1
|
Feng H, Lu Q, Liu Y, Shi M, Lian H, Ni L, Wu X. Risk factors of disease activity and renal damage in patients with systemic lupus erythematosus. Int Urol Nephrol 2024; 56:3845-3855. [PMID: 38937413 DOI: 10.1007/s11255-024-04105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To evaluate the clinical features of patients with Systemic Lupus Erythematosus (SLE) and explore the risk factors of disease activity and renal damage. METHODS A retrospective study involving 194 patients were performed. Patients were divided into lupus nephritis (LN) group (63.40%) and non-LN group (36.60%), different disease activity group, and different renal function group according to the clinical data. Multivariate logistic regression analysis showed that albumin (ALB), uric acid (UC), total cholesterol (TC), and anti-dsDNA antibodies were the influencing factors of LN in patients with SLE (P < 0.05); ALB, UC, and complement 3(C3) were the influencing factors of lupus disease activity (P < 0.05); UC, C3, and hemoglobin (HB) were the influencing factors of abnormal renal function in SLE patients. RESULTS The results of the ROC curve showed that ALB, UA, and TC had certain predictive value for combined LN in patients with SLE, and the predictive value of ALB was greater than that of TC (P < 0.05); ALB, UA, and C3 being predictors of the activity of patients with SLE; BUN, UA, and HB all had certain predictive value for the abnormal renal function in patients with LN. SLE patients have the high incidence of renal impairment. CONCLUSION The results of this study suggest that patients with SLE should regularly monitor the levels of ALB, UA, TC, C3, and HB, as well as pay attention to the intervention of hyperlipidemia and hyperuricemia in patients with SLE to better control disease progression.
Collapse
Affiliation(s)
- HuiLing Feng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - QianYu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - MengMeng Shi
- Taikang Medical School, (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Huan Lian
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - LiHua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Han Y, Gao C, Liu Y, Zhang H, Wang S, Zhao H, Bao W, Guo X, Vinchi F, Lobo C, Shi P, Mendelson A, Luchsinger L, Zhong H, Yazdanbakhsh K, An X. Hemolysis-driven IFNα production impairs erythropoiesis by negatively regulating EPO signaling in sickle cell disease. Blood 2024; 143:1018-1031. [PMID: 38127913 PMCID: PMC10950476 DOI: 10.1182/blood.2023021658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.
Collapse
Affiliation(s)
- Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Chengjie Gao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | - Huan Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Shihui Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Huizhi Zhao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Weili Bao
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Francesca Vinchi
- Laboratory of Iron Research, New York Blood Center, New York, NY
| | - Cheryl Lobo
- Laboratory of Blood Borne Parasites, New York Blood Center, New York, NY
| | - Patricia Shi
- Sickle Cell Clinical Research Program, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering Research, New York Blood Center, New York, NY
| | - Larry Luchsinger
- Laboratory of Stem Cell Regenerative Research, New York Blood Center, New York, NY
| | - Hui Zhong
- Laboratory of Immune Regulation, New York Blood Center, New York, NY
| | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| |
Collapse
|
3
|
Krüppel-Like Factor 1: A Pivotal Gene Regulator in Erythropoiesis. Cells 2022; 11:cells11193069. [PMID: 36231031 PMCID: PMC9561966 DOI: 10.3390/cells11193069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Krüppel-like factor 1 (KLF1) plays a crucial role in erythropoiesis. In-depth studies conducted on mice and humans have highlighted its importance in erythroid lineage commitment, terminal erythropoiesis progression and the switching of globin genes from γ to β. The role of KLF1 in haemoglobin switching is exerted by the direct activation of β-globin gene and by the silencing of γ-globin through activation of BCL11A, an important γ-globin gene repressor. The link between KLF1 and γ-globin silencing identifies this transcription factor as a possible therapeutic target for β-hemoglobinopathies. Moreover, several mutations have been identified in the human genes that are responsible for various benign phenotypes and erythroid disorders. The study of the phenotype associated with each mutation has greatly contributed to the current understanding of the complex role of KLF1 in erythropoiesis. This review will focus on some of the principal functions of KLF1 on erythroid cell commitment and differentiation, spanning from primitive to definitive erythropoiesis. The fundamental role of KLF1 in haemoglobin switching will be also highlighted. Finally, an overview of the principal human mutations and relative phenotypes and disorders will be described.
Collapse
|
4
|
Lei Y, Guerra Martinez C, Torres-Odio S, Bell SL, Birdwell CE, Bryant JD, Tong CW, Watson RO, West LC, West AP. Elevated type I interferon responses potentiate metabolic dysfunction, inflammation, and accelerated aging in mtDNA mutator mice. SCIENCE ADVANCES 2021; 7:eabe7548. [PMID: 34039599 PMCID: PMC8153723 DOI: 10.1126/sciadv.abe7548] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/08/2021] [Indexed: 05/30/2023]
Abstract
Mitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune cross-talk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces health span, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2-related factor 2 (NRF2), which increases oxidative stress, enhances proinflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyperinflammatory phenotypes by restoring NRF2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related disorders and aging.
Collapse
Affiliation(s)
- Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Christine E Birdwell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Joshua D Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Carl W Tong
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
5
|
Mukherjee K, Xue L, Planutis A, Gnanapragasam MN, Chess A, Bieker JJ. EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis. eLife 2021; 10:61070. [PMID: 33570494 PMCID: PMC7932694 DOI: 10.7554/elife.61070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of erythroid Krüppel-like factor (EKLF)/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single-cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together, these studies provide a detailed perspective on the importance of EKLF in the establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
| | - Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Andrew Chess
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
- Tisch Cancer InstituteNew York, NYUnited States
- Mindich Child Health and Development Institute, Mount Sinai School of MedicineNew York, NYUnited States
| |
Collapse
|
6
|
Manchinu MF, Simbula M, Caria CA, Musu E, Perseu L, Porcu S, Steri M, Poddie D, Frau J, Cocco E, Manunza L, Barella S, Ristaldi MS. Delta-Globin Gene Expression Is Enhanced in vivo by Interferon Type I. Front Med (Lausanne) 2020; 7:163. [PMID: 32528964 PMCID: PMC7256663 DOI: 10.3389/fmed.2020.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Beta hemoglobinopathies are widely spread monogenic lethal diseases. Delta-globin gene activation has been proposed as a possible approach for curing these pathologies. The therapeutic potential of delta-globin, the non-alpha component of Hemoglobin A2 (α2δ2; HbA2), has been demonstrated in a mouse model of beta thalassemia, while its anti-sickling effect, comparable to that of gamma globin, was established some time ago. Here we show that the delta-globin mRNA level is considerably increased in a Deoxyribonuclease II-alpha knockout mouse model in which type 1 interferon (interferon beta, IFNb) is activated. IFNb activation in the fetal liver improves the delta-globin mRNA level, while the beta-globin mRNA level is significantly reduced. In addition, we show that HbA2 is significantly increased in patients with multiple sclerosis under type 1 interferon treatment. Our results represent a proof of principle that delta-globin expression can be enhanced through the use of molecules. This observation is potentially interesting in view of a pharmacological approach able to increase the HbA2 level.
Collapse
Affiliation(s)
- Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Michela Simbula
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Cristian Antonio Caria
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Ester Musu
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Lucia Perseu
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Susanna Porcu
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Maristella Steri
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Daniela Poddie
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| | - Jessica Frau
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Laura Manunza
- Ospedale Microcitemico "A. Cao" - A.O. "G. Brotzu", Cagliari, Italy
| | - Susanna Barella
- Ospedale Microcitemico "A. Cao" - A.O. "G. Brotzu", Cagliari, Italy
| | - Maria Serafina Ristaldi
- Istituto Di Ricerca Genetica e Biomedica Del Consiglio Nazionale Delle Ricerche, Monserrato, Italy
| |
Collapse
|
7
|
Aringer M. Inflammatory markers in systemic lupus erythematosus. J Autoimmun 2019; 110:102374. [PMID: 31812331 DOI: 10.1016/j.jaut.2019.102374] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023]
Abstract
While systemic lupus erythematosus (SLE) is an autoantibody and immune complex disease by nature, most of its organ manifestations are in fact inflammatory. SLE activity scores thus heavily rely on assessing inflammation in the various organs. This focus on clinical items demonstrates that routine laboratory markers of inflammation are still limited in their impact. The erythrocyte sedimentation rate (ESR) is used, but represents a rather crude overall measure. Anemia and diminished serum albumin play a role in estimating inflammatory activity, but both are reflecting more than one mechanism, and the association with inflammation is complex. C-reactive protein (CRP) is a better marker for infections than for SLE activity, where there is only a limited association, and procalcitonin (PCT) is also mainly used for detecting severe bacterial infection. Of the cytokines directly induced by immune complexes, type I interferons, interleukin-18 (IL-18) and tumor necrosis factor (TNF) are correlated with inflammatory disease activity. Still, precise and timely measurement is an issue, which is why they are not currently used for routine purposes. While somewhat more robust in the assays, IL-18 binding protein (IL-18BP) and soluble TNF-receptor 2 (TNF-R2), which are related to the respective cytokines, have not yet made it into clinical routine. The same is true for several chemokines that are increased with activity and relatively easy to measure, but still experimental parameters. In the urine, proteinuria leads and is essential for assessing kidney involvement, but may also result from damage. Similar to the situation in serum and plasma, several cytokines and chemokines perform reasonably well in scientific studies, but are not routine parameters. Cellular elements in the urine are more difficult to assess in the routine laboratory, where sufficient routine is not always available. Therefore, the analysis of urinary T cells may have potential for better monitoring renal inflammation.
Collapse
Affiliation(s)
- Martin Aringer
- University Medical Center and Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nat Commun 2019; 10:881. [PMID: 30787325 PMCID: PMC6382809 DOI: 10.1038/s41467-019-08705-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Red blood cells mature within the erythroblastic island (EI) niche that consists of specialized macrophages surrounded by differentiating erythroblasts. Here we establish an in vitro system to model the human EI niche using macrophages that are derived from human induced pluripotent stem cells (iPSCs), and are also genetically programmed to an EI-like phenotype by inducible activation of the transcription factor, KLF1. These EI-like macrophages increase the production of mature, enucleated erythroid cells from umbilical cord blood derived CD34+ haematopoietic progenitor cells and iPSCs; this enhanced production is partially retained even when the contact between progenitor cells and macrophages is inhibited, suggesting that KLF1-induced secreted proteins may be involved in this enhancement. Lastly, we find that the addition of three secreted factors, ANGPTL7, IL-33 and SERPINB2, significantly enhances the production of mature enucleated red blood cells. Our study thus contributes to the ultimate goal of replacing blood transfusion with a manufactured product. In vitro differentiation of red blood cells (RBCs) is a desirable therapy for various disorders. Here the authors develop a culture system using stem cell-derived macrophages to show that inducible expression of a transcription factor, KLF1, enhances RBC production, potentially through the induction of three soluble factors, ANGPTL7, IL33 and SERPINB2.
Collapse
|