, and possibly KDR polymorphism, on prognosis.
Collapse
Affiliation(s)
- Margherita Vannucchi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence:
| | - Veronica Pennati
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Clelia Mencaroni
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Chiara Defraia
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Ledi Bardhi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Francesca Castiglione
- Division of Pathological anatomy, Department of Medical and Surgical Critical Care, University of Florence, 50121 Florence, Italy
| | - Cristiana Bellan
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Camilla Eva Comin
- Department of Experimental and Clinical Medicine, Section of Surgery, Histopathology and Molecular Pathology, University of Florence, 50121 Florence, Italy
| |
Collapse
|
43
|
Krishnamurthy K, Oh KS, Alghamdi S, Sriganeshan V, Poppiti R. A study of somatic BRCA variants and their putative effect on protein properties in malignant mesothelioma. Pleura Peritoneum 2023; 8:19-25. [PMID: 37020472 PMCID: PMC10067552 DOI: 10.1515/pp-2023-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023] Open
Abstract
Abstract
Objectives
The aim of this study is to analyze the prevalence of somatic mutations in BRCA1 and BRCA2 in malignant mesothelioma and their putative impact on protein properties.
Methods
Eighteen cases of malignant mesothelioma were retrieved from the archives and for next generation sequencing analysis of BRCA1 and BRCA2 genes. Variants were analyzed using Ensembl VEP17, Polyphen 2.0 software, SIFT software, MutpredV2, and SWISS-MODEL homology-modeling pipeline server.
Results
BRCA2 variants were found in significantly higher percentage (22%) of cases (p=0.02). Five missense variants were identified. These were p.A2351P, p.T2250A, p.A895V, pG1771D, and p.R2034C. The SIFT scores of all except one were ≥ 0.03. The Polyphen scores of these four alterations were ≤0.899. In case of p.A2315, the SIFT score was 0.01, while the Polyphen 2 score was 0.921. MutPred2 scores were ≤0.180 for all. Loss of intrinsic disorder was predicted (Pr=0.32, p=0.07) for p.R2034C, while gain of intrinsic disorder was predicted for p.A2351P (Pr=0.36, p=0.01) and p.G1771D (Pr=0.34, p=0.02).
Conclusions
BRCA2 somatic variants were identified in 22% cases of malignant mesotheliomas in this study. The variants localize more frequently to the disordered regions of the protein and are predicted to affect the level of disorder.
Collapse
Affiliation(s)
- Kritika Krishnamurthy
- Department of Pathology , Montefiore Medical Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Kei Shing Oh
- AM Rywlin Department of Pathology , Mount Sinai Medical Center , Miami Beach , FL , USA
| | - Sarah Alghamdi
- AM Rywlin Department of Pathology , Mount Sinai Medical Center , Miami Beach , FL , USA
- Pathology , FIU/Herbert Werthein College of Medicine , Miami , FL , USA
| | - Vathany Sriganeshan
- AM Rywlin Department of Pathology , Mount Sinai Medical Center , Miami Beach , FL , USA
- Pathology , FIU/Herbert Werthein College of Medicine , Miami , FL , USA
| | - Robert Poppiti
- AM Rywlin Department of Pathology , Mount Sinai Medical Center , Miami Beach , FL , USA
- Pathology , FIU/Herbert Werthein College of Medicine , Miami , FL , USA
| |
Collapse
|
44
|
The Evolving Role of Immune-Checkpoint Inhibitors in Malignant Pleural Mesothelioma. J Clin Med 2023; 12:jcm12051757. [PMID: 36902544 PMCID: PMC10003250 DOI: 10.3390/jcm12051757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer usually caused by asbestos exposure and associated with a very poor prognosis. After more than a decade without new therapeutic options, immune checkpoint inhibitors (ICIs) demonstrated superiority over standard chemotherapy, with improved overall survival in the first and later-line settings. However, a significant proportion of patients still do not derive benefit from ICIs, highlighting the need for new treatment strategies and predictive biomarkers of response. Combinations with chemo-immunotherapy or ICIs and anti-VEGF are currently being evaluated in clinical trials and might change the standard of care in the near future. Alternatively, some non-ICI immunotherapeutic approaches, such as mesothelin targeted CAR-T cells or denditric-cells vaccines, have shown promising results in early phases of trials and are still in development. Finally, immunotherapy with ICIs is also being evaluated in the peri-operative setting, in the minority of patients presenting with resectable disease. The goal of this review is to discuss the current role of immunotherapy in the management of malignant pleural mesothelioma, as well as promising future therapeutic directions.
Collapse
|
45
|
MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma. Cell Death Discov 2023; 9:55. [PMID: 36765038 PMCID: PMC9918536 DOI: 10.1038/s41420-023-01307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.
Collapse
|
46
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|
47
|
Shimizu M, Hojo M, Ikushima K, Yamamoto Y, Maeno A, Sakamoto Y, Ishimaru N, Taquahashi Y, Kanno J, Hirose A, Suzuki J, Inomata A, Nakae D. Continuous infiltration of small peritoneal macrophages in the mouse peritoneum through CCR2-dependent and -independent routes during fibrosis and mesothelioma development induced by a multiwalled carbon nanotube, MWNT-7. J Toxicol Sci 2023; 48:617-639. [PMID: 38044124 DOI: 10.2131/jts.48.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.
Collapse
Affiliation(s)
- Motomu Shimizu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University
| |
Collapse
|
48
|
Isolated BAP1 Genomic Alteration in Malignant Pleural Mesothelioma Predicts Distinct Immunogenicity with Implications for Immunotherapeutic Response. Cancers (Basel) 2022; 14:cancers14225626. [PMID: 36428720 PMCID: PMC9688367 DOI: 10.3390/cancers14225626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM), an aggressive cancer of the mesothelial cells lining the pleural cavity, lacks effective treatments. Multiple somatic mutations and copy number losses in tumor suppressor genes (TSGs) BAP1, CDKN2A/B, and NF2 are frequently associated with MPM. The impact of single versus multiple genomic alterations of TSG on MPM biology, the immune tumor microenvironment, clinical outcomes, and treatment responses are unknown. Tumors with genomic alterations in BAP1 alone were associated with a longer overall patient survival rate compared to tumors with CDKN2A/B and/or NF2 alterations with or without BAP1 and formed a distinct immunogenic subtype with altered transcription factor and pathway activity patterns. CDKN2A/B genomic alterations consistently contributed to an adverse clinical outcome. Since the genomic alterations of only BAP1 was associated with the PD-1 therapy response signature and higher LAG3 and VISTA gene expression, it might be a candidate marker for immune checkpoint blockade therapy. Our results on the impact of TSG genotypes on MPM and the correlations between TSG alterations and molecular pathways provide a foundation for developing individualized MPM therapies.
Collapse
|