1
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
2
|
Guo Y, Feng Y, Jiang F, Hu L, Shan T, Li H, Liao H, Bao H, Shi H, Si Y. Down-regulating nuclear factor of activated T cells 1 alleviates cognitive deficits in a mouse model of sepsis-associated encephalopathy, possibly by stimulating hippocampal neurogenesis. Brain Res 2024; 1826:148731. [PMID: 38154504 DOI: 10.1016/j.brainres.2023.148731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and has been associated with increased morbidity and mortality. Nuclear factor of activated T cells (NFATs) 1, a transcriptional factor that regulates T cell development, activation and differentiation, has been implicated in neuronal plasticity. Here we examined the potential role of NFAT1 in sepsis-associated encephalopathy in mice. Adult male C57BL/6J mice received intracerebroventricular injections of short interfering RNA against NFAT1 or sex-determining region Y-box 2 (SOX2), or a scrambled control siRNA prior to cecal ligation and perforation (CLP). A group of mice receiving sham surgery were included as an additional control. CLP increased escape latency and decreased the number of crossings into, and total time spent within, the target quadrant in the Morris water maze test. CLP also decreased the freezing time in context-dependent, but not context-independent, fear conditioning test. Knockdown of either NFAT1 or SOX2 attenuated these behavioral deficits. NFAT1 knockdown also attenuated CLP-induced upregulation of SOX2, increased the numbers of nestin-positive cells and newborn astrocytes, reduced the number of immature newborn neurons, and promoted the G1 to S transition of neural stem cells in hippocampus. These findings suggest that NFAT1 may contribute to sepsis-induced behavioral deficits, possibly by promoting SOX2 signaling and neurogenesis.
Collapse
Affiliation(s)
- Yaoyi Guo
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Yue Feng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Fan Jiang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, Nanjing Medical University, No. 101 Longmiandadao Road, Jiangning District, Nanjing, Jiangsu Province 211166, People's Republic of China
| | - Tao Shan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Haojia Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongsen Liao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongwei Shi
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China.
| |
Collapse
|
3
|
Sawada K, Kamiya S, Kobayashi T. Neonatal Exposure to Lipopolysaccharide Promotes Neurogenesis of Subventricular Zone Progenitors in the Developing Neocortex of Ferrets. Int J Mol Sci 2023; 24:14962. [PMID: 37834410 PMCID: PMC10573966 DOI: 10.3390/ijms241914962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Lipopolysaccharide (LPS) is a natural agonist of toll-like receptor 4 that serves a role in innate immunity. The current study evaluated the LPS-mediated regulation of neurogenesis in the subventricular zone (SVZ) progenitors, that is, the basal radial glia and intermediate progenitors (IPs), in ferrets. Ferret pups were subcutaneously injected with LPS (500 μg/g of body weight) on postnatal days (PDs) 6 and 7. Furthermore, 5-ethynyl-2'-deoxyuridine (EdU) and 5-bromo-2'-deoxyuridine (BrdU) were administered on PDs 5 and 7, respectively, to label the post-proliferative and proliferating cells in the inner SVZ (iSVZ) and outer SVZ (oSVZ). A significantly higher density of BrdU single-labeled proliferating cells was observed in the iSVZ of LPS-exposed ferrets than in controls but not in post-proliferative EdU single-labeled and EdU/BrdU double-labeled self-renewing cells. BrdU single-labeled cells exhibited a lower proportion of Tbr2 immunostaining in LPS-exposed ferrets (22.2%) than in controls (42.6%) and a higher proportion of Ctip2 immunostaining in LPS-exposed ferrets (22.2%) than in controls (8.6%). The present findings revealed that LPS modified the neurogenesis of SVZ progenitors. Neonatal LPS exposure facilitates the proliferation of SVZ progenitors, followed by the differentiation of Tbr2-expressing IPs into Ctip2-expressing immature neurons.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura 300-0051, Japan
| | - Shiori Kamiya
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan; (S.K.); (T.K.)
| | - Tetsuya Kobayashi
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan; (S.K.); (T.K.)
| |
Collapse
|
4
|
Chen CP, Chen PC, Pan YL, Hsu YC. Prenatal lipopolysaccharide exposure induces anxiety-like behaviour in male mouse offspring and aberrant glial differentiation of embryonic neural stem cells. Cell Mol Biol Lett 2023; 28:67. [PMID: 37592237 PMCID: PMC10436442 DOI: 10.1186/s11658-023-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Prenatal infection has been implicated in the development of neuropsychiatric disorders in children. We hypothesised that exposure to lipopolysaccharide during prenatal development could induce anxiety-like behaviour and sensorineural hearing loss in offspring, as well as disrupt neural differentiation during embryonic neural development. METHODS We simulated prenatal infection in FVB mice and mouse embryonic stem cell (ESC) lines, specifically 46C and E14Tg2a, through lipopolysaccharide treatment. Gene expression profiling analyses and behavioural tests were utilized to study the effects of lipopolysaccharide on the offspring and alterations in toll-like receptor (TLR) 2-positive and TLR4-positive cells during neural differentiation in the ESCs. RESULTS Exposure to lipopolysaccharide (25 µg/kg) on gestation day 9 resulted in anxiety-like behaviour specifically in male offspring, while no effects were detected in female offspring. We also found significant increases in the expression of GFAP and CNPase, as well as higher numbers of GFAP + astrocytes and O4+ oligodendrocytes in the prefrontal cortex of male offspring. Furthermore, increased scores for genes related to oligodendrocyte and lipid metabolism, particularly ApoE, were observed in the prefrontal cortex regions. Upon exposure to lipopolysaccharide during the ESC-to-neural stem cell (NSC) transition, Tuj1, Map2, Gfap, O4, and Oligo2 mRNA levels increased in the differentiated neural cells on day 14. In vitro experiments demonstrated that lipopolysaccharide exposure induced inflammatory responses, as evidenced by increased expression of IL1b and ApoB mRNA. CONCLUSIONS Our findings suggest that prenatal infection at different stages of neural differentiation may result in distinct disturbances in neural differentiation during ESC-NSC transitions. Furthermore, early prenatal challenges with lipopolysaccharide selectively induce anxiety-like behaviour in male offspring. This behaviour may be attributed to the abnormal differentiation of astrocytes and oligodendrocytes in the brain, potentially mediated by ApoB/E signalling pathways in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Pan
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Anosike NL, Adejuwon JF, Emmanuel GE, Adebayo OS, Etti-Balogun H, Nathaniel JN, Omotosho OI, Aschner M, Ijomone OM. Necroptosis in the developing brain: role in neurodevelopmental disorders. Metab Brain Dis 2023; 38:831-837. [PMID: 36964816 DOI: 10.1007/s11011-023-01203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Cell death is vital to various organismal developmental processes including brain development. Apoptosis, the most recognized programmed cell death, has been linked to several developmental processes and implicated in pruning cells to provide the ultimate tissue integrity. However, more recently, other forms of non-apoptotic programmed cell death have been identified, of which necroptosis is of predominant interest. Necroptosis is a regulated form of necrosis, activated under apoptotic-deficient conditions. Tumour necrosis factor (TNF) is a major activator of necroptosis, and the process is mediated by several kinases including receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like protein (MLKL). Potential roles for necroptosis during brain development have been muted. Necroptosis has been implicated in mediating neurological disorders, and contributing to the severity of these disorders. Here we will review the literature on the role of necroptosis in neurodevelopment, summarizing its molecular mechanisms and highlighting potential implications for disorders of the developing brain.
Collapse
Affiliation(s)
- Nnenna Loveth Anosike
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Joy Funsho Adejuwon
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Godslove Emeka Emmanuel
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Oluwatosin Samuel Adebayo
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Hassanat Etti-Balogun
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Jannie Nathaniel Nathaniel
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Omolabake Ifeoluwa Omotosho
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Omamuyovwi Meashack Ijomone
- The Neuro- Lab, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria.
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Saleki K, Mohamadi MH, Banazadeh M, Alijanizadeh P, Javanmehr N, Pourahmad R, Nouri HR. In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis via advanced immunoinformatics. J Leukoc Biol 2022; 112:1191-1207. [PMID: 35707959 DOI: 10.1002/jlb.6ma0721-376rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder worldwide. In ALS, progressing disease can result from misfolding and aggregation of superoxide dismutase-1 (SOD1) or TAR DNA-binding protein 43 kDa (TDP43). An efficient immunotherapy for ALS should spare intact SOD1 while eliminating its dysfunctional variant. We utilized advanced immunoinformatics to suggest a potential vaccine candidate against ALS by proposing a model of dynamic TLR4 mediation and induction of a specific Th2-biased shift against mutant SOD1, TDP43, and TRAF6, a protein that specifically interacts with dysfunctional SOD1. SOD1, TDP43, and TRAF6 were retrieved in FASTA. Immune Epitopes Database and CTLpred suggested T/B-cell epitopes from disease-specific regions of selected antigens. A TLR4-mediating adjuvant, RS01, was used. Sequences were assembled via suitable linkers. Tertiary structure of the protein was calculated. Refined protein structure and physicochemical features of the 3D structure were verified in silico. Differential immune induction was assessed via C-ImmSim. GROningen MAchine for Chemical Simulation was used to assess evolution of the docked vaccine-TLR4 complex in blood. Our protein showed high structural quality and was nonallergenic and immune inducing. Also, the vaccine-TLR4 complex stability was verified by RMSD, RMSF, gyration, and visual analyses of the molecular dynamic trajectory. Contact residues in the vaccine-TLR4 complex showed favorable binding energies. Immune stimulation analyses of the proposed candidate demonstrated a sustained memory cell response and a strong adaptive immune reaction. We proposed a potential vaccine candidate against ALS and verified its physicochemical and immune inducing features. Future studies should assess this vaccine in animal studies.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohamad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Nouri
- USERN Office, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
9
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
10
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Sanchez-Petidier M, Guerri C, Moreno-Manzano V. Toll-like receptors 2 and 4 differentially regulate the self-renewal and differentiation of spinal cord neural precursor cells. Stem Cell Res Ther 2022; 13:117. [PMID: 35314006 PMCID: PMC8935849 DOI: 10.1186/s13287-022-02798-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) represent critical effectors in the host defense response against various pathogens; however, their known function during development has also highlighted a potential role in cell fate determination and neural differentiation. While glial cells and neural precursor cells (NPCs) of the spinal cord express both TLR2 and TLR4, their influence on self-renewal and cell differentiation remains incompletely described. METHODS TLR2, TLR4 knock-out and the wild type mice were employed for spinal cord tissue analysis and NPCs isolation at early post-natal stage. Sox2, FoxJ1 and Ki67 expression among others served to identify the undifferentiated and proliferative NPCs; GFAP, Olig2 and β-III-tubulin markers served to identify astrocytes, oligodendrocytes and neurons respectively after NPC spontaneous differentiation. Multiple comparisons were analyzed using one-way ANOVA, with appropriate corrections such as Tukey's post hoc tests used for comparisons. RESULTS We discovered that the deletion of TLR2 or TLR4 significantly reduced the number of Sox2-expressing NPCs in the neonatal mouse spinal cord. While TLR2-knockout NPCs displayed enhanced self-renewal, increased proliferation and apoptosis, and delayed neural differentiation, the absence of TLR4 promoted the neural differentiation of NPCs without affecting proliferation, producing long projecting neurons. TLR4 knock-out NPCs showed significantly higher expression of Neurogenin1, that would be involved in the activation of this neurogenic program by a ligand and microenvironment-independent mechanism. Interestingly, the absence of both TLR2 and TLR4, which induces also a significant reduction in the expression of TLR1, in NPCs impeded oligodendrocyte precursor cell maturation to a similar degree. CONCLUSIONS Our data suggest that Toll-like receptors are needed to maintain Sox2 positive neural progenitors in the spinal cord, however possess distinct regulatory roles in mouse neonatal spinal cord NPCs-while TLR2 and TLR4 play a similar role in oligodendrocytic differentiation, they differentially influence neural differentiation.
Collapse
Affiliation(s)
- Marina Sanchez-Petidier
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, Valencia, Spain.,Neuropathology Laboratory, Prince Felipe Research Institute, Valencia, Spain
| | - Consuelo Guerri
- Neuropathology Laboratory, Prince Felipe Research Institute, Valencia, Spain.
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, Valencia, Spain.
| |
Collapse
|
12
|
TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1. J Physiol Biochem 2022; 78:667-678. [PMID: 35294724 DOI: 10.1007/s13105-022-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Skeletal muscle stem cells (SMSCs) are vital to the growth, maintenance, and repair of the muscles; emerging evidence has indicated that Toll-like receptor 4 (TLR4) can potentially regulate muscle regeneration. In present study, in vitro and in vivo experiments were performed to explore the correlation of TLR4 with leucine-rich glioma-inactivated 1 (LGI1) as well as their effects on the proliferation and osteogenesis potential of SMSCs. In order to examine the regulatory mechanisms of TLR4 and LGI1 in SMSCs, the obtained cells were treated with lipopolysaccharide (LPS, used as an activator of TLR4) of different concentration at different time points as well as the siRNA against LGI1. Subsequently, a series of detection was undertaken in order to measure the proliferation and differentiation potential of SMSCs, which involved detection of the related factors, cell activity, and the sphere-forming capability. Following LPS treatment, the increased TLR4 expression and reduced LGI1 expression were observed. Consequently, we also discovered that Erk signaling pathway was inactivated and cell proliferation and osteogenesis capabilities declined, presented by the downregulation of related factors such as cyclin B1 and runt-related transcription factor 2. Moreover, the cell activity and sphere-formation performance of SMSCs were also declined. These results were also validated in rats with cecal ligation and perforation-induced rat models with sepsis. In conclusion, the present study reveals a regulatory mechanism in SMSCs whereby LGI1 expression is reduced by TLR4, thus impeding cell proliferation and osteogenesis, highlighting TLR4 as a potential therapeutic target against many diseases related to SMSCs.
Collapse
|
13
|
Kwan Cheung KA, Abeysinghe P, Vaswani K, Tucker K, Bassett J, Mitchell PA, Mosaad EM, Logan J, Mitchell MD. Characterisation of ReNcells CX and VM stimulated with interleukin-1β and lipopolysaccharide. Neurochem Int 2022; 156:105326. [DOI: 10.1016/j.neuint.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
|
14
|
The Sonic Hedgehog Pathway Modulates Survival, Proliferation, and Differentiation of Neural Progenitor Cells under Inflammatory Stress In Vitro. Cells 2022; 11:cells11040736. [PMID: 35203385 PMCID: PMC8869809 DOI: 10.3390/cells11040736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its crucial role in early neurogenesis and endogenous stem cells of mature brains, as well as its recently described neuroprotective features, implicate further important effects on neuronal homeostasis. Here, we investigate its potential role in the survival, proliferation, and differentiation of neural precursors cells (NPCs) under inflammatory stress as a potential adjunct for NPC-transplantation strategies in spinal cord injury (SCI) treatment. To this end, we simulated an inflammatory environment in vitro using lipopolysaccharide (LPS) and induced the Shh-pathway using recombinant Shh or blocked it using Cyclopamine, a potent Smo inhibitor. We found that Shh mediates the proliferation and neuronal differentiation potential of NPCs in vitro, even in an inflammatory stress environment mimicking the subacute phase after SCI. At the same time, our results indicate that a reduction of the Shh-pathway activation by blockage with Cyclopamine is associated with reduced NPC-survival, reduced neuronal differentiation and increased astroglial differentiation. Shh might thus, play a role in endogenous NPC-mediated neuroregeneration or even be a potent conjunct to NPC-based therapies in the inflammatory environment after SCI.
Collapse
|
15
|
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:1184. [PMID: 35163103 PMCID: PMC8834995 DOI: 10.3390/ijms23031184] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.
Collapse
Affiliation(s)
- Alma Rosa Lezama Toledo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Germán Rivera Monroy
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Felipe Esparza Salazar
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Shalini Jain
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Hariom Yadav
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Cesario Venturina Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| |
Collapse
|
16
|
|
17
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
18
|
Yiu JHC, Cheung SWM, Cai J, Chan KS, Chen J, Cheong LY, Chau HT, Xu A, Li RHW, Woo CW. TLR5 Supports Development of Placental Labyrinthine Zone in Mice. Front Cell Dev Biol 2021; 9:711253. [PMID: 34395439 PMCID: PMC8356041 DOI: 10.3389/fcell.2021.711253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Toll plays an important role in innate immunity and embryonic development in lower-ranked animals, but in mammals, the homolog toll-like receptors (TLR) are reported to facilitate postnatal development of immunity only. Here, we discovered a role of TLR5 in placental development. Tlr5 was highly transcribed during the placenta-forming and functional phases. TLR5 deletion led to a smaller placental labyrinthine zone and lower embryo weight, and the smaller size of embryo was overcorrected, resulting in a higher postnatal body weight. Examination of TLR5-deficient conceptus revealed a decrease in nuclear cAMP-response element-binding protein (CREB), mechanistic target of rapamycin (mTOR) and insulin growth factor-1 receptor (IGF1R) abundances in the placenta-forming phase. Non-flagellin-based TLR5 ligands were detected in serum of female mice and the overexpression of TLR5 alone was sufficient to induce CREB nuclear translocation and mTOR transcriptional activation in trophoblasts. Taken together, we uncovered the participation of TLR5 in the early placental formation in mice, unveiling a role of TLR in embryonic development in higher-ranked animals.
Collapse
Affiliation(s)
- Jensen H C Yiu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Samson W M Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jieling Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam-Suen Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hau-Tak Chau
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond H W Li
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Connie W Woo
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Guan X, Chen X, Dai L, Ma J, Zhang Q, Qu S, Bai Y, Wang Y. Low Maternal Dietary Intake of Choline Regulates Toll-Like Receptor 4 Expression Via Histone H3K27me3 in Fetal Mouse Neural Progenitor Cells. Mol Nutr Food Res 2020; 65:e2000769. [PMID: 33274576 DOI: 10.1002/mnfr.202000769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Indexed: 12/18/2022]
Abstract
SCOPE Choline is an essential nutrient and a primary dietary source of methyl groups that are vital for brain development. Low choline (LC) in the maternal diet during pregnancy alters neurogenesis in the fetal brain and leads to low cognitive performance. However, the key signaling pathways that are sensitive to maternal choline supply during neural progenitor cell (NPC) development and the epigenetic mechanisms by which choline availability regulates gene expression are unclear. METHODS AND RESULTS Timed-pregnant Nestin-CFPnuc transgenic mice are fed either a control diet or LC diet during E11-17. Gene expression changes in sorted E17 NPCs are identified by RNA sequencing. A maternal LC diet significantly increases Tlr4 transcription, causing premature neuronal differentiation and enhanced ethanol-induced NLRP3 inflammasome activation. No changes in DNA methylation at the Tlr4 gene promoter region are detected; however, a 70% decrease in H3K27me3 is observed in the LC-treated NPCs. Inhibition of EZH2 decreases H3K27me3 levels and increases Tlr4 expression. Conversely, the application of catalytically inactive Cas9 with EZH2 to increase H3K27me3 at the Tlr4 promoter causes reduced Tlr4 expression. CONCLUSION These data reveal an epigenetic mechanism for the effect of maternal choline availability on brain development, suggesting a likely intervention for neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuedan Chen
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiming Ma
- Undergraduate Student Brigade, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiming Zhang
- Undergraduate Student Brigade, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Song Qu
- Undergraduate Student Brigade, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
20
|
Manivannan S, Marei O, Elalfy O, Zaben M. Neurogenesis after traumatic brain injury - The complex role of HMGB1 and neuroinflammation. Neuropharmacology 2020; 183:108400. [PMID: 33189765 DOI: 10.1016/j.neuropharm.2020.108400] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is amongst the leading causes of morbidity and mortality worldwide. Despite evidence of neurogenesis post-TBI, survival and integration of newborn neurons remains impaired. High Mobility Group Box protein 1 (HMGB1) is an 'alarmin' released hyper-acutely following TBI and implicated in hosting the neuro-inflammatory response to injury. It is also instrumental in mediating neurogenesis under physiological conditions. Given its dual role in mediating neuro-inflammation and neurogenesis, it serves as a promising putative target for therapeutic modulation. In this review, we discuss neurogenesis post-TBI, neuro-pharmacological aspects of HMGB1, and its potential as a therapeutic target. METHODS PubMed database was searched with varying combinations of the following search terms: HMGB1, isoforms, neurogenesis, traumatic brain injury, Toll-like receptor (TLR), receptor for advanced glycation end-products (RAGE). RESULTS Several in vitro and in vivo studies demonstrate evidence of neurogenesis post-injury. The HMGB1-RAGE axis mediates neurogenesis throughout development, whilst interaction with TLR-4 promotes the innate immune response. Studies in the context of injury demonstrate that these receptor effects are not mutually exclusive. Despite recognition of different HMGB1 isoforms based on redox/acetylation status, effects on neurogenesis post-injury remain unexplored. Recent animal in vivo studies examining HMGB1 antagonism post-TBI demonstrate predominantly positive results, but specific effects on neurogenesis and longer-term outcomes remain unclear. CONCLUSION HMGB1 is a promising therapeutic target but its effects on neurogenesis post-TBI remains unclear. Given the failure of several pharmacological strategies to improve outcomes following TBI, accurate delineation of HMGB1 signalling pathways and effects on post-injury neurogenesis are vital.
Collapse
Affiliation(s)
- S Manivannan
- Department of Neurosurgery, Southampton General Hospital, Southampton, UK
| | - O Marei
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, UK
| | - O Elalfy
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, UK
| | - M Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, UK; Department of Neurosurgery, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
21
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
22
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
23
|
Connolly MG, Yost OL, Potter OV, Giedraitis ME, Kohman RA. Toll-like receptor 4 differentially regulates adult hippocampal neurogenesis in an age- and sex-dependent manner. Hippocampus 2020; 30:958-969. [PMID: 32343455 DOI: 10.1002/hipo.23209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is primarily responsible for initiating an immune response following pathogen recognition. However, TLR4 is also expressed on neural progenitor cells and has been reported to regulate hippocampal neurogenesis as young male TLR4 knockout mice show increases in cell proliferation and doublecortin positive cells. Whether these effects occur in both sexes and are sustained with normal aging is currently unknown. The present study evaluated whether TLR4 deficiency alters adult hippocampal neurogenesis in young (3-4 months) and aged (18-20 months), male and female, TLR4 deficient (TLR4-/-; B6.B10ScN-Tlr4lps-del/JthJ) and wild type (WT) mice. Additionally, neurogenesis within the dorsal and the ventral hippocampal subdivisions was evaluated to determine if TLR4 has differential effects across the hippocampus. Bromodeoxyuridine (BrdU) was administered to quantify new cell survival as well as cell differentiation. Ki-67 was measured to evaluate cell proliferation. Results show that young TLR4-/- females had higher rates of proliferation and neuronal differentiation in both the dorsal and ventral hippocampus relative to WT females. Young TLR4-/- males show elevated proliferation and neuronal differentiation mainly in the ventral hippocampus. While young TLR4-/- mice show enhanced neurogenesis compared to young WT mice, the increase was not apparent in the aged TLR4-/- mice. Both aged WT and TLR4-/- mice showed a decrease in proliferation, new cell survival, and neuronal differentiation compared to young WT and TLR4-/- mice. The data collectively indicate that TLR4 regulates hippocampal neurogenesis in young adults, but that these effects are region-specific in males and that females show broader changes in neurogenesis throughout the hippocampus.
Collapse
Affiliation(s)
- Meghan G Connolly
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Oriana L Yost
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Opal V Potter
- School of Medicine, Wake Forest University, Winston Salem, North Carolina, USA
| | - Megan E Giedraitis
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Rachel A Kohman
- Department of Psychology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
24
|
Effect of chemical modulation of toll-like receptor 4 in an animal model of ulcerative colitis. Eur J Clin Pharmacol 2020; 76:409-418. [PMID: 31982922 DOI: 10.1007/s00228-019-02799-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The partial ineffectiveness and side effects of inflammatory bowel disease (IBD) current therapies drive basic research to look for new therapeutic target in order to develop new drug lead. Considering the pivotal role played by toll-like receptors (TLRs) in gut inflammation, we evaluate here the therapeutic effect of the synthetic glycolipid TLR4 antagonist FP7. METHODS The anti-inflammatory effect of FP7, active as TLR4 antagonist, was evaluated on peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients, and in a mouse model of ulcerative colitis. RESULTS FP7 strongly reduced the inflammatory responses induced by lipopolysaccharide (LPS) in vitro, due to its capacity to compete with LPS for the binding of TLR4/MD-2 receptor complex thus inhibiting both the MyD88- and TRIF-dependent inflammatory pathways. Colitic mice treated with FP7 exhibit reduced colonic inflammation and decreased levels of pro-inflammatory cytokines. CONCLUSIONS This study suggests that TLR4 chemical modulation can be an effective therapeutic approach to IBD. The selectivity of FP7 on TLR4 makes this molecule a promising drug lead for new small molecules-based treatments.
Collapse
|
25
|
Zhang MB, Song CC, Li GZ, Chen LF, Ma R, Yu XH, Gong P, Wang XL. Transplantation of umbilical cord blood mononuclear cells attenuates the expression of IL-1β via the TLR4/NF-κB pathway in hypoxic-ischemic neonatal rats. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: This study aims to observe the effects of transplantation of umbilical cord blood mononuclear cells (UCBMCs) on the expression of interleukin (IL)-1β and explore the mechanism via the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway in hypoxic-ischemic neonatal rats. Methods: Seven-day-old Sprague-Dawley neonatal rats were randomly divided into Sham, hypoxic-ischemic brain damage (HIBD), and UCBMC groups. The HIBD model was prepared by Rice-Vannucci method, and UCBMC were transplanted 24 h after HIBD in the UCBMC group. At 7 days after transplantation, changes in neurons and the TLR4 protein were examined by neuronal nuclei (NeuN)/TLR4 immunofluorescence staining. The expression of pNF-κB and IL-1β proteins was detected by immunohistochemical staining and enzyme linked immunosorbent assay (ELISA). Results: The percentage of NeuN+DAPI+ cells in the injured cortex in the UCBMC group was significantly higher than that in the HIBD group and lower than that in the Sham group (P < 0.05). The number of NeuN+TLR4+DAPI+cells in the UCBMC group was significantly lower than that in the HIBD group (P < 0.05) but higher than that in the Sham group (P < 0.05). More pNF-κB+ cells were observed in the HIBD group than in Sham and UCBMC groups (P < 0.05), and more pNF-κB+ cells were observed in the UCBMC group than in the Sham group (P < 0.05). ELISA results showed that the IL-1β expression in the injured cerebral cortex in the UCMBC group was significantly lower than that in the HIBD group but remained higher than that in the Sham group (P < 0.05). Conclusions: UCBMC transplantation could inhibit the IL-1β protein expression in the injured cortex, thereby alleviating HIBD in neonatal rats. The underlying mechanism might be associated with the down- regulation of TLR4 and pNF-κB proteins.
Collapse
|
26
|
Grasselli C, Carbone A, Panelli P, Giambra V, Bossi M, Mazzoccoli G, De Filippis L. Neural Stem Cells from Shank3-ko Mouse Model Autism Spectrum Disorders. Mol Neurobiol 2019; 57:1502-1515. [PMID: 31773410 DOI: 10.1007/s12035-019-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) comprise a complex of neurodevelopmental disorders caused by a variety of genetic defects and characterized by alterations in social communication and repetitive behavior. Since the mechanisms leading to early neuronal degeneration remain elusive, we chose to examine the properties of NSCs isolated from an animal model of ASD in order to evaluate whether their neurogenic potential may recapitulate the early phases of neurogenesis in the brain of ASD patients. Mutations of the gene coding for the Shank3 protein play a key role in the impairment of brain development and synaptogenesis in ASD patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of adult Shank3Δ11-/- (Shank3-ko) mice retain self-renewal capacity in vitro, but differentiate earlier than wild-type (wt) cells, displaying an evident endosomal/lysosomal and ubiquitin aggregation in astroglial cells together with mitochondrial impairment and inflammasome activation, suggesting that glial degeneration likely contributes to neuronal damage in ASD. These in vitro observations obtained in our disease model are consistent with data in vivo obtained in ASD patients and suggest that Shank3 deficit could affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. This evidence supports Shank3-ko NSCs as a reliable in vitro disease model and suggests the rescue of glial cells as a therapeutic strategy to prevent neuronal degeneration in ASD.
Collapse
Affiliation(s)
- C Grasselli
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - A Carbone
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - P Panelli
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - V Giambra
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - M Bossi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - G Mazzoccoli
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - L De Filippis
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
27
|
Heidarzadeh M, Roodbari F, Hassanpour M, Ahmadi M, Saberianpour S, Rahbarghazi R. Toll-like receptor bioactivity in endothelial progenitor cells. Cell Tissue Res 2019; 379:223-230. [PMID: 31754781 DOI: 10.1007/s00441-019-03119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Roodbari
- Department of Microbiology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Saberianpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019; 23:865-882. [PMID: 31580163 DOI: 10.1080/14728222.2019.1676416] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Adverse immune activation contributes to many central nervous system (CNS) disorders. All main CNS cell types express toll-like receptor 4 (TLR 4). This receptor is critical for a myriad of immune functions such as cytokine secretion and phagocytic activity of microglia; however, imbalances in TLR 4 activation can contribute to the progression of neurodegenerative diseases. Areas covered: We considered available evidence implicating TLR 4 activation in the following CNS pathologies: Alzheimer's disease, Parkinson's disease, ischemic stroke, traumatic brain injury, multiple sclerosis, multiple systems atrophy, and Huntington's disease. We reviewed studies reporting effects of TLR 4-specific antagonists and agonists in models of peripheral and CNS diseases from the perspective of possible future use of TLR 4 ligands in CNS disorders. Expert opinion: TLR 4-specific antagonists could suppress neuroinflammation by reducing overproduction of inflammatory mediators; however, they may interfere with protein clearance mechanisms and myelination. Agonists that specifically activate myeloid differentiation primary-response protein 88 (MyD88)-independent pathway of TLR 4 signaling could facilitate beneficial glial phagocytic activity with limited activity as inducers of proinflammatory mediators. Deciphering the disease stage-specific involvement of TLR 4 in CNS pathologies is crucial for the future clinical development of TLR 4 agonists and antagonists.
Collapse
Affiliation(s)
- Gunnar R Leitner
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Nick Marshall
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Ellen J Gates
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| |
Collapse
|
29
|
Aurelian L, Balan I. GABA AR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019; 236:3023-3043. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands and are increasingly recognized for their impact on homeostasis and its dysregulation in the nervous system. TLR signaling participates in brain injury and addiction, but its role in the alcohol-seeking behavior, which initiates alcohol drinking, is still poorly understood. In this review, we discuss our findings designed to elucidate the potential contribution of the activated TLR4 signal located in neurons, on impulsivity and the predisposition to initiate alcohol drinking (binge drinking). RESULTS Our findings indicate that the TLR4 signal is innately activated in neurons from alcohol-preferring subjects, identifying a genetic contribution to the regulation of impulsivity and the alcohol-seeking propensity. Signal activation is through the non-canonical, previously unknown, binding of TLR4 to the α2 subunit of the γ-aminobutyric 2 acid A receptor (GABAAR α2). Activation is sustained by the stress hormone corticotrophin-releasing factor (CRF) and additional still poorly recognized ligand/scaffold proteins. Focus is on the effect of TLR4 signal activation on the balance between pro- and anti-inflammatory chemokines [chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X3-C motif) ligand 1 (CX3CL1)] and its effect on binge drinking. CONCLUSION The results are discussed within the context of current findings on the distinct activation and functions of TLR signals located in neurons, as opposed to immune cells. They indicate that the balance between pro- and anti-inflammatory TLR4 signaling plays a major role in binge drinking. These findings have major impact on future basic and translational research, including the development of potential therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Stanford University School of Medicine OFDD, Stanford, CA, 94305, USA.
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
30
|
Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity. Exp Neurol 2019; 321:113039. [PMID: 31442443 DOI: 10.1016/j.expneurol.2019.113039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) survivors present with long-term neurological disorders affecting their quality of life, and there remains a lack of effective treatment. Toll-like receptor 4 (TLR4) is widely distributed in nerve cells and its inhibition has a neuroprotective effect against brain injury. The present study aimed to evaluate the long-term neuroprotective effects of early inhibition of TLR4 during HIBD. Seven-day-old rat pups were subjected to left carotid artery ligation followed by 2 h of hypoxia (8.0% O2). A single dose of TAK-242 (0.5 mg/kg), a TLR4-specific antagonist, was intraperitoneally injected half an hour prior to hypoxic ischemia (HI). The long-term effects of TAK-242 inhibition on the induced hippocampal injury were investigated by assessing behaviour at P28, and then using a variety of methods to exploring the mechanism, including immunofluorescence, Golgi silver staining, Western blotting and real-time polymerase chain reaction (RT-PCR). TAK-242 treatment significantly reduced the expression levels of TLR4 and its downstream signalling molecules in the ipsilateral lesion of the hippocampus 24 h after HIBD. The Morris water maze (MWM) test demonstrated that TAK-242 treatment reduced the loss of HI-induced learning and memory functions. Immunofluorescence experiments showed that TAK-242 administration attenuated HI-induced loss of neurons, prevented the activation of microglia and astrocytes, and increased the expression of the glutamate receptor subtype, N-methyl d-aspartate 2A (NR2A) in the ipsilateral hippocampus region. Golgi silver staining revealed that TAK-242 prevented an HI-induced decline in spine density in the ipsilateral hippocampus. Western blot and RT-PCR results indicated that the expression of NR2A protein and mRNA in the ipsilateral hippocampi of adolescent rats decreased after neonatal HIBD; early TAK-242 administration may reverse these effects. In conclusion, our findings indicate that early inhibition of TLR4 signalling may improve the long-term prognosis of neonatal HIBD. The mechanisms contributing to this improvement involve reductions in neuronal loss, a decrease in glial cell activation, and an improvement in synaptic plasticity.
Collapse
|
31
|
Palma-Tortosa S, Hurtado O, Pradillo JM, Ferreras-Martín R, García-Yébenes I, García-Culebras A, Moraga A, Moro MÁ, Lizasoain I. Toll-like receptor 4 regulates subventricular zone proliferation and neuroblast migration after experimental stroke. Brain Behav Immun 2019; 80:573-582. [PMID: 31059808 DOI: 10.1016/j.bbi.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability with an urgent need for innovative therapies, especially targeting the chronic phase. New evidence has emerged showing that Toll-Like Receptor 4 (TLR4), a key mediator of brain damage after stroke, may be involved in brain repair by neurogenesis modulation. The aim of this study is to analyze the role of TLR4 in the different stages of neurogenesis initiated in the subventricular zone (SVZ) over time after stroke in mice. Wildtype and TLR4-deficient mice underwent experimental ischemia, and neural stem/progenitor cells (NSPCs) proliferation and migration were analyzed by using FACS analysis, fluorescence densitometry, RT-qPCR and in vitro assays. Our results show that both groups, wildtype and knock-out animals, present a similar pattern of bilateral cell proliferation at the SVZ, with a decrease in NSPCs proliferation in the acute phase of stroke. We also show that TLR4 activation, very likely mediated by ligands such as HMGB1 released to CSF after stroke, is necessary to keep an increased proliferation of NSCs as well as to promote differentiation from type C cells into neuroblasts promoting their migration. TLR4 activation was also implicated in earlier expression of SDF-1α and faster recovery of BDNF expression after stroke. These results support TLR4 as an important therapeutic target in the modulation of neurogenesis after stroke.
Collapse
Affiliation(s)
- Sara Palma-Tortosa
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Olivia Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Jesús Miguel Pradillo
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Raquel Ferreras-Martín
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Isaac García-Yébenes
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alicia García-Culebras
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense Madrid and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
32
|
Ouyang Z, Tan T, Liu C, Duan J, Wang W, Guo X, Zhang Q, Li Z, Huang Q, Dou P, Liu T. Targeted delivery of hesperetin to cartilage attenuates osteoarthritis by bimodal imaging with Gd 2(CO 3) 3@PDA nanoparticles via TLR-2/NF-κB/Akt signaling. Biomaterials 2019; 205:50-63. [PMID: 30903825 DOI: 10.1016/j.biomaterials.2019.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
The progressive degeneration of cartilage marks the advancement of osteoarthritis (OA), which requires specific targeted treatment for effective cartilage repair. However, there is still no efficient cartilage delivery system or novel magnetic resonance (MR) contrast agent (CA). Herein, we report the synthesis of a novel class of MR CA, Gd2(CO3)3-based nanoparticles (NPs), from a simpler and "greener" approach than previous ones. After the coating of polydopamine (PDA) onto the Gd2(CO3)3 core, we further anchored a cartilage-targeting peptide and loaded hesperetin (Hes) into NPs (Hes-Gd2(CO3)3@PDA-PEG-DWpeptide, HGdPDW), showing excellent cartilage affinity and MR suitability. Additionally, the synthesized HGdPDW exerted significant protective effects against IL-1β stimulation, as shown by the decreased apoptosis and inflammation and increased maturation of chondrocytes in vitro. More importantly, RNA-seq analyses showed the significant reduction of TLR-2 in IL-1β-treated chondrocytes, and this reduction was followed by the inactivation of NF-κB/Akt signaling, leading to the protective effect of HGdPDW. By the establishment of anterior cruciate ligament transection (ACLT) OA mice, the bimodal MRI/IVIS imaging demonstrated the effective cartilage-binding ability of HGdPDW in OA knees with low cytotoxicity, which alleviated the gradual degeneration of articular cartilage in vivo by inhibiting TLR-2 in chondrocytes. Taken together, these results suggest that HGdPDW could target cartilage effectively, thereby protecting chondrocytes from apoptosis and inflammation via TLR-2/NF-κB/Akt signaling. We hope this new class of MRI CA could be applied in not only other fields using MRI technology but also the treatment of general cartilage-related diseases; this application will undoubtedly extend the treatment of OA clinically.
Collapse
Affiliation(s)
- Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Tingting Tan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Chunfeng Liu
- Department of Orthopedics, Suzhou Kowloon Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Suzhou, 215021, PR China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Qing Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
33
|
Abd El Raouf HHH, Galhom RA, Ali MHM, Nasr El-Din WA. Harderian gland-derived stem cells as a cytotherapy in a guinea pig model of carboplatin-induced hearing loss. J Chem Neuroanat 2019; 98:139-152. [PMID: 31047945 DOI: 10.1016/j.jchemneu.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stem cells therapy of hearing loss is a challenging field due to lacking self-regenerative capacity of cochlea. Harderian gland of guinea pigs was thought to harbour a unique type of progenitors which could restore the damaged cochlear tissues. THE AIM of this study was to isolate Harderian gland derived stem cells (HG-SCs) and investigate their efficacy in restoring the damaged cochlear tissue in carboplatin-induced hearing loss. METHODOLOGY Sixty female and 10 male pigmented guinea pigs were used; the male animals were HG-SCs donors, while the females were assigned into 3 groups; control, hearing loss (HL) and HG-SC-treated groups. Auditory reflexes were assessed throughout the study. The animals were euthanized 35 days after HG-SCs transplantation, the cochleae were extracted and processed for assessment by light microscope and scanning electron microscope. Morphometric assessment of stria vascularis thickness, hair cells and spiral ganglia neuronal number and optical density of TLR4 expression were done. RESULTS The isolated HG-SCs had the same morphological and phenotypical character as mesenchymal stem cells. HL group revealed destruction of organ of Corti, stria vascularis and spiral ganglion with decreased morphometric parameters. Restoration of both cochlear structure and function was observed in HG-SC-treated group along with a significant increase in IHCs, OHCs numbers, stria vascularis thickness and spiral ganglionic cell count to be close to the values of control group. CONCLUSION The isolated HG-SCs were proved to restore structure and function of cochlea in guinea pig model of hearing loss.
Collapse
Affiliation(s)
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mona H Mohammed Ali
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Amin Nasr El-Din
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Anatomy Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int 2019; 2019:6795845. [PMID: 31089331 PMCID: PMC6476106 DOI: 10.1155/2019/6795845] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) represent one of the bridges that regulate the cross-talk between the innate and adaptive immune systems. TLRs interact with molecules shared and preserved by the pathogens of origin but also with endogenous molecules (damage/danger-associated molecular patterns (DAMPs)) that derive from injured tissues. This is probably why TLRs have been found to be expressed on several kinds of stem/progenitor cells (SCs). In these cells, the role of TLRs in the regulation of the basal motility, proliferation, differentiation processes, self-renewal, and immunomodulation has been demonstrated. In this review, we analyze the many different functions that the TLRs assume in SCs, pointing out that they can have different effects, depending on the background and on the kind of ligands that they recognize. Moreover, we discuss the TLR involvement in the response of SC to specific tissue damage and in the reparative processes, as well as how the identification of molecules mediating the differential function of TLR signaling could be decisive for the development of new therapeutic strategies. Considering the available studies on TLRs in SCs, here we address the importance of TLRs in sensing an injury by stem/progenitor cells and in determining their behavior and reparative activity, which is dependent on the conditions. Therefore, it could be conceivable that SCs employed in therapy could be potentially exposed to TLR ligands, which might modulate their therapeutic potential in vivo. In this context, to modulate SC proliferation, survival, migration, and differentiation in the pathological environment, we need to better understand the mechanisms of action of TLRs on SCs and learn how to control these receptors and their downstream pathways in a precise way. In this manner, in the future, cell therapy could be improved and made safer.
Collapse
|
35
|
Noailles A, Kutsyr O, Maneu V, Ortuño-Lizarán I, Campello L, de Juan E, Gómez-Vicente V, Cuenca N, Lax P. The Absence of Toll-Like Receptor 4 Mildly Affects the Structure and Function in the Adult Mouse Retina. Front Cell Neurosci 2019; 13:59. [PMID: 30873007 PMCID: PMC6401850 DOI: 10.3389/fncel.2019.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
The innate immune Toll-like receptor (TLR) family plays essential roles in cell proliferation, survival and function of the central nervous system. However, the way in which TLRs contribute to the development and maintenance of proper retinal structure and function remains uncertain. In this work, we assess the effect of genetic TLR4 deletion on the morphology and function of the retina in mice. Visual acuity and retinal responsiveness were evaluated in TLR4 knockout and wild type C57BL/6J control mice by means of an optomotor test and electroretinography, respectively, from P20 to P360. Retinal structure was also analyzed in both strains using confocal and electron microscopy. ERG data showed impaired retinal responsiveness in TLR4 KO mice, in comparison to wild type animals. The amplitudes of the scotopic a-waves were less pronounced in TLR4-deficient mice than in wild-type animals from P30 to P360, and TLR4 KO mice presented scotopic b-wave amplitudes smaller than those of age-matched control mice at all ages studied (P20 to P360). Visual acuity was also relatively poorer in TLR4 KO as compared to C57BL/6J mice from P20 to P360, with significant differences at P30 and P60. Immunohistochemical analysis of retinal vertical sections showed no differences between TLR4 KO and C57BL/6J mice, in terms of either photoreceptor number or photoreceptor structure. Horizontal cells also demonstrated no morphological differences between TLR4 KO and wild-type mice. However, TLR4 KO mice exhibited a lower density of bipolar cells (15% less at P30) and thus fewer bipolar cell dendrites than the wild type control mouse, even though both confocal and electron microscopy images showed no morphologic abnormalities in the synaptic contacts between the photoreceptors and second order neurons. Microglial cell density was significantly lower (26% less at P30) in TLR4 KO mice as compared to wild-type control mice. These results suggest that TLR4 deletion causes functional alterations in terms of visual response and acuity, probably through the loss of bipolar cells and microglia, but this receptor is not essential for the processing of visual information in the retina.
Collapse
Affiliation(s)
- Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Emilio de Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.,Institute Ramón Margalef, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
36
|
Charoenwongpaiboon T, Supraditaporn K, Klaimon P, Wangpaiboon K, Pichyangkura R, Issaragrisil S, Lorthongpanich C. Effect of alternan versus chitosan on the biological properties of human mesenchymal stem cells. RSC Adv 2019; 9:4370-4379. [PMID: 35520166 PMCID: PMC9060545 DOI: 10.1039/c8ra10263e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Alternan α-1,3- and α-1,6-linked glucan, promotes proliferation, migration, and differentiation of human MSCs.
Collapse
Affiliation(s)
| | - Kantpitchar Supraditaporn
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Phatchanat Klaimon
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Karan Wangpaiboon
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Rath Pichyangkura
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| |
Collapse
|