1
|
Su Y, Mei L, Wu Y, Li C, Jiang T, Zhao Y, Feng X, Sun T, Li Y, Wang Z, Ji Y. Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of papillary thyroid carcinoma via the BRAF-ERK1/2-P53 signaling pathway. J Endocrinol Invest 2024:10.1007/s40618-024-02481-5. [PMID: 39487939 DOI: 10.1007/s40618-024-02481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Xenotropic and polytropic retrovirus receptor 1 (XPR1), identified as a cellular receptor, plays roles in many pathophysiological processes. However, the underlying function and molecular mechanisms of XPR1 in PTC remain unclear. Therefore, this study aimed to elucidate the role of XPR1 in the process of PTC and the potential mechanisms. METHODS RNA-sequencing was performed for gene differential expression analysis in PTC patients' tissues. Immunohistochemical assay, real-time PCR, and western blotting assay were used to determine the expression of XPR1, BRAF, and P53 in PTC tissues. The function of XPR1 on the progression of PTC was explored using in vitro and in vivo experiments. The molecular mechanism of XPR1 was investigated using gene silencing, ELISA, immunofluorescence, western blotting, and real-time PCR assays. RESULTS We found that XPR1 was markedly upregulated in PTC tissues compared to adjacent noncancerous tissues, suggesting that high expression of XPR1 could be correlated with poor patient disease-free survival in PTC. In addition, the expression of BRAF and P53 in PTC tissues was substantially higher than in adjacent noncancerous tissues. Silencing of XPR1 reduced the proliferation, migration, and invasion capacities of TPC-1 cells in vitro and effectively inhibited the tumorigenecity of PTC in vivo. More importantly, silencing of XPR1 in TPC-1 cells significantly decreased the expression of XPR1, BRAF, and P53 both in vitro and in vivo. Interestingly, we demonstrated that XPR1 may positively activate the BRAF-ERK-P53 signaling pathway, further promoting PTC progression. CONCLUSION The findings reveal a crucial role of XPR1 in PTC progression and prognosis via the BRAF-ERK1/2-P53 signaling pathway, providing potential therapeutic targets for treating PTC.
Collapse
Affiliation(s)
- Yuanhao Su
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Yongke Wu
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cheng Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tiantian Jiang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yiyuan Zhao
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xin Feng
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tingkai Sun
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yunhao Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhidong Wang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
2
|
He Y, Li G, Wu Y, Cai N, Chen Z, Mei B, Chen X, Zhang B, Jin G, Ding Z. Actin like 6A is a prognostic biomarker and associated with immune cell infiltration in cancers. Discov Oncol 2024; 15:503. [PMID: 39333441 PMCID: PMC11436596 DOI: 10.1007/s12672-024-01388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE To investigate the role of Actin like 6 A (ACTL6A) in cancer and explore the potential mechanism of its function. METHODS Differential expression of ACTL6A was analyzed using Oncomine and TIMER database. Then, we downloaded data sets from TCGA database. The correlation between ACTL6A expression and survival in pan-cancer were analyzed by "survival", "survminer" R package and PrognoScan database. STRING (v 11.0) and stringAPP for Cytoscape v3.7.2 were used to predict ACTL6A associated genes. Copy number and methylation alterations of ACTL6A were analyzed using cBioPortal and GSCALite. Transcription factors were downloaded from The Human Transcription Factors Database and analyzed using "limma" R package, JASPAR and PROMO database. Correlations analysis between ACTL6A and immune cells were performed using TIMER and GEPIA database. RESULTS In our studies, we found that ACTL6A was widely upregulated in cancers, which might be attributed to its gene amplifications. Moreover, ACTL6A might regulated by transcription factors (TFs), including E2F1, YY1, CDX2 and HOXD10. In addition, high ACTL6A expression was associated with poor prognosis in most cancers. Meanwhile, ACTL6A was associated with the infiltration of immune cells, especially in liver hepatocellular carcinoma and brain lower grade glioma. CONCLUSION Amplification of ACTL6A is correlated with poor prognosis and contribute to immune cells infiltration in LIHC and LGG, which may provide immune-related therapeutic targets to guide clinical strategies.
Collapse
Affiliation(s)
- Yi He
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Ganxun Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Yu Wu
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Ning Cai
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Zeyu Chen
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Bin Mei
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Guannan Jin
- Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, 430000, China.
| | - Zeyang Ding
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Peng ZT, Hu R, Fu JY. Sulforaphane suppresses cell proliferation and induces apoptosis in glioma via the ACTL6A/PGK1 axis. Toxicol Mech Methods 2024; 34:507-516. [PMID: 38221767 DOI: 10.1080/15376516.2024.2306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
This study aimed to examine the expression and biological functions of ACTL6A in glioma cells (U251), the effects of sulforaphane on the growth of U251 cells and the involvement of the ACTL6A/PGK1 pathway in those effects. The U251 cell line was transfected with ACTL6A over-expression plasmids to upregulate the protein, or with ACTL6A inhibitor to underexpress it, then treated with different concentrations of sulforaphane. Cell viability, proliferation, and apoptosis were assessed using standard assays, and levels of mRNAs encoding ACTL6A, PGK1, cyclin D1, Myc, Bax or Bcl-2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). ACTL6A and PGK1 were expressed at higher levels in glioma cell lines than in normal HEB cells. ACTL6A overexpression upregulated PGK1, whereas ACTL6A inhibition had the opposite effect. ACTL6A overexpression induced proliferation, whereas its inhibition repressed proliferation, enhanced apoptosis, and halted the cell cycle. Moreover, sulforaphane suppressed the growth of U251 cells by inactivating the ACTL6A/PGK1 axis. ACTL6A acts via PGK1 to play a critical role in glioma cell survival and proliferation, and sulforaphane targets it to inhibit glioma.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| | - Rong Hu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| | - Jing-Yu Fu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei, People's Republic of China
| |
Collapse
|
4
|
Eid RA, Mamdouh F, Abdulsahib WK, Alshaya DS, Al-Salmi FA, Ali Alghamdi M, Jafri I, Fayad E, Alsharif G, Zaki MSA, Alshehri MA, Noreldin AE, Alaa Eldeen M. ACTL6A: unraveling its prognostic impact and paving the way for targeted therapeutics in carcinogenesis. Front Mol Biosci 2024; 11:1387919. [PMID: 38872915 PMCID: PMC11170035 DOI: 10.3389/fmolb.2024.1387919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: Increased Actin-like 6A (ACTL6A) expression is associated with various cancers, but its comprehensive investigation across different malignancies is lacking. We aimed to analyze ACTL6A as a potential oncogene and therapeutic target using bioinformatics tools. Methods: We comprehensively analyzed ACTL6A expression profiles across human malignancies, focusing on correlations with tumor grade, stage, metastasis, and patient survival. Genetic alterations were examined, and the epigenetic landscape of ACTL6A was assessed using rigorous methods. The impact of ACTL6A on immune cell infiltration in the tumor microenvironment was evaluated, along with molecular docking studies and machine learning models. Results: Our analysis revealed elevated ACTL6A expression in various tumors, correlating with poor prognostic indicators such as tumor grade, stage, metastasis, and patient survival. Genetic mutations and epigenetic modifications were identified, along with associations with immune cell infiltration and key cellular pathways. Machine learning models demonstrated ACTL6A's potential for cancer detection. Discussion: ACTL6A emerges as a promising diagnostic and therapeutic target in cancer, with implications for prognosis and therapy. Our study provides comprehensive insights into its carcinogenic actions, highlighting its potential as both a prognostic indicator and a target for anti-cancer therapy. This integrative approach enhances our understanding of ACTL6A's role in cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Banha, Egypt
| | - Waleed K. Abdulsahib
- Pharmacology and Toxicology Department, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fawziah A. Al-Salmi
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | | | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Magarifuchi N, Iwasaki T, Katayama Y, Tomonaga T, Nakashima M, Narutomi F, Kato K, Oda Y. Gene amplification of chromatin remodeling factor SMARCC2 and low protein expression of ACTL6A are unfavorable factors in ovarian high‑grade serous carcinoma. Oncol Lett 2024; 27:196. [PMID: 38516682 PMCID: PMC10955683 DOI: 10.3892/ol.2024.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
Ovarian high-grade serous carcinoma (OHGSC) is the most common type of ovarian cancer worldwide. Genome sequencing has identified mutations in chromatin remodeling factors (CRFs) in gynecological cancer, such as clear cell carcinoma, endometrioid carcinoma and endometrial serous carcinoma. However, to the best of our knowledge, the association between CRFs and OHGSC remains unexplored. The present study aimed to investigate the clinicopathological and molecular characteristics of CRF dysfunction in OHGSC. CRF alterations were analyzed through numerous methods, including the analysis of public next-generation sequencing (NGS) data from 585 ovarian serous carcinoma cases from The Cancer Genome Atlas (TCGA), immunohistochemistry (IHC), and DNA copy number assays, which were performed on 203 surgically resected OHGSC samples. In the public NGS dataset, the most frequent genetic alteration was actin-like protein 6A (ACTL6A) amplification at 19.5%. Switch/sucrose non-fermentable related, matrix associated, actin dependent regulator of chromatin subfamily c member 2 (SMARCC2) amplification (3.1%) was associated with significantly decreased overall survival (OS). In addition, chromodomain-helicase-DNA-binding protein 4 (CHD4) amplification (5.7%) exhibited unfavorable outcome trends, although not statistically significant. IHC revealed the protein expression loss of ARID1A (2.5%), SMARCA2 (2.5%) and SMARCA4 (3.9%). The protein expression levels of ACTL6A, SMARCC2 and CHD4 were evaluated using H-score. Patients with low protein expression levels of ACTL6A showed a significantly decreased OS. Copy number gain or gene amplification was demonstrated in ACTL6A (66.2%) and SMARCC2 (33.5%), while shallow deletion or deep deletion was demonstrated in CHD4 (70.7%). However, there was no statistically significant difference in protein levels of these CRFs, between the different copy number alterations (CNAs). Overall, OHGSC exhibited CNAs and protein loss, indicating possible gene alterations in CRFs. Moreover, there was a significant association between the protein expression levels of ACTL6A and poor prognosis. Based on these findings, it is suggested that CRFs could serve as prognostic markers for OHGSC.
Collapse
Affiliation(s)
- Naomi Magarifuchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Katayama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takumi Tomonaga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Miya Nakashima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Fumiya Narutomi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kiyoko Kato
- Department of Gynecology and Obstetrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Liu F, Liao Z, Qin L, Zhang Z, Zhang Q, Han S, Zeng W, Zhang H, Liu Y, Song J, Chen W, Zhu H, Liang H, Chen X, Zhang B, Zhang Z. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology 2023; 78:1384-1401. [PMID: 36631007 PMCID: PMC10581431 DOI: 10.1097/hep.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| |
Collapse
|
7
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
9
|
Yang Z, Zou S, Zhang Y, Zhang J, Zhang P, Xiao L, Xie Y, Meng M, Feng J, Kang L, Lee MH, Fang L. ACTL6A protects gastric cancer cells against ferroptosis through induction of glutathione synthesis. Nat Commun 2023; 14:4193. [PMID: 37443154 PMCID: PMC10345109 DOI: 10.1038/s41467-023-39901-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignant tumors in the world, exhibits a rapid metastasis rate and causes high mortality. Diagnostic markers and potential therapeutic targets for GCs are urgently needed. Here we show that Actin-like protein 6 A (ACTL6A), encoding an SWI/SNF subunit, is highly expressed in GCs. ACTL6A is found to be critical for regulating the glutathione (GSH) metabolism pathway because it upregulates γ-glutamyl-cysteine ligase catalytic subunit (GCLC) expression, thereby reducing reactive oxygen species (ROS) levels and inhibiting ferroptosis, a regulated form of cell death driven by the accumulation of lipid-based ROS. Mechanistic studies show that ACTL6A upregulates GCLC as a cotranscription factor with Nuclear factor (erythroid-derived 2)-like 2 (NRF2) and that the hydrophobic region of ACTL6A plays an important role. Our data highlight the oncogenic role of ACTL6A in GCs and indicate that inhibition of ACTL6A or GCLC could be a potential treatment strategy for GCs.
Collapse
Affiliation(s)
- Ziqing Yang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shaomin Zou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yijing Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jieping Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Peng Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Lishi Xiao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yunling Xie
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Manqi Meng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Junyan Feng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Liang Kang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Mong-Hong Lee
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
10
|
Wang M, Xing S, Jia J, Zeng W, Lei J, Qian Y, Xiong Z, Wang X, Cao L, Wang Y, Wang Y, Jiang Y, Huang Z. Angelicin impedes the progression of glioblastoma via inactivation of YAP signaling pathway. Biomed Pharmacother 2023; 161:114462. [PMID: 36933380 DOI: 10.1016/j.biopha.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma (GBM) is a human malignant tumor with low survival and high recurrence rate. Angelicin, an active furanocoumarin compound, has been reported to possess potential antitumor activity towards various malignancies. However, the effect of angelicin on GBM cells and its mechanism are still unclear. In this study, we found that angelicin inhibited the proliferation of GBM by inducing the cell cycle arrested in G1 phase and suppressed the migration of GBM cells in vitro. Mechanically, we found that angelicin downregulated the expression of YAP and decreased the nuclear localization of YAP, and suppressed the expression of β-catenin. Furthermore, overexpression of YAP partially restored the inhibitory effect of angelicin on GBM cells in vitro. Finally, we found that angelicin could inhibit the growth of tumor and reduce the expression of YAP in the subcutaneous xenograft model of GBM in nude mice and the syngeneic intracranial orthotopic model of GBM in C57BL/6 mice. Taken together, our results suggest that the natural product angelicin exerts its anticancer effects on GBM via YAP signaling pathway, and is expected to be a promising compound for the treatment of GBM.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuqiao Xing
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiamei Jia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weiquan Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jia Lei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhenrong Xiong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liying Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
11
|
Yu S, Liang Z, Fan Z, Cao B, Wang N, Wu R, Sun H. A Comprehensive Analysis Revealing FBXW9 as a Potential Prognostic and Immunological Biomarker in Breast Cancer. Int J Mol Sci 2023; 24:5262. [PMID: 36982338 PMCID: PMC10049633 DOI: 10.3390/ijms24065262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
The WD40 repeat-containing F-box proteins (FBXWs) family belongs to three major classes of F-box proteins. Consistent with the function of other F-box proteins, FBXWs are E3 ubiquitin ligases to mediate protease-dependent protein degradation. However, the roles of several FBXWs remain elusive. In the present study, via integrative analysis of transcriptome profiles from The Cancer Genome Atlas (TCGA) datasets, we found that FBXW9 was upregulated in the majority of cancer types, including breast cancer. FBXW expression was correlated with the prognosis of patients with various types of cancers, especially for FBXW4, 5, 9, and 10. Moreover, FBXWs were associated with infiltration of immune cells, and expression of FBXW9 was associated with poor prognosis of patients receiving anti-PD1 therapy. We predicted several substrates of FBXW9, and TP53 was the hub gene in the list. Downregulation of FBXW9 increased the expression of p21, a target of TP53, in breast cancer cells. FBXW9 was also strongly correlated with cancer cell stemness, and genes correlated with FBXW9 were associated with several MYC activities according to gene enrichment analysis in breast cancer. Cell-based assays showed that silencing of FBXW9 inhibited cell proliferation and cell cycle progression in breast cancer cells. Our study highlights the potential role of FBXW9 as a biomarker and promising target for patients with breast cancer.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Binjie Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Rui Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| |
Collapse
|
12
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
13
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
14
|
BAF53A drives colorectal cancer development by regulating DUSP5-mediated ERK phosphorylation. Cell Death Dis 2022; 13:1049. [PMID: 36526622 PMCID: PMC9758165 DOI: 10.1038/s41419-022-05499-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
BAF53A, an important subunit of the SWI/SNF epigenetic chromatin regulatory complex, has been implicated as the driver of diverse cancers. However, the role of BAF53A in colorectal cancer (CRC) remains poorly understood. Here, we examined the expression of BAF53A in CRC samples and observed that BAF53A was significantly upregulated in CRC tissues compared with paired adjacent normal tissues. In vitro and in vivo studies suggested that ectopic expression of BAF53A promoted colorectal cancer cell proliferation, colony formation, and tumorigenesis, whereas knockdown of BAF53A hindered these cellular functions. DUSP5 (dual-specificity phosphatase 5), an ERK1/2-specific endogenous phosphatase, was expressed at low levels in CRC. We found a negative correlation between BAF53A and DUSP5 expression in a set of CRC samples. Mechanistic studies revealed that P63 was a potential transcription repressor of DUSP5. BAF53A could interact with P63, decreasing the DUSP5 expression level and subsequently promoting ERK1/2 phosphorylation. Thus, our study provides insights into the applicability of the BAF53A-DUSP5-ERK1/2 axis as a potential therapeutic target in CRC.
Collapse
|
15
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
16
|
Huang JC, Yue ZP, Yu HF, Yang ZQ, Wang YS, Guo B. TAZ ameliorates the microglia-mediated inflammatory response via the Nrf2-ROS-NF-κB pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:435-449. [PMID: 35505966 PMCID: PMC9043866 DOI: 10.1016/j.omtn.2022.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/27/2022] [Indexed: 01/03/2023]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ), one of core modules of the Hippo pathway, involves inflammatory cell infiltration in the liver, but little information is available regarding its physiological function in the microglia-mediated inflammatory response. Here we revealed that activation of TAZ prevented microglia production of proinflammatory cytokines, indicating TAZ’s importance in anti-inflammation. After translocation into the nucleus, TAZ interacted with transcriptional enhanced associate domain (TEAD) and bound to the promoter of nuclear factor erythroid 2-related factor 2 (Nrf2), whose blockage caused inability of TAZ to improve inflammation, implying that Nrf2 is a direct target of TAZ. Further analysis showed that TAZ induced Nrf2 nuclear translocation to enhance antioxidant capacity with attenuation of oxidative stress and the inflammatory response. Under inflammatory conditions, TAZ impeded mitochondrial dysfunction, as indicated by amelioration of ATP levels, mtDNA copy numbers, and mitochondrial membrane potential with an obvious reduction in mitochondrial superoxide, but this impediment was neutralized by blockage of Nrf2. TAZ hindered opening of the mitochondrial permeability transition pore, restrained release of cytochrome c from mitochondria into the cytosol, and was sufficient to rescue microglia from apoptosis dependent on Nrf2. Nrf2 acted as a downstream target of TAZ to repress NF-κB activation by enhancing antioxidant capacity. Collectively, TAZ might ameliorate the microglia-mediated inflammatory response through the Nrf2-reactive oxygen species (ROS)-nuclear factor κB (NF-κB) pathway.
Collapse
Affiliation(s)
- Ji-Cheng Huang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Hai-Fan Yu
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yu-Si Wang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| |
Collapse
|
17
|
Zhang Y, Wang X, Zhou X. Functions of Yes-association protein (YAP) in cancer progression and anticancer therapy resistance. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Hippo pathway, a highly conserved kinase cascade, regulates cell proliferation, apoptosis, organ size, and tissue homeostasis. Dysregulation of this pathway reportedly plays an important role in the progression of various human cancers. Yes-association protein (YAP), the Hippo pathway’s core effector, is considered a marker for cancer therapy and patient prognosis. In addition, studies have indicated that YAP is involved in promoting anticancer drug resistance. This review summarizes current knowledge on YAP’s role in cancer progression, anticancer drug resistance, and advances in the development of YAP-targeting drugs. A thorough understanding of the complex interactions among molecular, cellular, and environmental factors concerning YAP function in cancer progression may provide new insight into the underlying mechanism of anticancer drug resistance. It might lead to improved prognosis through novel combined therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- These authors contributed equally to this work
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- These authors contributed equally to this work
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
18
|
Zhang Z, Guo H, Zhang H. Upregulated Expression of Actin-Like 6A is a Risk Factor Affecting the Prognosis of Pancreatic Cancer. Cancer Manag Res 2022; 13:9467-9475. [PMID: 35002324 PMCID: PMC8722579 DOI: 10.2147/cmar.s342745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Actin-like 6A (ACTL6A), a regulatory subunit of the ATP-dependent chromatin-remodeling complex SWI/SNF, acts as an oncogenic factor. This study is aimed at evaluating the correlation between ACTL6A expression and clinicopathological parameters in pancreatic cancer (PC) patients. Methods The differences of Actl6a mRNA expression between PC tissues and normal pancreatic tissues were analyzed in public databases, and ACTL6A expression was then determined and confirmed in 60 paired tissue specimens using immunohistochemistry staining. The association analysis between ACTL6A expression and the clinicopathological characteristics was analyzed, as well as Kaplan–Meier survival analysis. Univariate and multivariate Cox analyses were performed to identify the prognostic factors in the overall survival (OS) of patients with PC. Results The mRNA expression of Actl6a showed significantly higher in PC compared to normal controls (p < 0.05) from public databases. The score of immunohistochemistry staining further confirmed that ACTL6A expression was significantly upregulated in PC tissues (p < 0.001) through immunohistochemistry staining. High ACTL6A expression was associated with lymphovascular space invasion of PC. Kaplan–Meier analysis revealed that the high expression of ACTL6A was markedly associated with poor OS. Moreover, univariate and multivariate analysis demonstrated that ACTL6A acted as an independent risk factor for PC prognosis. Conclusion ACTL6A is upregulated in PC and acts as a risk factor for poor prognosis in patients with PC, and therefore clinicians could around it design preventive measures and individualized treatment to improve mortality in patients with PC.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haochun Guo
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
ACTL6A suppresses p21 Cip1 tumor suppressor expression to maintain an aggressive mesothelioma cancer cell phenotype. Oncogenesis 2021; 10:70. [PMID: 34689163 PMCID: PMC8542039 DOI: 10.1038/s41389-021-00362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mesothelioma is a poor prognosis cancer of the mesothelial lining that develops in response to exposure to various agents including asbestos. Actin-Like Protein 6A (ACTL6A, BAF53a) is a SWI/SNF regulatory complex protein that is elevated in cancer cells and has been implicated as a driver of cancer cell survival and tumor formation. In the present study, we show that ACTL6A drives mesothelioma cancer cell proliferation, spheroid formation, invasion, and migration, and that these activities are markedly attenuated by ACTL6A knockdown. ACTL6A expression reduces the levels of the p21Cip1 cyclin-dependent kinase inhibitor and tumor suppressor protein. DNA binding studies show that ACTL6A interacts with Sp1 and p53 binding DNA response elements in the p21Cip1 gene promoter and that this is associated with reduced p21Cip1 promoter activity and p21Cip1 mRNA and protein levels. Moreover, ACTL6A suppression of p21Cip1 expression is required for maintenance of the aggressive mesothelioma cancer cell phenotype suggesting that p21Cip1 is a mediator of ACTL6A action. p53, a known inducer of p21Cip1 expression, is involved ACTL6A in regulation of p21Cip1 in some but not all mesothelioma cells. In addition, ACTL6A knockout markedly reduces tumor formation and this is associated with elevated tumor levels of p21Cip1. These findings suggest that ACTL6A suppresses p21Cip1 promoter activity to reduce p21Cip1 protein as a mechanism to maintain the aggressive mesothelioma cell phenotype.
Collapse
|
20
|
Luo T, Ding K, Ji J, Zhang X, Yang X, Chen A, Huang B, Zhang D, Wang J, Li X. Cytoskeleton-associated protein 4 (CKAP4) promotes malignant progression of human gliomas through inhibition of the Hippo signaling pathway. J Neurooncol 2021; 154:275-283. [PMID: 34476666 DOI: 10.1007/s11060-021-03831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Gliomas are the most common and aggressive malignant brain tumors and are associated with high mortality and incidence in humans. Despite rigorous multi-modal therapy, including surgery, chemotherapy and radiotherapy, patients with malignant glioma survive an average of 12-15 months following primary diagnosis. Therefore, new molecular biomarkers are urgently needed for diagnosis and targeted therapy. Here, we find that suppression of CKAP4 might inhibit glioma growth through regulation of Hippo signaling. METHODS We examined the expression levels of CKAP4 through analysis of RNA sequencing data from GEPIA and CGGA databases. Then, Lentivirus was used to construct stable cell lines with knockout or overexpression of CKAP4. Next, the function of CKAP4 on glioma was investigated in vitro and in an orthotopic brain tumor model in mice. Lastly, luciferase reporter assay, immunofluorescence and immunoblotting were performed to explore the potential mechanism of how CKAP4 affects gliomas. RESULTS CKAP4 is highly upregulated in glioma and high CKAP4 expressing tumors were associated with poor patient survival. And CKAP4 promotes malignant progression of gliomas via inhibiting Hippo signaling. CONCLUSION CKAP4 has potential as a promising biomarker and can predict the prognosis of patients with gliomas. And targeting CKAP4 expression may be an effective therapeutic strategy for the treatment of human gliomas.
Collapse
Affiliation(s)
- Tao Luo
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China.,School of Medicine, Shandong University, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China.,Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Cheeloo College of Medicine, Shandong University, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China. .,Key Laboratory of Brain Functional Remodeling, Shandong, 250012, Jinan, China. .,Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, 107# Wenhua Xi Road, Shandong, 250012, Jinan, China.
| |
Collapse
|
21
|
Strepkos D, Markouli M, Papavassiliou KA, Papavassiliou AG, Piperi C. Emerging roles for the YAP/TAZ transcriptional regulators in brain tumour pathology and targeting options. Neuropathol Appl Neurobiol 2021; 48:e12762. [PMID: 34409639 DOI: 10.1111/nan.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
The transcriptional co-activators Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have emerged as significant regulators of a wide variety of cellular and organ functions with impact in early embryonic development, especially during the expansion of the neural progenitor cell pool. YAP/TAZ signalling regulates organ size development, tissue homeostasis, wound healing and angiogenesis by participating in a complex network of various pathways. However, recent evidence suggests an association of these physiologic regulatory effects of YAP/TAZ with pro-oncogenic activities. Herein, we discuss the physiological functions of YAP/TAZ as well as the extensive network of signalling pathways that control their expression and activity, leading to brain tumour development and progression. Furthermore, we describe current targeting approaches and drug options including direct YAP/TAZ and YAP-TEA domain transcription factor (TEAD) interaction inhibitors, G-protein coupled receptors (GPCR) signalling modulators and kinase inhibitors, which may be used to successfully attack YAP/TAZ-dependent tumours.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Wang Q, Cao Z, Wei Y, Zhang J, Cheng Z. Potential Role of SWI/SNF Complex Subunit Actin-Like Protein 6A in Cervical Cancer. Front Oncol 2021; 11:724832. [PMID: 34395295 PMCID: PMC8358818 DOI: 10.3389/fonc.2021.724832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
SWI/SNF complex subunit Actin-like protein 6A (ACTL6A) has been regarded as an oncogene, regulating the proliferation, migration and invasion of cancer cells. However, the expression pattern and biological role of ACTL6A in cervical cancer have not been reported. In this study, the mRNA expression and protein level of ACTL6A in cervical cancer samples were determined by public database and immunohistochemical (IHC) analysis. The effects of ACTL6A on cervical cancer cells were investigated via MTT, colony-formation assay, tumor xenografts and flow cytometry. Gene set enrichment analysis (GSEA) was used to explore the potential mechanism of ACTL6A in regulating tumorigenesis of cervical cancer. The results revealed that ACTL6A was markedly upregulated in cervical cancer tissues. Silencing ACTL6A expression resulted in decreased cervical cancer cell proliferation, colony formation and tumorigenesis in vitro and in vivo. Furthermore, we demonstrated that knockdown of ACTL6A induced cell cycle arrest at G1 phase, ACTL6A-mediated proliferation and cell cycle progression were c-Myc dependent. Our study provides the role of ACTL6A in cervical oncogenesis and reveals a potential target for therapeutic intervention in this cancer type.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zuozeng Cao
- Department of Obstetrics and Gynecology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital, Nantong, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Ma L, Shan L. ACTL6A promotes the growth in non-small cell lung cancer by regulating Hippo/Yap pathway. Exp Lung Res 2021; 47:250-259. [PMID: 33896314 DOI: 10.1080/01902148.2021.1916651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: To delve into the related molecular mechanism of ACTL6A on non-small cell lung cancer (NSCLC) cell growth and apoptosis.Methods: Quantitative real-time polymerase chain reaction, immunohistochemical staining, and western blot assays were employed to examine ACTL6A mRNA and protein expression in four NSCLC cell line (NCI-H2170, LTEP-s, NCI-H1703, and PC-9) and normal lung cell line (BEAS-2B). CCK-8 cell viability assays and clone formation assay were applied to verify the cell proliferation of NCI-H2170 cell line after knockdown of ACTL6A. Flow cytometry assays were applied to check the role of ACTL6A in the apoptosis of NSCLC cells. The western blot assays were employed to examine the protein expression of WWC1, YAP, TAZ, and CYR61 in NCI-H2170 after knockdown of ACTL6A. Finally, xenograft tumor was taken out and checked the tumor volumes and weight. Immunohistochemical staining and western blot assays were employed to examine cell proliferation and apoptosis of NSCLC in vivo.Results: In this study, the results showed that the mRNA and protein expression level of ACTL6A was higher in four NSCLC cell line than normal lung cell line, respectively. Suppression of ACTL6A inhibited the growth and promoted apoptosis of NSCLC cells. Meanwhile, ACTL6A promotes tumor growth and inhibits apoptosis of NSCLC in vivo via Hippo/YAP signaling pathway.Conclusion: ACTL6A promotes the proliferation in NSCLC by regulating Hippo/YAP pathway.
Collapse
Affiliation(s)
- Ling Ma
- Pulmonary Medicine Department (Inpatient Area 1), The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Shan
- Pulmonary Medicine Department (Inpatient Area 1), The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
24
|
Recent insight into the role of RING-finger E3 ligases in glioma. Biochem Soc Trans 2021; 49:519-529. [PMID: 33544148 DOI: 10.1042/bst20201060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new gene (RING) finger E3s account for the majority of E3s. The human genome encodes more than 600 RING E3s, which are divided into three subclasses: single polypeptide E3s, cullin-RING ligases (CRLs) and other multisubunit E3s. The abnormal regulation of RING E3s has been reported to disrupt normal biological processes and induce the occurrence of many human malignancies. Glioma is the most common type of malignant primary brain tumor. In the last few decades, patient prognosis has improved as novel targeted therapeutic agents have developed. In this review, we will summarize the current knowledge about the dysregulation of RING E3s and the altered stability of their substrates in glioma. We will further introduce and discuss the current status and future perspectives of the application of small inhibitors and proteolysis-targeting chimeric molecules (PROTACs) interfering with RING E3s as potential anticancer agents for glioma.
Collapse
|
25
|
Actin-like protein 6A/MYC/CDK2 axis confers high proliferative activity in triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:56. [PMID: 33541412 PMCID: PMC7863242 DOI: 10.1186/s13046-021-01856-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
Background Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high proliferative activity. TNBC tumors exhibit elevated MYC expression and altered expression of MYC regulatory genes, which are associated with tumor progression and poor prognosis; however, the underlying mechanisms by which MYC retains its high expression and mediates TNBC tumorigenesis require further exploration. Methods ACTL6A regulation of MYC and its target gene, CDK2, was defined using Co-IP, mass spectrometry and ChIP assays. To study the role of ACTL6A in TNBC, we performed soft-agar, colony formation, flow cytometry and tumor formation in nude mice. CDK2 inhibitor and paclitaxel were used in testing combination therapy in vitro and in vivo. Results ACTL6A bound MYC to suppress glycogen synthase kinase 3 beta (GSK3β)-induced phosphorylation on MYC T58, which inhibited ubiquitination of MYC and stabilized it. Moreover, ACTL6A promoted the recruitment of MYC and histone acetyltransferase KAT5 on CDK2 promoters, leading to hyperactivation of CDK2 transcription. ACTL6A overexpression promoted, while silencing ACTL6A suppressed cell proliferation and tumor growth in TNBC cells in vitro and in vivo, which was dependent on MYC signaling. Furthermore, co-therapy with paclitaxel and CDK2 inhibitor showed synergistic effects in tumor suppression. Notably, ACTL6A/MYC/CDK2 axis was specifically up-regulated in TNBC and high expression of ACTL6A was correlated to shorter survival in patients with TNBC. Conclusions These findings reveal a novel mechanism by which ACTL6A prolongs the retention of MYC in TNBC and suggest that pharmacological targeting ACTL6A/MYC/CDK2 axis might have therapeutic potential in patients with TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01856-3.
Collapse
|
26
|
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo Signaling Pathway in Gliomas. Cells 2021; 10:184. [PMID: 33477668 PMCID: PMC7831924 DOI: 10.3390/cells10010184] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| |
Collapse
|
27
|
Li RZ, Li YY, Qin H, Li SS. ACTL6A Promotes the Proliferation of Esophageal Squamous Cell Carcinoma Cells and Correlates with Poor Clinical Outcomes. Onco Targets Ther 2021; 14:199-211. [PMID: 33469301 PMCID: PMC7812043 DOI: 10.2147/ott.s288807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background ACTL6A, a regulatory subunit of ATP-dependent chromatin-remodeling complexes SWI/SNF, has been identified as a central oncogenic driver in many tumor types. Materials and Methods We used immunohistochemistry (IHC) to detect ACTL6A expression in esophageal squamous cell carcinoma (ESCC) tissues. Then, the effect of ACTL6A on proliferation and DNA synthesis was explored by using cell counting kit 8 (CCK8) and EdU retention assays. The potential oncogenic mechanism of ACTL6A in ESCC cells was also analyzed by flow cytometry and Western blotting. We further established an ESCC xenograft mouse model to validate the in vitro results. Results ACTL6A expression, localized in cancer cell nuclei, was markedly higher in ESCC tissues than in the corresponding noncancerous tissues (P<0.001) and was positively associated with tumor size, histological differentiation, T stage and tumor-node-metastasis (TNM) stage. Kaplan–Meier analysis revealed that high ACTL6A expression was significantly associated with poor overall survival (OS) (P = 0.008, HR= 2.562, 95% CI: 1.241–5.289), and decision curve analysis (DCA) demonstrated that ACTL6A could increase the clinical prognostic efficiency of the original clinical prediction model. Further in vitro experiments showed that ACTL6A knockdown led to inhibition of cell proliferation and DNA synthesis in ESCC cell lines, while overexpression of ACTL6A had the opposite effects. ACTL6A knockdown resulted in G1 phase arrest, with downregulation of cyclin D1, CDK2 and S6K1/pS6 pathway proteins and upregulation of p21 and p27, while overexpression of ACTL6A facilitated the entry of more cells into S phase with upregulated cyclin D1, CDK2 and S6K1/pS6 pathway proteins and downregulated p21 and p27. Finally, a xenograft mouse model of ESCC cells validated the results in vitro. Conclusion ACTL6A expression may affect the proliferation and DNA synthesis of ESCC cells by facilitating ESCC cell cycle redistribution via the S6K1/pS6 pathway. Therefore, ACTL6A may potentially become an alternative therapeutic target for ESCC.
Collapse
Affiliation(s)
- Rui-Zhe Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Yun-Yun Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China.,Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Hui Qin
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Shan-Shan Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
28
|
Guo H, Zou J, Zhou L, Zhong M, He Y, Huang S, Chen J, Li J, Xiong J, Fang Z, Xiang X. NUSAP1 Promotes Gastric Cancer Tumorigenesis and Progression by Stabilizing the YAP1 Protein. Front Oncol 2021; 10:591698. [PMID: 33489890 PMCID: PMC7817543 DOI: 10.3389/fonc.2020.591698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023] Open
Abstract
The Yes-associated protein (YAP1) is a main effector of the canonical Hippo pathway, which contributes greatly to tumor initiation, progression, and metastasis in multiple cancers, including gastric cancer (GC). Due to limited knowledge of YAP1 upregulation in cancer, it is a great challenge of therapeutic targets toward the Hippo-YAP1 pathway. Here, we identify nucleolar spindle-associated protein 1 (NUSAP1) as a novel binding partner of YAP1. The upregulation of NUSAP1 is associated with unfavorable clinical outcomes in GC patients, and NUSAP1 depletion impairs its oncogenic properties in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 functions as a positive regulator of YAP1 protein stability, thereby inducing the transcription of Hippo pathway downstream target genes, such as CTGF and CYR61. More interestingly, we find that the cancer-promoting effects of NUSAP1 on GC cell growth, migration, and invasion are mainly mediated by YAP1. Furthermore, aberrant expression of NUSAP1 and YAP1 is highly correlated in GC cell lines and tissues. We herein clarify the role of the oncogenic NUSAP1-YAP1 axis in GC tumorigenesis and progression and, therefore, provide novel therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Zou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan He
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Chen X, Xiang Z, Li D, Zhu X, Peng X. ACTL6A knockdown inhibits cell migration by suppressing the AKT signaling pathway and enhances the sensitivity of glioma cells to temozolomide. Exp Ther Med 2020; 21:175. [PMID: 33456542 PMCID: PMC7792480 DOI: 10.3892/etm.2020.9606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Molecular-targeted therapy has had a significant impact on glioma. Notably, actin-like 6A (ACTL6A) has been indicated to be essential for embryonic development and tumor progression. However, the role of ACTL6A in glioma remains unclear. The present study aimed to investigate the effects of ACTL6A on glioma cell migration and sensitivity to temozolomide (TMZ). The expression levels of ACTL6A were analyzed in patients with glioma, and survival curves were created using data from The Cancer Genome Atlas. U251 and T98G cells were transfected with short hairpin (sh)RNA for use in loss-of-function experiments to investigate the biological function and molecular mechanisms of ACTL6A. Furthermore, an MTT assay was used to assess the effect of ACTL6A on the sensitivity of glioma cells to TMZ. The results demonstrated that ACTL6A was expressed at higher levels in glioma tissues compared with normal brain tissues. Furthermore, high expression of ACTL6A was associated with a poor prognosis. The knockdown of ACTL6A significantly inhibited the migration phenotype in glioma cells and significantly decreased the levels of phosphorylated AKT in glioma cells. The AKT signaling activator SC79 partly attenuated the inhibitory effects of ACTL6A shRNA on glioma cell migration. Additionally, the knockdown of ACTL6A enhanced the sensitivity of glioma cells to TMZ. In conclusion, these results suggest that ACTL6A knockdown inhibited the migration of human glioma cells, at least in part through inactivation of the AKT signaling pathway, and increased the sensitivity of glioma cells to TMZ. Therefore, ACTL6A may be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xueru Chen
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zijin Xiang
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dangchi Li
- Jiangxi University of Technology High School, Nanchang, Jiangxi 330029, P.R. China
| | - Xiuting Zhu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiangdong Peng
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Actin-like 6A enhances the proliferative and invasive capacities of laryngeal squamous cell carcinoma by potentiating the activation of YAP signaling. J Bioenerg Biomembr 2020; 52:453-463. [DOI: 10.1007/s10863-020-09855-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
|
31
|
ACTL6A suppresses p21 Cip1 expression to enhance the epidermal squamous cell carcinoma phenotype. Oncogene 2020; 39:5855-5866. [PMID: 32616890 PMCID: PMC7483332 DOI: 10.1038/s41388-020-1371-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Epidermal squamous cell carcinoma (SCC) is a common and highly invasive form of cancer. SCC arises due to ultraviolet light exposure and is associated with increased expression of pro-cancer genes and reduced expression of cancer suppressors. Actin-Like Protein 6A (ACTL6A, BAF53a) is an important protein subunit of the SWI/SNF epigenetic chromatin regulatory complex. ACTL6A is elevated in cancer cells and has been implicated as a driver of cancer cell proliferation and tumor growth. In the present study, we show that ACTL6A drives SCC cell proliferation, spheroid formation, invasion and migration, and that these activities are markedly reduced by ACTL6A knockdown. We further show that ACTL6A expression is associated with reduced levels of the p21Cip1 cyclin-dependent kinase inhibitor and tumor suppressor protein. Molecular studies show that ACTL6A interacts with p53 DNA response elements in the p21Cip1 gene promoter to suppress p21Cip1 promoter activity and mRNA and protein level. Additional studies show that an increase in p21Cip1 expression in ACTL6A knockdown cells is required for suppression of the SCC cell phenotype, suggesting that p21Cip1 is a mediator of ACTL6A action. We further show that this regulation is p53 independent. These findings suggest that ACTL6A suppresses p21Cip1 promoter activity to reduce p21Cip1 protein as a mechanism to maintain the aggressive epidermal SCC phenotype.
Collapse
|
32
|
Hu C, Yu M, Li C, Wang Y, Li X, Ulrich B, Su R, Dong L, Weng H, Huang H, Jiang X, Chen J, Jin J. miR-550-1 functions as a tumor suppressor in acute myeloid leukemia via the hippo signaling pathway. Int J Biol Sci 2020; 16:2853-2867. [PMID: 33061801 PMCID: PMC7545716 DOI: 10.7150/ijbs.44365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) and N6-methyladenosine (m6A) are known to serve as key regulators of acute myeloid leukemia (AML). Our previous microarray analysis indicated miR-550-1 was significantly downregulated in AML. The specific biological roles of miR-550-1 and its indirect interactions and regulation of m6A in AML, however, remain poorly understood. At the present study, we found that miR-550-1 was significantly down-regulated in primary AML samples from human patients, likely owing to hypermethylation of the associated CpG islands. When miR-550-1 expression was induced, it impaired AML cell proliferation both in vitro and in vivo, thus suppressing tumor development. When ectopically expressed, miR-550-1 drove the G0/1 cell cycle phase arrest, differentiation, and apoptotic death of affected cells. We confirmed mechanistically that WW-domain containing transcription regulator-1 (WWTR1) gene was a downstream target of miR-550-1. Moreover, we also identified Wilms tumor 1-associated protein (WTAP), a vital component of the m6A methyltransferase complex, as a target of miR-550-1. These data indicated that miR-550-1 might mediate a decrease in m6A levels via targeting WTAP, which led to a further reduction in WWTR1 stability. Using gain- and loss-of-function approaches, we were able to determine that miR-550-1 disrupted the proliferation and tumorigenesis of AML cells at least in part via the direct targeting of WWTR1. Taken together, our results provide direct evidence that miR-550-1 acts as a tumor suppressor in the context of AML pathogenesis, suggesting that efforts to bolster miR-550-1 expression in AML patients may thus be a viable clinical strategy to improve patient outcomes.
Collapse
Affiliation(s)
- Chao Hu
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, P.R. China.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Mengxia Yu
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 216 Huansha Road, Hangzhou, 310006, P.R. China
| | - Chenying Li
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, P.R. China.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Yungui Wang
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, P.R. China.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Xia Li
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, P.R. China
| | - Bryan Ulrich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Rui Su
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Department of Systems Biology & the Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Department of Systems Biology & the Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Hengyou Weng
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Department of Systems Biology & the Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Huilin Huang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Department of Systems Biology & the Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Jiang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Systems Biology & the Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianjun Chen
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45219, USA.,Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Department of Systems Biology & the Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, P.R. China
| |
Collapse
|
33
|
Ghasemi H, Mousavibahar SH, Hashemnia M, Karimi J, Khodadadi I, Mirzaei F, Tavilani H. Tissue stiffness contributes to YAP activation in bladder cancer patients undergoing transurethral resection. Ann N Y Acad Sci 2020; 1473:48-61. [PMID: 32428277 DOI: 10.1111/nyas.14358] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/21/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Changes in the cellular microenvironment play a critical role in the development of bladder cancer (BC). Yes-associated protein (YAP), a central mediator of the Hippo pathway, functions as a nuclear sensor of mechanotransduction that can be induced by stiffness of the extracellular matrix (ECM), including stiffness resulting from surgical manipulations. We aimed to clarify the possible association between surgically-related ECM stiffness and YAP activation in BC patients. We compared 30 bladder cancer tissues with grade II (n = 15 recurrent and n = 15 newly diagnosed) with 30 adjacent healthy tissues. Atomic force microscopy showed that patients with recurrent BC had stiffer ECM than newly diagnosed patients (P < 0.05). Gene expression profiles showed that β1 integrin (ITGB1), focal adhesion kinase (FAK), CDC42, and YAP were upregulated in cancerous tissues (P < 0.05); additionally, β1 integrin activation was confirmed using a specific antibody. Nuclear localization of YAP was higher in recurrent cancerous tissues compared with newly diagnosed and it was positively associated with higher stiffness (P < 0.05). Our results suggest that postsurgery-induced ECM stiffness can influence integrin-FAK-YAP activity and thereby YAP trafficking to the nucleus where it contributes to BC progression and relapse.
Collapse
Affiliation(s)
- Hadi Ghasemi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty Razi University, Kermanshah, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Zhao J, Li L, Yang T. MiR-216a-3p suppresses the proliferation and invasion of cervical cancer through downregulation of ACTL6A-mediated YAP signaling. J Cell Physiol 2020; 235:9718-9728. [PMID: 32401366 DOI: 10.1002/jcp.29783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
The tumor-suppressive role of microRNA-216a-3p (miR-216a-3p) has been evidenced in multiple tumors. Yet, the relevance of miR-216a-3p in cervical cancer remains undermined. The current study was designed to determine the expression and potential function of miR-216a-3p in cervical cancer. Expression of miR-216a-3p was markedly decreased in cervical cancer and functional assays revealed an inhibitory effect of miR-216a-3p on the proliferation, colony formation, and invasion of cervical cancer. Actin-like 6A (ACTL6A) was identified as a target gene of miR-216a-3p. Elevated ACTL6A expression was detected in cervical cancer, and ACTL6A inhibition exhibited a tumor-suppressive effect. ACTL6A inhibition increased yes-associated protein (YAP) phosphorylation and downregulated YAP-mediated transcriptional activity. ACTL6A restoration or YAP reactivation partially abrogated the miR-216a-3p-mediated antitumor effect in cervical cancer cells. Taken together, these data demonstrate that miR-216a-3p acts as a potential tumor-suppressive miRNA in cervical cancer, which exerts its function through inhibition of YAP signaling via targeting ACTL6A.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Long Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
36
|
Suurmeijer AJH, Dickson BC, Swanson D, Sung YS, Zhang L, Antonescu CR. Variant WWTR1 gene fusions in epithelioid hemangioendothelioma-A genetic subset associated with cardiac involvement. Genes Chromosomes Cancer 2020; 59:389-395. [PMID: 32170768 DOI: 10.1002/gcc.22839] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
The genetic hallmark of epithelioid hemangioendothelioma (EHE) is a recurrent WWTR1-CAMTA1 fusion, which is present in most cases bearing a conventional histology. A subset of cases is characterized by a distinct morphology and harbors instead of YAP1-TFE3 fusion. Nevertheless, isolated cases lack these canonical fusions and remain difficult to classify. Triggered by an index case of a left atrial mass in a 76-year-old female with morphologic features typical of EHE, but which showed a WWTR1-MAML2 fusion by targeted RNA sequencing, we searched our files for similar cases displaying alternative WWTR1 fusions. A total of 6 EHE cases were identified with variant WWTR1 fusions, four of them presenting within the heart. There were three females and three males, with a wide age range at diagnosis (21-76 years, mean 62, median 69). The four cardiac cases occurred in older adults (mean age of 72, equal gender distribution); three involved the left atrium and one the right ventricle. One case presented in the vertebral bone and one in pelvic soft tissue. Microscopically, all tumors had morphologic features within the spectrum of classic EHE; two of the cases appeared overtly malignant. All cases were tested by FISH and four were investigated by targeted RNA sequencing. Two tumors harbored WWTR1-MAML2 fusions, one WWTR1-ACTL6A, and in three cases, no WWTR1 partner was identified. Of the four patients with follow-up, two died of disease, one was alive with lung metastases, and the only patient free of disease was s/p resection of a T11 vertebral mass. Our findings report on additional genetic variants involving WWTR1 rearrangements, with WWTR1-MAML2 being a recurrent event, in a small subset of EHE, which appears to have predilection for the heart.
Collapse
Affiliation(s)
- Albert J H Suurmeijer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yun S Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
37
|
Ji J, Ding K, Luo T, Xu R, Zhang X, Huang B, Chen A, Zhang D, Miletic H, Bjerkvig R, Thorsen F, Wang J, Li X. PMEPA1 isoform a drives progression of glioblastoma by promoting protein degradation of the Hippo pathway kinase LATS1. Oncogene 2020; 39:1125-1139. [PMID: 31605013 PMCID: PMC6989403 DOI: 10.1038/s41388-019-1050-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022]
Abstract
The Hippo signaling pathway controls organ development and is also known, in cancer, to have a tumor suppressing role. Within the Hippo pathway, we here demonstrate, in human gliomas, a functional interaction of a transmembrane protein, prostate transmembrane protein, androgen induced 1 (PMEPA1) with large tumor suppressor kinase 1 (LATS1). We show that PMEPA1 is upregulated in primary human gliomas. The PMEPA1 isoform PMEPA1a was predominantly expressed in glioma specimens and cell lines, and ectopic expression of the protein promoted glioma growth and invasion in vitro and in an orthotopic xenograft model in nude mice. In co-immunoprecipitation experiments, PMEPA1a associated with the Hippo tumor suppressor kinase LATS1. This interaction led to a proteasomal degradation of LATS1 through recruitment of the ubiquitin ligase, neural precursor cell expressed, developmentally downregulated 4 (NEDD4), which led to silencing of Hippo signaling. Alanine substitution in PMEPA1a at PY motifs resulted in failed LATS1 degradation. Targeting of a downstream component in the Hippo signaling pathway, YAP, with shRNA, interfered with the growth promoting activities of PMEPA1a in vitro and in vivo. In conclusion, the presented work shows that PMEPA1a contributes to glioma progression by a dysregulation of the Hippo signaling pathway and thus represents a promising target for the treatment of gliomas.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Tao Luo
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- School of Medicine, Shandong University, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
- Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, Luxembourg, L-1526, Luxembourg
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
| |
Collapse
|
38
|
Zhang J, Zhang J, Wei Y, Li Q, Wang Q. ACTL6A regulates follicle-stimulating hormone-driven glycolysis in ovarian cancer cells via PGK1. Cell Death Dis 2019; 10:811. [PMID: 31649264 PMCID: PMC6813335 DOI: 10.1038/s41419-019-2050-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Enhanced glycolysis has been identified as a hallmark of cancer. As a novel oncogene, ACTL6A is aberrantly amplified in several types of human cancers and has been shown to regulate tumor growth and progression. However, the roles of ACTL6A in the development of ovarian cancer and the regulation of cancer glucose metabolism are mostly unknown. Here we show that ACTL6A is overexpressed in ovarian cancers compared with adjacent non-tumor tissues, and that ACTL6A overexpression correlates with poor prognosis. Silencing of ACTL6A in vitro inhibits proliferation, clonal growth, and migration, and decreases glucose utilization, lactate production, and pyruvate levels of ovarian cancer cells. We found a positive correlation between ACTL6A and PGK1 expression in ovarian cancer tissues. Enforced ACTL6A expression increased PGK1 expression, whereas knockdown of ACTL6A had the opposite effect. Altered ACTL6A expression inhibits the tumorigenicity of ovarian cancer cells in vivo by downregulating PGK1. In addition, the expression of ACTL6A is regulated by follicle-stimulating hormone (FSH) stimulation via PI3K/AKT pathway. Importantly, ACTL6A regulates FSH-enhanced glycolysis in ovarian cancer. Taken together, our findings highlight the critical role of ACTL6A in ovarian cancer development and identify its contribution to glucose metabolism of cancer cells.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Qingxian Li
- Department of Gynaecology and Obstetrics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Liu C, Zhao Z, Gao H, Rostami I, You Q, Jia X, Wang C, Zhu L, Yang Y. Enhanced blood-brain-barrier penetrability and tumor-targeting efficiency by peptide-functionalized poly(amidoamine) dendrimer for the therapy of gliomas. Nanotheranostics 2019; 3:311-330. [PMID: 31687320 PMCID: PMC6821994 DOI: 10.7150/ntno.38954] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/14/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is one of the most common primary tumor types of central nervous system (CNS) with high malignance and lethality. Although many treatment options are currently available, the therapy of brain cancers remains challenging because of blood-brain-barrier (BBB) which prevents most of the chemotherapeutics into the CNS. In this work, a poly(amidoamine) dendrimer-based carrier was fabricated and modified with angiopep-2 (Ang2) peptide that has been demonstrated to bind to low density lipoprotein receptor-relative protein-1 (LRP1) on the endothelial cells of BBB and could therefore induce BBB penetration of the carrier. To improve tumor-targeting effect towards the glioma sites, the dendrimer was simultaneously functionalized with an epidermal growth factor receptor (EGFR)-targeting peptide (EP-1) which was screened from a "one-bead one-compound" (OBOC) combinatorial library. EP-1 peptide was demonstrated to have high affinity and specificity to EGFR at both the molecular and cellular levels. The dual-targeting dendrimer exhibited outstanding BBB penetrability and glioma targeting efficiency both in vitro and in vivo, which strikingly enhanced the anti-gliomas effect of the drugs and prolonged the survival of gliomas-bearing mice. These results show the potential of the dual-targeting dendrimer-based carrier in the therapy of gliomas through enhancing BBB penetrability and tumor targeting.
Collapse
Affiliation(s)
- Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Iman Rostami
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinru Jia
- Department of Chemistry, Peking University, Beijing 100871, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Sima X, He J, Peng J, Xu Y, Zhang F, Deng L. The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A. PLoS One 2019; 14:e0222305. [PMID: 31504061 PMCID: PMC6736241 DOI: 10.1371/journal.pone.0222305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
SWItch/Sucrose NonFermentable (SWI/SNF) is a set of multi-subunits chromatin remodeling complexes, playing important roles in a variety of biological processes. Loss-of-function mutations in the genes encoding SWI/SNF subunits have been reported in more than 20% of human cancers. Thus, it was widely considered as a tumor suppressor in the past decade. However, recent studies reported that some genes encoding subunits of SWI/SNF complexes were amplified and play oncogenic roles in human cancers. In present study, we summarized the genetic alteration spectrum of SWI/SNF complexes, and firstly systematically estimated both the copy number variations and point mutations of all 30 genes encoding the subunits in this complex. Additionally, the bioinformatics analyses were performed for two significantly amplified genes, ACTL6A and BRD9, to investigate their oncogenic roles in human cancers. Our findings may lay a foundation for the discovery of potential treatment targets in SWI/SNF complexes of cancers.
Collapse
Affiliation(s)
- Xiaoxian Sima
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jiangnan He
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jie Peng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanmei Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feng Zhang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Libin Deng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, P.R. China
- College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, P.R. China
- * E-mail:
| |
Collapse
|
41
|
Ji J, Xu R, Ding K, Bao G, Zhang X, Huang B, Wang X, Martinez A, Wang X, Li G, Miletic H, Thorsen F, Bjerkvig R, Xiang L, Han B, Chen A, Li X, Wang J. Long Noncoding RNA SChLAP1 Forms a Growth-Promoting Complex with HNRNPL in Human Glioblastoma through Stabilization of ACTN4 and Activation of NF-κB Signaling. Clin Cancer Res 2019; 25:6868-6881. [PMID: 31492748 DOI: 10.1158/1078-0432.ccr-19-0747] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Long noncoding RNAs (lncRNA) have essential roles in diverse cellular processes, both in normal and diseased cell types, and thus have emerged as potential therapeutic targets. A specific member of this family, the SWI/SNF complex antagonist associated with prostate cancer 1 (SChLAP1), has been shown to promote aggressive prostate cancer growth by antagonizing the SWI/SNF complex and therefore serves as a biomarker for poor prognosis. Here, we investigated whether SChLAP1 plays a potential role in the development of human glioblastoma (GBM). EXPERIMENTAL DESIGN RNA-ISH and IHC were performed on a tissue microarray to assess expression of SChLAP1 and associated proteins in human gliomas. Proteins complexed with SChLAP1 were identified using RNA pull-down and mass spectrometry. Lentiviral constructs were used for functional analysis in vitro and in vivo. RESULTS SChLAP1 was increased in primary GBM samples and cell lines, and knockdown of the lncRNA suppressed growth. SChLAP1 was found to bind heterogeneous nuclear ribonucleoprotein L (HNRNPL), which stabilized the lncRNA and led to an enhanced interaction with the protein actinin alpha 4 (ACTN4). ACTN4 was also highly expressed in primary GBM samples and was associated with poorer overall survival in glioma patients. The SChLAP1-HNRNPL complex led to stabilization of ACTN4 through suppression of proteasomal degradation, which resulted in increased nuclear localization of the p65 subunit of NF-κB and activation of NF-κB signaling, a pathway associated with cancer development. CONCLUSIONS Our results implicated SChLAP1 as a driver of GBM growth as well as a potential therapeutic target in treatment of the disease.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Guoqing Bao
- Biomedical and Multimedia Information Technologies Group, School of Information Technologies, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, New South Wales, Australia
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xiuying Wang
- Biomedical and Multimedia Information Technologies Group, School of Information Technologies, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, New South Wales, Australia
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.,The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Lei Xiang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China. .,School of Medicine, Shandong University, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, 107# Wenhua Xi Road, Jinan, China. .,Department of Biomedicine, University of Bergen, Bergen, Norway.,K. G. Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Ding K, Ji J, Zhang X, Huang B, Chen A, Zhang D, Li X, Wang X, Wang J. RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 2019; 38:6414-6428. [PMID: 31332287 PMCID: PMC6756117 DOI: 10.1038/s41388-019-0888-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Increasing evidence demonstrates that ubiquitin specific protease 39 (USP39) plays an oncogenic role in various human tumors. Here, using expression analysis of the publicly available Oncomine database, clinical glioma patient samples, and glioma cells, we found that USP39 was overexpressed in human gliomas. Knockdown of USP39 in glioma cells demonstrated that the protein promoted cell growth, invasion and migration in vitro and in a tumor model in nude mice. To identify mediators of USP39 growth-promoting properties, we used luciferase reporter constructs under transcriptional control of various promoters specific to seven canonical cancer-associated pathways. Luciferase activity from a synthetic TEAD-dependent YAP/TAZ-responsive reporter, as a direct readout of the Hippo signaling pathway, was decreased by 92% in cells with USP39 knockdown, whereas the luciferase activities from the other six cancer pathways, including MAPK/ERK, MAPK/JNK, NFκB, Notch, TGFβ, and Wnt, remained unchanged. TAZ protein expression however was decreased independent of canonical Hippo signaling. Immunohistochemistry revealed a positive correlation between USP39 and TAZ proteins in orthotopic xenografts derived from modified glioma cells expressing USP39 shRNAs and primary human glioma samples (p < 0.05). Finally, loss of USP39 decreased TAZ pre-mRNA splicing efficiency in glioma cells in vitro, which led to reduced levels of TAZ protein. In summary, USP39 has oncogenic properties that increase TAZ protein levels by inducing maturation of its mRNA. USP39 therefore provides a novel therapeutic target for the treatment of human glioma.
Collapse
Affiliation(s)
- Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China. .,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China. .,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China. .,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| |
Collapse
|
43
|
Sander C, Wallenborn M, Brandt VP, Ahnert P, Reuschel V, Eisenlöffel C, Krupp W, Meixensberger J, Holland H. Central neurocytoma: SNP array analyses, subtel FISH, and review of the literature. Pathol Res Pract 2019; 215:152397. [PMID: 31000381 DOI: 10.1016/j.prp.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022]
Abstract
The central neurocytoma (CN) is a rare brain tumor with a frequency of 0.1-0.5% of all brain tumors. According to the World Health Organization classification, it is a benign grade II tumor with good prognosis. However, some CN occur as histologically "atypical" variant, combined with increasing proliferation and poor clinical outcome. Detailed genetic knowledge could be helpful to characterize a potential atypical behavior in CN. Only few publications on genetics of CN exist in the literature. Therefore, we performed cytogenetic analysis of an intraventricular neurocytoma WHO grade II in a 39-year-old male patient by use of genome-wide high-density single nucleotide polymorphism array (SNP array) and subtelomere FISH. Applying these techniques, we could detect known chromosomal aberrations and identified six not previously described chromosomal aberrations, gains of 1p36.33-p36.31, 2q37.1-q37.3, 6q27, 12p13.33-p13.31, 20q13.31-q13.33, and loss of 19p13.3-p12. Our case report contributes to the genetic knowledge about CN and to increased understanding of "typical" and "atypical" variants.
Collapse
Affiliation(s)
- Caroline Sander
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Marco Wallenborn
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany.
| | - Vivian Pascal Brandt
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany.
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany.
| | - Vera Reuschel
- Dept. of Neuroradiology, University of Leipzig, Liebigstraße 22a, 04103 Leipzig, Germany
| | - Christan Eisenlöffel
- Dept. of Neuropathology, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany
| | - Wolfgang Krupp
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Jürgen Meixensberger
- Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany.
| |
Collapse
|
44
|
TAZ sensitizes EGFR wild-type non-small-cell lung cancer to gefitinib by promoting amphiregulin transcription. Cell Death Dis 2019; 10:283. [PMID: 30911072 PMCID: PMC6433914 DOI: 10.1038/s41419-019-1519-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
Abstract
Comparatively less toxic and more tolerated, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are recommendable for advanced non-small-cell lung cancer (NSCLC) patients with EGFR-sensitive mutations. Some EGFR wild-type patients with specific biomarkers also show a response to the drug. TAZ is an oncogene closely associated with the therapeutic effect of EGFR-TKIs. However, this association remains to be clarified. This study aimed to clarify the mechanism through which TAZ sensitizes EGFR wild-type NSCLC to gefitinib. We used CCK-8 assays and in vivo experiments to investigate the influence of TAZ on gefitinib in EGFR wild-type NSCLC. To further validate the tumorigenic role of TAZ, we performed Human umbilical vein endothelial cell (HUVEC) tube formation and migration assays. Luciferase reporter assays, quantitative real-time PCR (qPCR), immunoblotting and Chromatin immunoprecipitation collaborated with qPCR illuminated the mechanism through which TAZ caused those phenotypes. The results showed TAZ promoted the angiogenesis of NSCLC cell lines and improved gefitinib sensitivity in EGFR wild-type NSCLC in vitro and in vivo. Luciferase reporter assays and ChIP-qPCR experiments showed TAZ upregulated AREG by promoting its transcription. EGFR signaling pathway was activated as TAZ was highly expressed. Rescue experiments were conducted to confirm the indispensable role of AREG in tumorigenesis and gefitinib sensitivity regulated by TAZ. Our study concluded that TAZ sensitized EGFR wild-type NSCLC to gefitinib through promoting amphiregulin transcription.
Collapse
|
45
|
ACTL6A interacts with p53 in acute promyelocytic leukemia cell lines to affect differentiation via the Sox2/Notch1 signaling pathway. Cell Signal 2018; 53:390-399. [PMID: 30448346 DOI: 10.1016/j.cellsig.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022]
Abstract
Actin-like 6A (ACTL6A), a component of BAF chromatin remodeling complexes, is important for cell differentiation. Nevertheless, its role and mechanism in acute promyelocytic leukemia (APL) has not been reported. To identify the genes that may participate in the development of APL, we analyzed data from an APL cDNA microarray (GSE12662) in the NCBI database, and found that ACTL6A was up-regulated in APL patients. Subsequently, we investigated the function and mechanisms of ACTL6A in myeloid cell development. The expression of ACTL6A was gradually decreased during granulocytic differentiation in all-trans retinoic acid-treated NB4 and HL-60 cells, and phorbol myristate acetate-treated HL-60 cells. We also found that knockdown of ACTL6A promoted differentiation in NB4 and HL-60 cells, and decreased the levels of Sox2 and Notch1. Mechanistically, ACTL6A interacted with and was co-localized with Sox2 and p53. Meanwhile, CBL0137, an activator of p53, decreased the expression of ACTL6A and promoted differentiation in NB4 and HL-60 cells. These findings suggest that the inhibition of ACTL6A promotes differentiation via the Sox2 and Notch1 signaling pathways. Furthermore, the differentiation promoted by inhibiting ACTL6A could be regulated by p53 via its physical interaction with ACTL6A.
Collapse
|
46
|
Tome-Garcia J, Erfani P, Nudelman G, Tsankov AM, Katsyv I, Tejero R, Bin Zhang, Walsh M, Friedel RH, Zaslavsky E, Tsankova NM. Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun 2018; 9:4020. [PMID: 30275445 PMCID: PMC6167382 DOI: 10.1038/s41467-018-06258-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
The intrinsic drivers of migration in glioblastoma (GBM) are poorly understood. To better capture the native molecular imprint of GBM and its developmental context, here we isolate human stem cell populations from GBM (GSC) and germinal matrix tissues and map their chromatin accessibility via ATAC-seq. We uncover two distinct regulatory GSC signatures, a developmentally shared/proliferative and a tumor-specific/migratory one in which TEAD1/4 motifs are uniquely overrepresented. Using ChIP-PCR, we validate TEAD1 trans occupancy at accessibility sites within AQP4, EGFR, and CDH4. To further characterize TEAD’s functional role in GBM, we knockout TEAD1 or TEAD4 in patient-derived GBM lines using CRISPR-Cas9. TEAD1 ablation robustly diminishes migration, both in vitro and in vivo, and alters migratory and EMT transcriptome signatures with consistent downregulation of its target AQP4. TEAD1 overexpression restores AQP4 expression, and both TEAD1 and AQP4 overexpression rescue migratory deficits in TEAD1-knockout cells, implicating a direct regulatory role for TEAD1–AQP4 in GBM migration. The intrinsic drivers of glioblastoma (GBM) migration are still poorly understood. Here the authors purify GBM stem cells (GSCs) from patients and profile chromatin accessibility in these cells, identifying TEAD1 as a regulator of migration in human glioblastoma.
Collapse
Affiliation(s)
- Jessica Tome-Garcia
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Parsa Erfani
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Igor Katsyv
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rut Tejero
- Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Center for RNA Biology and Medicine, New York, NY, 10029, USA
| | - Roland H Friedel
- Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|