1
|
Ma Y, Jiang D, Li J, Zheng G, Deng Y, Gou X, Gao S, Chen C, Zhou Y, Zhang Y, Deng C, Yao Y, Han H, Su J. Systematic dissection of pleiotropic loci and critical regulons in excitatory neurons and microglia relevant to neuropsychiatric and ocular diseases. Transl Psychiatry 2025; 15:24. [PMID: 39856056 PMCID: PMC11760387 DOI: 10.1038/s41398-025-03243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/08/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Advancements in single-cell multimodal techniques have greatly enhanced our understanding of disease-relevant loci identified through genome-wide association studies (GWASs). To investigate the biological connections between the eye and brain, we integrated bulk and single-cell multiomic profiles with GWAS summary statistics for eight neuropsychiatric and five ocular diseases. Our analysis uncovered five latent factors explaining 61.7% of the genetic variance across these 13 diseases, revealing diverse correlational patterns among them. We identified 45 pleiotropic loci with 91 candidate genes that contribute to disease risk. By integrating GWAS and single-cell profiles, we implicated excitatory neurons and microglia as key contributors in the eye-brain connections. Polygenic enrichment analysis further identified 15 pleiotropic regulons in excitatory neurons and 16 in microglia that were linked to comorbid conditions. Functionally, excitatory neuron-specific regulons were involved in axon guidance and synaptic activity, while microglia-specific regulons were associated with immune response and cell activation. In sum, these findings underscore the genetic link between psychiatric disorders and ocular diseases.
Collapse
Affiliation(s)
- Yunlong Ma
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Dingping Jiang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gongwei Zheng
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Deng
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanxuan Gou
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuaishuai Gao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijun Zhou
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaru Zhang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyu Deng
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinghao Yao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haijun Han
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jiang C, Wang L, Yu CQ, You ZH, Wang XF, Wei MM, Shi TL, Liang SZ, Wang DW. Hither-CMI: Prediction of circRNA-miRNA Interactions Based on a Hybrid Multimodal Network and Higher-Order Neighborhood Information via a Graph Convolutional Network. J Chem Inf Model 2025; 65:446-459. [PMID: 39686716 DOI: 10.1021/acs.jcim.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Numerous studies show that circular RNA (circRNA) functions as a sponge for microRNA (miRNA), significantly regulating gene expression by interacting with miRNA, which in turn affects the progression of human diseases. Traditional experimental approaches for investigating circRNA-miRNA interactions (CMI) are both time-consuming and costly, making computational methods a valuable alternative. Hence, we propose a computational model for predicting CMI, leveraging a hybrid multimodal network and higher-order neighborhood information (Hither-CMI). Specifically, Hither-CMI employs Multiple Kernel Learning (MKL) to integrate sequence, structure, and expression similarity networks of circRNA and miRNA, resulting in a hybrid multimodal network. Next, an enhanced Graph Convolutional Network (GCN) is utilized to combine the circRNA-miRNA hybrid multimodal network with the CMI association network, producing a hybrid higher-order embedding representation. Finally, the XGBoost classifier is applied for training and prediction. The Hither-CMI model achieved a predicted AUC value of 0.9134. In case studies, 25 out of the top 30 predicted CMI were confirmed by recent literature. These extensive experimental results further validate the effectiveness of Hither-CMI in predicting potential CMI, making it a promising prescreening tool for further biological research.
Collapse
Affiliation(s)
- Chen Jiang
- School of Information Engineering, Xijing Univerity, Xi'an 710123, China
| | - Lei Wang
- Guangxi Academy of Science, Nanning 530007, China
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing Univerity, Xi'an 710123, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xin-Fei Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Meng-Meng Wei
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Tai-Long Shi
- School of Information Engineering, Xijing Univerity, Xi'an 710123, China
| | - Si-Zhe Liang
- School of Information Engineering, Xijing Univerity, Xi'an 710123, China
| | - Deng-Wu Wang
- School of Information Engineering, Xijing Univerity, Xi'an 710123, China
| |
Collapse
|
3
|
Shvetcov A, Thomson S, Cho AN, Wilkins HM, Reed JH, Swerdlow RH, Brown DA, Finney CA. Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype. Aging Cell 2024:e14439. [PMID: 39722190 DOI: 10.1111/acel.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased the risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD as they age.
Collapse
Affiliation(s)
- Artur Shvetcov
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Psychological Medicine, Sydney Children's Hospital Network, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Shannon Thomson
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann-Na Cho
- Human Brain Microphysiology Systems Group, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Research Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Joanne H Reed
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity and Amyloidosis Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - David A Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Caitlin A Finney
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Düz E, İlgün A, Bozkurt FB, Çakır T. Integration of genomic and transcriptomic layers in RNA-Seq data leads to protein interaction modules with improved Alzheimer's disease associations. Eur J Neurosci 2024. [PMID: 39532700 DOI: 10.1111/ejn.16600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and it is currently untreatable. RNA sequencing (RNA-Seq) is commonly used in the literature to identify AD-associated molecular mechanisms by analysing changes in gene expression. RNA-Seq data can also be used to detect genomic variants, enabling the identification of the genes with a higher load of deleterious variants in patients compared with controls. Here, we analysed AD RNA-Seq datasets to obtain differentially expressed genes and genes with a higher load of pathogenic variants in AD, and we combined them in a single list. We mapped these genes on a human protein-protein interaction network to discover subnetworks perturbed by AD. Our results show that utilizing gene pathogenicity information from RNA-Seq data positively contributes to the disclosure of AD-related mechanisms. Moreover, dividing the discovered subnetworks into highly connected modules reveals a clearer picture of altered molecular pathways that, otherwise, would not be captured. Repeating the whole pipeline with human metabolic network genes led to results confirming the positive contribution of gene pathogenicity information and enabled a more detailed identification of altered metabolic pathways in AD.
Collapse
Affiliation(s)
- Elif Düz
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Atılay İlgün
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Betül Bozkurt
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
5
|
Li Z, Ma Y, Fan C, Jiang H. The circAno6/miR-296-3p/TLR4 signaling axis mediates the inflammatory response to induce the activation of hepatic stellate cells. Gene 2024; 920:148497. [PMID: 38677350 DOI: 10.1016/j.gene.2024.148497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Circular RNA (circRNA) is a novel functional non-coding RNA(ncRNA) that plays a role in the occurrence and development of multiple human liver diseases, including liver fibrosis (LF). LF is a reversible repair response after liver injury, and the activation of hepatic stellate cells (HSCs) is the core event. However, the regulatory mechanisms by which circRNAs induce the activation of HSCs in LF are still poorly understood. The circAno6/miR-296-3p/toll-like receptor 4 (TLR4) signaling axis that mediates the inflammatory response and causes the activation of HSCs was investigated in this study. METHODS First, a circAno6 overexpression plasmid and small interfering RNA were transfected into cells to determine whether circAno6 can affect the function of HSCs. Second, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and immunofluorescence (IF) were used to detect the effects of circAno6 plasmid/siRNA transfection on HSC activation indices, inflammatory markers and the circAno6/miR-296-3p/TLR4 signaling axis. The subcellular position of circAno6 was then examined by nucleo-cytoplasmic separation and fluorescence in situ hybridization (FISH). Finally, a luciferase reporter gene assay was used to identify the relationship between circAno6 and miR-296-3p as well as the relationship between miR-296-3p and TLR4. RESULTS CircAno6 was considerably upregulated in HSCs and positively correlated with cell proliferation and alpha-smooth muscle actin (α-SMA), collagen I, NOD-likereceptorthermalproteindomainassociatedprotein 3 (NLRP3), interleukin-1β (IL-1β) and interleukin-18 (IL-18) expression. Overexpression of circAno6 increased the inflammatory response and induced HSC activation, whereas interference resulted in the opposite effects. FISH experiments revealed the localization of circAno6 in the cytoplasm. Then, a double luciferase reporter assay confirmed that miR-296-3p significantly inhibited luciferase activity in the circAno6-WT and TLR4-WT groups. CONCLUSION This study suggests that circAno6 and miR-296-3p/TLR4 may form a regulatory axis and regulate the inflammatory response, which in turn induces HSC activation. Targeting circAno6 may be a potential therapeutic strategy to treat LF.
Collapse
Affiliation(s)
- Zhen Li
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| |
Collapse
|
6
|
Thomas JT, Huerlimann R, Schunter C, Watson SA, Munday PL, Ravasi T. Transcriptomic responses in the nervous system and correlated behavioural changes of a cephalopod exposed to ocean acidification. BMC Genomics 2024; 25:635. [PMID: 38918719 PMCID: PMC11202396 DOI: 10.1186/s12864-024-10542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.
Collapse
Affiliation(s)
- Jodi T Thomas
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, QLD, 4810, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
7
|
D’Esposito F, Gagliano C, Bloom PA, Cordeiro MF, Avitabile A, Gagliano G, Costagliola C, Avitabile T, Musa M, Zeppieri M. Epigenetics in Glaucoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:905. [PMID: 38929522 PMCID: PMC11205742 DOI: 10.3390/medicina60060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Primary open angle glaucoma (POAG) is defined as a "genetically complex trait", where modifying factors act on a genetic predisposing background. For the majority of glaucomatous conditions, DNA variants are not sufficient to explain pathogenesis. Some genes are clearly underlying the more "Mendelian" forms, while a growing number of related polymorphisms in other genes have been identified in recent years. Environmental, dietary, or biological factors are known to influence the development of the condition, but interactions between these factors and the genetic background are poorly understood. Several studies conducted in recent years have led to evidence that epigenetics, that is, changes in the pattern of gene expression without any changes in the DNA sequence, appear to be the missing link. Different epigenetic mechanisms have been proven to lead to glaucomatous changes in the eye, principally DNA methylation, post-translational histone modification, and RNA-associated gene regulation by non-coding RNAs. The aim of this work is to define the principal epigenetic actors in glaucoma pathogenesis. The identification of such mechanisms could potentially lead to new perspectives on therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Philip Anthony Bloom
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Alessandro Avitabile
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Giuseppe Gagliano
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Teresio Avitabile
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Wang L, Li ZW, You ZH, Huang DS, Wong L. MAGCDA: A Multi-Hop Attention Graph Neural Networks Method for CircRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1752-1761. [PMID: 38145538 DOI: 10.1109/jbhi.2023.3346821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.
Collapse
|
9
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
10
|
Zhang W, He Y, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res 2023; 197:106946. [PMID: 37797661 DOI: 10.1016/j.phrs.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Ocular neovascular disease (OND), characterized by the aberrant formation of immature blood vessels, is the leading cause of vision impairment and blindness. It is important to find effective ways to diagnose and treat these diseases. Circular RNA (circRNA) is a group of endogenous non-coding RNA that play a crucial role in regulating different biological processes. Due to their close association with ocular disease and angiogenesis, circRNAs have become a hotspot in OND research. In this review, we intensively investigate the possibility of using circRNAs in the management of ONDs. In general, angiogenesis is divided into five phases. On the basis of these five steps, we describe the potential of using circRNAs by introducing how they regulate angiogenesis. Subsequently, the interactions between circRNAs and ONDs, including pterygium, corneal neovascularization, age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, are analyzed in detail. We also introduce the potential use of circRNAs as OND diagnostic biomarkers. Finally, we summarize the prospects of using circRNAs as a potential strategy in OND management. The gaps in recent research are also pointed out with the purpose of promoting the introduction of circRNAs into clinical applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
11
|
Zhang R, Tao Y, Huang J. The Application of MicroRNAs in Glaucoma Research: A Bibliometric and Visualized Analysis. Int J Mol Sci 2023; 24:15377. [PMID: 37895056 PMCID: PMC10607922 DOI: 10.3390/ijms242015377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glaucoma is similar to a neurodegenerative disorder and leads to global irreversible loss of vision. Despite extensive research, the pathophysiological mechanisms of glaucoma remain unclear, and no complete cure has yet been identified for glaucoma. Recent studies have shown that microRNAs can serve as diagnostic biomarkers or therapeutic targets for glaucoma; however, there are few bibliometric studies that focus on using microRNAs in glaucoma research. Here, we have adopted a bibliometric analysis in the field of microRNAs in glaucoma research to manifest the current tendencies and research hotspots and to present a visual map of the past and emerging tendencies in this field. In this study, we retrieved publications in the Web of Science database that centered on this field between 2007 and 2022. Next, we used VOSviewer, CiteSpace, Scimago Graphica, and Microsoft Excel to present visual representations of a co-occurrence analysis, co-citation analysis, tendencies, hotspots, and the contributions of authors, institutions, journals, and countries/regions. The United States was the main contributor. Investigative Ophthalmology and Visual Science has published the most articles in this field. Over the past 15 years, there has been exponential growth in the number of publications and citations in this field across various countries, organizations, and authors. Thus, this study illustrates the current trends, hotspots, and emerging frontiers and provides new insight and guidance for searching for new diagnostic biomarkers and clinical trials for glaucoma in the future. Furthermore, international collaborations can also be used to broaden and deepen the field of microRNAs in glaucoma research.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (R.Z.); (Y.T.)
| |
Collapse
|
12
|
Wang T, Li S, Li XM, Li C, Wang F, Jiang Q. Targeting circular RNA-Glra2 alleviates retinal neurodegeneration induced by ocular hypertension. Aging (Albany NY) 2023; 15:10705-10731. [PMID: 37819813 PMCID: PMC10599745 DOI: 10.18632/aging.205108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
Glaucoma is a leading cause of irreversible vision loss characterized by retinal neurodegeneration. Circular RNAs (circRNAs) have emerged as the potential biomarkers and therapeutic targets for neurodegenerative diseases. However, the expression profiling of circRNAs in glaucomatous neurodegeneration has not been fully understood. In this study, we built a glaucomatous neurodegeneration model via the injection of microbeads into anterior chamber. circRNA expression profile and bioinformatics analysis revealed that compared with normal retinas, 171 circRNAs were dysregulated in the glaucomatous retinas, including 101 up-regulated circRNAs and 70 down-regulated circRNAs. Detecting the level of circular RNA-glycine receptor α2 subunit gene (cGlra2) in aqueous humor made it possible to distinguish glaucoma patients from cataract patients. Silencing of cGlra2 protected against oxidative stress- or hydrostatic pressure-induced retinal ganglion cell (RGC) injury in vitro. Moreover, silencing of cGlra2 retarded ocular hypertension-induced retinal neurodegeneration in vivo as shown by increased TUJ1 staining, reduced reactive gliosis, decreased retinal cell apoptosis, enhanced visual acuity, and improved retinal function. cGlra2 acted as a miRNA sponge to regulate RGC function through cGlra2/miR-144/BCL2L11 signaling axis. Collectively, this study provides novel insights into the underlying mechanism of retinal neurodegeneration and highlights the potential of cGlra2 as a target for the diagnosis and treatment of glaucoma.
Collapse
Affiliation(s)
- Ting Wang
- Department of Ophthalmology, The Affiliated Huaian No. 1 Hospital of Nanjing Medical University, Huai’an, Jiangsu 223300, China
| | - Shuyan Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 Hospital of Nanjing Medical University, Huai’an, Jiangsu 223300, China
| | - Xiu-Miao Li
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Chaopeng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 Hospital of Nanjing Medical University, Huai’an, Jiangsu 223300, China
| | - Fang Wang
- Department of Ophthalmology, Clinical Medical College of Shanghai 10th People’s Hospital of Nanjing Medical University, Nanjing, Shanghai 200072, China
| | - Qin Jiang
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
13
|
Guan R, Angxiu S, Li L, Kang Z, Yan X. Differentially expressed circRNAs in peripheral blood samples as potential biomarkers and therapeutic targets for acute angle-closure glaucoma. Sci Rep 2023; 13:16928. [PMID: 37805546 PMCID: PMC10560268 DOI: 10.1038/s41598-023-44073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. Circular RNAs (circRNAs) play vital roles in various biological processes as microRNA (miRNA) sponges and, thus, have been investigated as potential biomarkers and therapeutic targets in numerous human diseases. However, the underlying mechanisms of circRNAs in the pathogenesis of glaucoma remain unclear. Therefore, transcriptome sequencing was performed to identify relevant circRNAs in peripheral blood samples from patients with primary angle-closure glaucoma. Bioinformatics analysis was performed to investigate the potential roles of differentially expressed circRNAs (DEcircRNAs) in the pathogenesis of glaucoma. In total, 481 differentially expressed genes in addition to 345 DEcircRNAs were identified in patients with glaucoma. Based on a public database, targeted gene analysis identified 11 DEcircRNAs that potentially regulate the expression of five genes as miRNA sponges in glaucoma. In addition, quantitative reverse transcription PCR analysis verified that expression of the circRNA hsa-circ-0000745 was positively correlated with the expression of NEAT1 as a potential target gene. These results suggest that DEcircRNAs are involved in a gene expression regulatory network related to immune cell function and progression of glaucoma. Thus, DEcircRNAs in peripheral blood are potential biomarkers and therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Ruijuan Guan
- Ophthalmology Department, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810000, Qinghai, China
| | - Suonan Angxiu
- Orthopedics Department, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810000, Qinghai, China
| | - Ling Li
- Ophthalmology Department, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810000, Qinghai, China.
| | - Zefeng Kang
- Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Beijing, 100040, China.
| | - Xin Yan
- Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Beijing, 100040, China
| |
Collapse
|
14
|
Shi X, Xue Z, Ye K, Yuan J, Zhang Y, Qu J, Su J. Roles of non-coding RNAs in eye development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1785. [PMID: 36849659 DOI: 10.1002/wrna.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The prevalence of ocular disorders is dramatically increasing worldwide, especially those that cause visual impairment and permanent loss of vision, including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. Extensive evidence has shown that ncRNAs are key regulators in various biogenesis and biological functions, controlling gene expression related to histogenesis and cell differentiation in ocular tissues. Aberrant expression and function of ncRNA can lead to dysfunction of visual system and mediate progression of eye disorders. Here, we mainly offer an overview of the role of precise modulation of ncRNAs in eye development and function in patients with eye diseases. We also highlight the challenges and future perspectives in conducting ncRNA studies, focusing specifically on the role of ncRNAs that may hold expanded promise for their diagnostic and therapeutic applications in various eye diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaicheng Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
- Institute of PSI Genomics, Zhejiang, China
| |
Collapse
|
15
|
Rad LM, Sadoughi MM, Nicknam A, Colagar AH, Hussen BM, Taheri M, Ghafouri-Fard S. The impact of non-coding RNAs in the pathobiology of eye disorders. Int J Biol Macromol 2023; 239:124245. [PMID: 37001772 DOI: 10.1016/j.ijbiomac.2023.124245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Eye disorders are common disorders with significant effects on personal, economic, and social aspects of life. These disorders have a genetic background and are associated with dysregulation of non-coding RNAs. Three classes of these transcripts, namely long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) have established roles in the regulation of gene expression and pathoetiology of ocular disorders. H19, MEG3, BANCR, UCA1, HOTAIR, ANRIL, XIST and MIAT are among important lncRNAs in ocular disorders. CircRNAs from ZBTB44, HIPK3, circ-PSEN1, COL1A2, ZNF532 and FAM158A loci have also been found to affect pathoetiology of ocular disorders. Both lncRNAs and circRNAs can serve as molecular sponges for miRNAs. In this review, we searched PubMed and Google Scholar databases to find the research articles summarizing the impact of non-coding RNAs in ocular disorders. The results of these studies would help in identification of suitable targets for treatment of ocular disorders.
Collapse
|
16
|
Circ_0005280 Protects Human Lens Epithelial Cells against H2O2-induced Apoptosis and Oxidative Stress though miR-326/PLCD3 Axis. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Cao H, Xu X, Wang K, Li C. Circ_0047835 Combines with miR-144-3p to Promote the Proliferation, Invasion, Migration, and Fibrosis of TGF-β1-Treated Human Tenon's Capsule Fibroblasts by Upregulating SP1. Curr Eye Res 2023; 48:371-381. [PMID: 36524862 DOI: 10.1080/02713683.2022.2159980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Glaucoma is the leading cause of blindness worldwide with complex pathogenesis. Circular RNAs (circRNAs) play critical roles in various diseases, including glaucoma. The purpose of this study was to investigate the role of circ_0047835 and underlying mechanisms in the development of fibrosis after glaucoma filtration surgery. METHODS Human Tenon's capsule fibroblasts (HTFs) were stimulated using transforming growth factor-β1 (TGF-β1) to mimic a cellular model of glaucoma in vitro. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell invasion and migration were detected by transwell assay and wound healing assay, respectively. Western blot assay was used to measure protein levels. The expression levels of circ_0047835, microRNA-144-3p (miR-144-3p) and specific protein 1 (SP1) mRNA were determined by real-time quantitative polymerase chain reaction (RT-qPCR). The interaction between miR-144-3p and circ_0047835 or SP1 was confirmed by dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. RESULTS Circ_0047835 expression was elevated in glaucoma tissues and TGF-β1-treated HTFs. Circ_0047835 or SP1 knockdown suppressed the proliferation, migration, invasion, and fibrosis of TGF-β1-treated HTFs. MiR-144-3p was a target of circ_0047835, and miR-144-3p inhibition reversed the effects of circ_0047835 knockdown in TGF-β1-treated HTFs. Moreover, SP1 was identified as a target of miR-144-3p, and miR-144-3p overexpression weakened TGF-β1-induced proliferation, migration, invasion, and fibrosis by targeting SP1 in HTFs. Furthermore, circ_0047835 combined with miR-144-3p to regulate SP1 expression. CONCLUSION Circ_0047835 might contribute to fibrosis progression after glaucoma surgery by regulating the miR-144-3p/SP1 axis.
Collapse
Affiliation(s)
- Haijing Cao
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xinhuai Xu
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Kai Wang
- Department of Ophthalmology, Huaian City Center for Disease Control and Prevention, Huai'an, China
| | - Chaopeng Li
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
18
|
Wang Y, Yu Y, Xu M, Zhou J, Kang G, Li K. Circ_0080940 Regulates miR-139-5p/CTGF Pathway to Promote the Proliferation, Migration, Extracellular Matrix Deposition of Human Tenon's Capsule Fibroblasts. Curr Eye Res 2023; 48:34-43. [PMID: 36260079 DOI: 10.1080/02713683.2022.2138449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Circular RNA (circRNA) has been identified as an important regulator for glaucoma progression. Our study aims to reveal the circ_0080940 roles in glaucoma progression. METHODS Transforming growth factor β1 (TGF-β1) was used to treat human Tenon's capsule fibroblasts (HTFs) to mimic glaucoma cell models. Cell function was determined by cell counting kit 8 assay, EdU assay and wound healing assay. Protein levels were determined by western blot analysis. Quantitative real-time PCR was used to measure RNA expression. Dual-luciferase reporter assay was performed to evaluate RNA interaction. RESULTS Our data confirmed that TGF-β1 induced HTFs proliferation, migration and extracellular matrix (ECM) deposition. Circ_0080940 was highly expressed in glaucoma patients, and its knockdown inhibited TGF-β1-induced proliferation, migration and ECM deposition in HTFs. Circ_0080940 sponged miR-139-5p, and anti-miR-139-5p revoked the effect of si-circ_0080940 on the biological functions of TGF-β1-induced HTFs. CTGF was targeted by miR-139-5p, and overexpressed CTGF overturned the inhibition effect of miR-139-5p on the biological functions of TGF-β1-induced HTFs. Furthermore, CTGF expression could be positively regulated by circ_0080940. CONCLUSION To sum up, we confirmed that circ_0080940 contributed to glaucoma progression by miR-139-5p/CTGF axis.
Collapse
Affiliation(s)
- Yanxi Wang
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yinggui Yu
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Manhua Xu
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Juan Zhou
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gangjin Kang
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiming Li
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Ji N, Guo Y, Liu S, Zhu M, Tu Y, Du J, Wang X, Wang Y, Song E. MEK/ERK/RUNX2 Pathway-Mediated IL-11 Autocrine Promotes the Activation of Müller Glial Cells during Diabetic Retinopathy. Curr Eye Res 2022; 47:1622-1630. [PMID: 36154781 DOI: 10.1080/02713683.2022.2129070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To uncover the role of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/runt-related transcription factor 2 (RUNX2)/interleukin-11 (IL-11) pathway in the activation of Müller glial cells (MGCs) and the breakdown of blood-retina barrier (BRB) during diabetic retinopathy (DR). METHODS Western blot (WB) detected the activation of MEK/ERK/RUNX2/IL-11 pathway, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected IL-11 mRNA levels in high glucose (HG)-exposed MIO-M1 cells. Co-immunoprecipitation (Co-IP) identified the interaction between ERK and RUNX2. Immunofluorescence (IF) measured the co-localization of ERK and RUNX2. Luciferase reporter gene assay identified the transcription activity of IL-11 promoter under HG conditions. Enzyme-linked immunosorbent assay (ELISA) detected IL-11 levels in MIO-M1 cell culture supernatant. WB detected IL-RA protein levels, and Immunofluorescence measured the co-localization of IL-11 and IL-11RA. WB detected MGCs activation marker glial fibrillary acidic protein (GFAP) protein levels. 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay detected the proliferation of MGCs. WB detected the activation of MEK/ERK/RUNX2/IL-11 pathway in streptozotocin (STZ)-induced diabetic mice. ELISA detected IL-11 and IL-11RA levels in mouse retina tissues. QRT-PCR and WB detected tight junction-associated molecules claudin-5, occluding and tight junction protein 1 (ZO-1) mRNA and protein levels in mouse retina tissues, respectively. RESULTS MEK/ERK/RUNX2/IL-11 pathway was activated in HG-exposed MIO-M1 cells. Additionally, IL-11 bound to IL-11RA on MIO-M1 cells to promote MIO-M1 cell activation and proliferation. In the mouse STZ-induced diabetic model, MEK/ERK/RUNX2/IL-11/IL-11RA pathway was also activated. Finally, the blockade of the pathway mitigated the activation of MGCs and the breakdown of BRB. CONCLUSION The data suggested that activated MEK/ERK/RUNX2/IL-11/IL-11RA autocrine pathway can promote the activation of MGCs and the breakdown of BRB during DR, implying novel anti-molecular strategies for the treatment of DR.
Collapse
Affiliation(s)
- Na Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China.,The Affiliated Eye Hospital, Suzhou Vocational Health College, Suzhou, China
| | - Yang Guo
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Songbai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiaoxiao Wang
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Clark LN, Gao Y, Wang GT, Hernandez N, Ashley-Koch A, Jankovic J, Ottman R, Leal SM, Rodriguez SMB, Louis ED. Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology. EBioMedicine 2022; 85:104290. [PMID: 36183486 PMCID: PMC9525816 DOI: 10.1016/j.ebiom.2022.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Essential tremor (ET), one of the most common neurological disorders, has a phenotypically heterogeneous presentation characterized by bilateral kinetic tremor of the arms and, in some patients, tremor involving other body regions (e.g., head, voice). Genetic studies suggest that ET is genetically heterogeneous. Methods We analyzed whole genome sequence data (WGS) generated on 104 multi-generational white families with European ancestry affected by ET. Genome-wide parametric linkage and association scans were analyzed using adjusted logistic regression models through the application of the Pseudomarker software. To investigate the additional contribution of rare variants in familial ET, we also performed an aggregate variant non-parametric linkage (NPL) analysis using the collapsed haplotype method implemented in CHP-NPL software. Findings Parametric linkage analysis of common variants identified several loci with significant evidence of linkage (HLOD ≥3.6). Among the gene regions within the strongest ET linkage peaks were BTC (4q13.3, HLOD=4.53), N6AMT1 (21q21.3, HLOD=4.31), PCDH9 (13q21.32, HLOD=4.21), EYA1 (8q13.3, HLOD=4.04), RBFOX1 (16p13.3, HLOD=4.02), MAPT (17q21.31, HLOD=3.99) and SCARB2 (4q21.1, HLOD=3.65). CHP-NPL analysis identified fifteen additional genes with evidence of significant linkage (LOD ≥3.8). These genes include TUBB2A, VPS33B, STEAP1B, SPINK5, ZRANB1, TBC1D3C, PDPR, NPY4R, ETS2, ZNF736, SPATA21, ARL17A, PZP, BLK and CCDC94. In one ET family contributing to the linkage peak on chromosome 16p13.3, we identified a likely pathogenic heterozygous canonical splice acceptor variant in exon 2 of RBFOX1 (ENST00000547372; c.4-2A>G), that co-segregated with the ET phenotype in the family. Interpretation Linkage and association analyses of WGS identified several novel ET candidate genes, which are implicated in four major pathways that include 1) the epidermal growth factor receptor-phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha-AKT serine/threonine kinase 1 (EGFR-PI3K-AKT) and Mitogen-activated protein Kinase 1 (ERK) pathways, 2) Reactive oxygen species (ROS) and DNA repair, 3) gamma-aminobutyric acid-ergic (GABAergic) system and 4) RNA binding and regulation of RNA processes. Our study provides evidence for a possible overlap in the genetic architecture of ET, neurological disease, cancer and aging. The genes and pathways identified can be prioritized in future genetic and functional studies. Funding National Institutes of Health, NINDS, NS073872 (USA) and NIA AG058131(USA).
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yizhe Gao
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gao T Wang
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Ruth Ottman
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Suzanne M Leal
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra M Barral Rodriguez
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
21
|
Zhang L, Wang C, Lu X, Xu X, Shi T, Chen J. Transcriptome sequencing of hepatocellular carcinoma uncovers multiple types of dysregulated ncRNAs. Front Oncol 2022; 12:927524. [PMID: 36132143 PMCID: PMC9484539 DOI: 10.3389/fonc.2022.927524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptome profiling of hepatocellular carcinoma (HCC) by next-generation sequencing (NGS) technology has been broadly performed by previous studies, which facilitate our understanding of the molecular mechanisms of HCC formation, progression, and metastasis. However, few studies jointly analyze multiple types of noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and micro-RNAs (miRNAs), and further uncover their implications in HCC. In this study, we observed that the circRNA cZRANB1 and lncRNA DUXAP10 were not only significantly upregulated in tumor tissues, but also higher expressed in blood exosomes of HCC as compared with healthy donors. From the analysis of subclass-associated dysregulated ncRNAs, we observed that DLX6-AS1, an antisense RNA of DLX6, and the sense gene DLX6 were highly expressed in S1, a subclass with a more invasive/disseminative phenotype. High correlation between DLX6-AS1 and DLX6 suggested that DLX6-AS1 may function via promoting the transcription of DLX6. Integrative analysis uncovers circRNA–miRNA, lncRNA–miRNA, and competing endogenous RNA networks (ceRNAs). Specifically, cZRANB1, LINC00501, CTD-2008L17.2, and SLC7A11-AS1 may function as ceRNAs that regulate mRNAs by competing the shared miRNAs. Further prognostic analysis demonstrated that the dysregulated ncRNAs had the potential to predict HCC patients’ overall survival. In summary, we identified some novel circRNAs and miRNAs, and dysregulated ncRNAs that could participate in HCC tumorigenesis and progression by inducing transcription of their neighboring genes, increasing their derived miRNAs, or acting as miRNA sponges. Moreover, our systematic analysis provides not only rich data resources for related researchers, but also new insights into the molecular basis of how different ncRNAs coordinately or antagonistically participate in the pathogenesis process of diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunmei Wang
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Department of Gastroenterology, Affiliated Fengxian Hospital of Southern Medical University, Shanghai, China
| | - Xiaojie Lu
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
| | - Xiao Xu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| | - Jinlian Chen
- Department of Gastroenterology, Affiliated Sixth People’s Hospital South Campus of Shanghai Jiaotong University, Shanghai, China
- Department of Gastroenterology, Affiliated Fengxian Hospital of Southern Medical University, Shanghai, China
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jinlian Chen, ; Tieliu Shi, ; Xiao Xu,
| |
Collapse
|
22
|
Circ_NNT suppresses the apoptosis and inflammation in glucose-induced human retinal pigment epithelium by regulating miR-320b/TIMP3 axis in diabetic retinopathy. Clin Immunol 2022; 238:109023. [PMID: 35477026 DOI: 10.1016/j.clim.2022.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a frequent complication of diabetes. Recent reports have showed that circular RNAs (circRNAs) play important roles in DR progression. Herein, the aim of this study was to explore the role and molecular mechanism of circ_NNT in DR process. METHODS Human retinal pigment epithelial cells ARPE-19 were treated with high glucose (HG) in experimental group. The expression of circ_NNT, miR-320b, and TIMP3 (TIMP Metallopeptidase Inhibitor 3) were determined using quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were conducted by 5-ethynyl-2'-deoxyuridine (EdU) assay, MTT assay, flow cytometry, Western blot, and ELISA. The binding interaction was confirmed using dual-luciferase reporter and pull-down assays. RESULTS HG stimulation led to a decrease of circ_NNT and TIMP3 expression, and an increase of miR-320b expression in ARPE-19 cells. Functionally, circ_NNT up-regulation reversed HG-evoked apoptosis and inflammation in ARPE-19 cells. Mechanistically, circ_NNT acted as a sponge for miR-320b to elevate TIMP3 expression. Further rescue experiments showed that miR-320b elevation attenuated the protective effects of circ_NNT on HG-induced ARPE-19 cells. Moreover, inhibition of miR-320b protected ARPE-19 cells against HG-evoked apoptosis and inflammation, which were abolished by TIMP3 knockdown. CONCLUSION Circ_NNT protected ARPE-19 cells against HG-evoked apoptosis and inflammation via elevating TIMP3 through sequestering miR-320b, indicating that up-regulation of circ_NNT might contribute to the inhibition of DR process.
Collapse
|
23
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. CircRNA and miRNA expression profiles during remote ischemic postconditioning attenuate brain ischemia/reperfusion injury. Brain Res Bull 2022; 185:39-48. [PMID: 35452749 DOI: 10.1016/j.brainresbull.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022]
Abstract
Remote ischemic postconditioning (RIPostC) is a protective procedure for brain damage caused by ischemia/reperfusion (IR), yet the mechanism of this treatment remains to be elucidated. Circular RNAs (circRNAs) are endogenous non-coding RNAs that have recently been recognized to play vital roles in ischemic brain injury. The aim of this study was to explore the role of circRNAs in the protective mechanism of RIPostC and to analyze the circRNA-microRNA (miRNA) regulation network in RIPostC. Nine rats were assigned randomly into three groups (three rats per group): sham, IR, and RIPostC. Their brain tissues were extracted for next-generation RNA sequencing and bioinformatics analysis was performed for two comparisons: sham vs. IR and IR vs. RIPostC. The expression patterns of selected circRNAs and miRNAs were validated by quantitative real-time PCR (qPCR). We detected 82 upregulated and 51 downregulated circRNAs and 137 upregulated and 127 downregulated miRNAs in the IR group compared with the sham group, and 41 upregulated and 100 downregulated circRNAs and 45 upregulated and 64 downregulated miRNAs in the RIPostC group compared with the IR group. The proposed competitive endogenous RNA (ceRNA) network, which included 24 circRNAs, 20 miRNAs, and 145 mRNAs, indicated that the dysregulated circRNAs played important roles in brain IR injury. On the basis of the expression patterns of selected circRNAs, miRNAs, and mRNAs obtained by qPCR, we proposed a circRNA_0002286-miR-124-3p-VLCAD pathway. In PC12 cell, the expression level of miR-124-3p was significantly upregulated when the expression of circRNA_0002286 was repressed and the expression level of VLCAD (very-long chain acyl-CoA dehydrogenase) was significantly downregulated, which suggested that circRNA_0002286 may act as a miRNA sponge for miR-124-3p to regulate the expression of VLCAD. We found that upregulation of circRNA_0002286 attenuated IR injury and was associated with downregulation of miR-124-3p and upregulation of VLCAD. This is the first time that circRNAs have been shown to be closely related to brain IR injury and RIPostC and suggests that targeting the circRNA_0002286-miR-124-3p-VLCAD pathway might attenuate brain IR injury.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China; Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Yunnan Kunming 650101, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China.
| |
Collapse
|
24
|
Pan W, Hu Y, Wang L, Li J. Circ_0003611 acts as a miR-885-5p sponge to aggravate the amyloid-β-induced neuronal injury in Alzheimer's disease. Metab Brain Dis 2022; 37:961-971. [PMID: 35076819 DOI: 10.1007/s11011-022-00912-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic degenerative disease in the central nervous system and circular RNAs (circRNAs) are identified as essential regulators in AD. The current research was designed for exploration of circ_0003611 in AD. Circ_0003611 was overexpressed in AD patients and Aβ-treated SK-N-SH cells. Aβ-induced apoptotic, inflammatory and oxidative damages were relieved after knockdown of circ_0003611. MiR-885-5p was validated as a miRNA target of circ_0003611. The protective function of circ_0003611 downregulation was achieved by releasing miR-885-5p in Aβ-treated SK-N-SH cells. KREMEN1 was a downstream gene of miR-885-5p. Overexpression of miR-885-5p attenuated the Aβ-triggered cell injury by reducing the KREMEN1 expression. KREMEN1 was regulated by circ_0003611 via sponging miR-885-5p in Aβ-treated SK-N-SH cells. These experimental data demonstrated that circ_0003611 enhanced the Aβ-induced neuronal cell injury in AD by serving as the miR-885-5p sponge to regulate the level of KREMEN1.
Collapse
Affiliation(s)
- Weihua Pan
- Department of Clinical Psychology, Work Unit of Qingdao Mental Health Center, No.299 Nanjing Road, Qingdao, Shandong, China
| | - Yirui Hu
- Department of Ward 3 Psychiatry, Work Unit of Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Lihong Wang
- Department of Clinical Psychology, Work Unit of Qingdao Mental Health Center, No.299 Nanjing Road, Qingdao, Shandong, China
| | - Jing Li
- Department of Clinical Psychology, Work Unit of Qingdao Mental Health Center, Qingdao, Shandong, China.
| |
Collapse
|
25
|
He H, Zhang J, Gong W, Liu M, Liu H, Li X, Wu Y, Lu Q. Involvement of CircRNA Expression Profile in Diabetic Retinopathy and Its Potential Diagnostic Value. Front Genet 2022; 13:833573. [PMID: 35251136 PMCID: PMC8891611 DOI: 10.3389/fgene.2022.833573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Circular RNAs (circRNAs), a class of non-coding and undegradable RNAs, play many pathological functions by acting as miRNA sponges, interacting with RNA-binding proteins, and others. The recent literature indicates that circRNAs possess the advanced superiority for the early screening of diabetic retinopathy (DR). Methods: CircRNA sources of peripheral blood mononuclear cells (PBMCs) from healthy controls (n = 4), diabetes mellitus patients (DM) (n = 4), and DR patients (n = 4) were extracted for circular RNA microarray analysis. Enriched biological modules and signaling pathways were analyzed by Gene Ontology Enrichment and Kyoto Encyclopedia of Genes and Genomes analysis, respectively. Real-time quantitative reverse transcription PCR (RT-qPCR) was performed to validate differentiated levels of several circRNAs (fold change ≥2, p < .05) in different groups of healthy control subjects (n = 20), DM patients (n = 60), and DR patients (n = 42). Based on our clinical data from DR, the diagnostic performance of candidate circRNAs was measured by operating characteristic curves (ROCs). Subsequently, their circRNA–miRNA networks were constructed by bioinformatics analysis. Results: Circular RNA microarray analysis was performed, and 2,452 and 289 circRNAs were screened with differential expression in DR patients compared to healthy controls and DM patients, respectively. Enrichment analyses showed that circRNAs in DR patients were enriched in extracellular matrix (ECM)–receptor interaction and focal adhesion pathways. The top 5 differential circRNAs in circRNA microarray analysis were subsequently quantified and verified by RT-qPCR. Consistently, a significant 2.2-fold reduction of hsa_circ_0095008 and 1.7-fold increase in hsa_circ_0001883 were identified in DR patients compared to DM patients. Meanwhile, the area under curves of hsa_circ_0095008 and hsa_circ_0001883 were 0.6710 (95% CI, 0.5646–0.7775) (p = 0.003399) and 0.6071 (95% CI, 0.4953–0.7189) (p = 0.06644), respectively, indicating a good diagnostic value. Conclusion: Our study provided a new sight for the pathological mechanism of DR and revealed the potential value of hsa_circ_0095008 and hsa_circ_0001883 as diagnostic biomarkers for the early diagnosis of DR patients.
Collapse
Affiliation(s)
- Hengqian He
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Weikun Gong
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Mengyun Liu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Hao Liu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoyong Li
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, China
| | - Yufei Wu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- *Correspondence: Qinkang Lu,
| |
Collapse
|
26
|
Sun LF, Ma Y, Ji YY, Wu Z, Wang YH, Mou H, Jin ZB. Circular Rims2 Deficiency Causes Retinal Degeneration. Adv Biol (Weinh) 2021; 5:e2100906. [PMID: 34738746 DOI: 10.1002/adbi.202100906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Circular RNAs (circRNAs) refer to a newly recognized family of non-coding RNA with single-stranded RNAs. Despite emerging evidence indicating that circRNAs are abundantly expressed in various tissues, especially in the brain and retina, the role of circRNAs in retinal function and diseases is still largely unknown. Circular Rims2 (circRims2) is highly expressed and conserved in both the human and mouse brains. However, little is known about the expression and function of circRims2 in the retina. In the current study, the high-throughput RNA-seq analysis reveals a high expression of circRims2 in the retina. In addition, it is found that circRims2 is mainly located in plexiform layers that contain synapses between retinal neurons. Knocking down circRims2 with short hairpin RNA through subretinal adeno-associated viral (AAV) delivery in the mice leads to the decrease of the thickness of the outer and inner segment (OS/IS) layers and outer nuclear layer (ONL), and cessation of scotopic and photopic electroretinogram responses. Furthermore, the current study finds that circRims2 deficiency evokes retinal inflammation and activates the tumor necrosis factor (TNF) signaling pathway. Therefore, circRims2 may play an important role in the maintenance of retinal structure and function, and circRims2 deficiency may lead to pathogenic changes in the retina.
Collapse
Affiliation(s)
- Lan-Fang Sun
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yang-Yang Ji
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhen Wu
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya-Han Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Hao Mou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| |
Collapse
|
27
|
Circular RNA Expression Profile in Patients with Lumbar Spinal Stenosis Associated with Hypertrophied Ligamentum Flavum. Spine (Phila Pa 1976) 2021; 46:E916-E925. [PMID: 33534519 DOI: 10.1097/brs.0000000000003975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Sequencing and experimental analysis of the expression profile of circular RNAs (circRNAs) in hypertrophic ligamentum flavum (LFH). OBJECTIVES The aim of this study was to identify differentially expressed circRNAs between LFH and nonhypertrophic ligamentum flavum tissues from lumbar spinal stenosis (LSS) patients. SUMMARY OF BACKGROUND DATA Hypertrophy of the ligamentum flavum (LF) can cause LSS. circRNAs are important in various diseases. However, no circRNA expression patterns related to LF hypertrophy have been reported. METHODS A total of 33 patients with LSS participated in this study. LF tissue samples were obtained when patients underwent decompressive laminectomy during surgery. The expression profile of circRNAs was analyzed by transcriptome high-throughput sequencing and validated with quantitative real-time polymerase chain reaction (PCR). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed for the differentially expressed circRNA-associated genes and related pathways. The connections between circRNAs and microRNAs were explored using Cytoscape. The role of hsa_circ_0052318 on LF cell fibrosis was assessed by analyzing the expression of collagen I and collagen III. RESULTS The results showed that 2439 circRNAs of 4025 were differentially expressed between the LFH and nonhypertrophic ligamentum flavum tissues, including 1276 upregulated and 1163 downregulated circRNAs. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these differentially expressed circRNAs functioned in biological processes, cellular components, and molecular functions. Autophagy and mammalian target of rapamycin were the top two signaling pathways affected by these circRNAs. Five circRNAs (hsa_circ_0021604, hsa_circ_0025489, hsa_circ_0002599, hsa_circ_0052318, and hsa_circ_0003609) were confirmed by quantitative real-time PCR. The network indicated a strong relationship between circRNAs and miRNAs. Furthermore, hsa_circ_0052318 overexpression decreased mRNA and protein expression of collagen I and III in LF cells from LFH tissues. CONCLUSION This study identified circRNA expression profiles characteristic of hypertrophied LF in LSS patients, and demonstrated that hsa_circ_0052318 may play an important role in the pathogenesis of LF hypertrophy.Level of Evidence: N/A.
Collapse
|
28
|
Qin L, Sun X, Zhou F, Liu C. CircLRP6 contributes to prostate cancer growth and metastasis by binding to miR-330-5p to up-regulate NRBP1. World J Surg Oncol 2021; 19:184. [PMID: 34158077 PMCID: PMC8220703 DOI: 10.1186/s12957-021-02287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNA low-density lipoprotein receptor-related protein 6 (circLRP6) is considered as an oncogene in many types of cancers. However, the function and mechanisms of circLRP6 in prostate cancer (PCa) tumorigenesis remain largely undefined. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were conducted to assess the expression of circLRP6, microRNA (miR)-330-5p, and nuclear receptor binding protein 1 (NRBP1). Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2’-deoxyuridine (EDU) incorporation, flow cytometry, transwell, wound healing, and western blot assays were performed to detect cell proliferation, apoptosis, and metastasis in vitro. Subcutaneous tumor growth was observed in nude mice to investigate the role of circLRP6 in vivo. The targeting relationship between miR-330-5p and NRBP1 or circLRP6 was verified using dual-luciferase reporter, pull-down, and RNA immunoprecipitation (RIP) assays. Immunohistochemistry was employed to test relative protein expression. Results CircLRP6 was highly expressed in PCa tissues and cells, knockdown of circLRP6 impaired PCa cell growth and metastasis in vitro by affecting cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Mechanistic studies showed that circLRP6 could competitively bind with miR-330-5p to prevent the degradation of its target gene NRBP1. Rescue assay suggested that miR-330-5p inhibition reversed the inhibitory effects of circLRP6 knockdown on PCa cell growth and metastasis. Moreover, overexpression of miR-330-5p suppressed PCa progression via NRBP1. Notably, tumor formation assay indicated that circLRP6 silencing impeded tumor growth and EMT in vivo. Conclusion Our findings demonstrated that circLRP6 promoted PCa tumorigenesis and metastasis through miR-330-5p/NRBP1 axis, suggesting a potential therapeutic target for PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02287-2.
Collapse
Affiliation(s)
- Linghui Qin
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Xiaosong Sun
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Fei Zhou
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Cheng Liu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
29
|
Yang Q, Li F, He AT, Yang BB. Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther 2021; 29:1683-1702. [PMID: 33484969 PMCID: PMC8116570 DOI: 10.1016/j.ymthe.2021.01.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are RNAs with a unique circular structure that is generated from back-splicing processes. These circular molecules were discovered more than 40 years ago but failed to raise scientific interest until lately. Increasing studies have found that these circular RNAs might not just be byproducts of the splicing process but possess important regulatory functions through different cellular events. Most circular RNAs are currently being studied in the field of cancer, and many of them have been confirmed to be involved in the process of tumorigenesis. However, many circular RNAs are implicated in the developmental stages of diseases other than cancer. In this review, we focus on discussing the role of circular RNAs in non-cancer diseases, especially in cardiovascular diseases. Following the summary of the life cycle of circRNAs, we provide input on studying circRNA-protein interactions based on our experience, which modulate protein translocation. Furthermore, we outline the potential of circRNAs to be potent biomarkers, effective therapeutic targets, and potential treatments in cardiovascular diseases as well as other non-cancer fields.
Collapse
Affiliation(s)
- Qiwei Yang
- Sunnybrook Research Institute, Toronto, ON, Canada; Medical Research Center, Second Hospital of Jilin University, Changchun, China; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Feiya Li
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Alina T He
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
30
|
Li ML, Wang W, Jin ZB. Circular RNAs in the Central Nervous System. Front Mol Biosci 2021; 8:629593. [PMID: 33816552 PMCID: PMC8017125 DOI: 10.3389/fmolb.2021.629593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/25/2021] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous single-stranded RNAs characterized by covalently closed loop structures with neither 5′ to 3′ polarity nor poly(A) tails. They are generated most commonly from back-splicing of protein-coding exons. CircRNAs have a tissue-specific distribution and are evolutionarily conserved, and many circRNAs play important biological functions by combining with microRNAs and proteins to regulate protein functions and their own translation. Numerous studies have shown that circRNAs are enriched in the central nervous system (CNS) and play an important role in the development and maintenance of homeostasis. Correspondingly, they also play an important role in the occurrence and progression of CNS diseases. In this review, we highlight the current state of circRNA biogenesis, properties, function and the crucial roles they play in the CNS.
Collapse
Affiliation(s)
- Meng-Lan Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
31
|
Song J, Kim YK. Targeting non-coding RNAs for the treatment of retinal diseases. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:284-293. [PMID: 33815941 PMCID: PMC7985465 DOI: 10.1016/j.omtn.2021.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining visual function is key to establishing improved longevity. However, the numbers of patients with diseases of the retina, the most important tissue for vision and the key to age-related blindness, are not declining due to the increase in the number of aging subjects worldwide and the technological advances in the delivery of premature infants. The primary treatment option for retinal diseases is still surgical intervention and includes laser or photocoagulation, which are associated with various complications and side effects. Many aspects of the pathogenesis of these retinal diseases are still unknown, thereby impeding drug discovery. This has led to an increase in the number of studies focused on the underlying pathogenic mechanisms of retinal diseases. Growing evidence suggests that non-coding RNAs play critical roles in the pathogenesis of retinal diseases. Herein, we have summarized the known functional roles of non-coding RNAs, emphasizing their contribution to the underlying pathogenesis of retinal diseases. In addition, we discuss the modulation of non-coding RNAs as potential therapeutics and the methods to control the non-coding RNAs for the treatment. We expect that targeting non-coding RNAs could be crucial for developing novel therapeutics for progressive diseases including diseases of the retina.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Corresponding author: Young-Kook Kim, PhD, Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
32
|
Rong R, Wang M, You M, Li H, Xia X, Ji D. Pathogenesis and prospects for therapeutic clinical application of noncoding RNAs in glaucoma: Systematic perspectives. J Cell Physiol 2021; 236:7097-7116. [PMID: 33634475 PMCID: PMC8451868 DOI: 10.1002/jcp.30347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Noncoding ribonucleic acids (ncRNAs) are an increasingly studied class of RNA molecules with extensive biological activities, including important roles in human development, health, and disease. Glaucoma is a neurodegenerative disease of the retina, and one of the leading causes of blindness worldwide. However, the specific roles of ncRNAs in the development and progression of glaucoma are unclear, and related reports are fragmented. An in‐depth understanding of ncRNAs participating in the pathogenesis and progression of glaucoma would be helpful for opening up new avenues to facilitate the early diagnosis and clinical treatment. Therefore, in this review, we aimed to discuss the current research progress, the potentialfuture clinical applications and the research limitations of three critical classes of ncRNAs in glaucoma, namely microRNAs, long noncoding RNAs, and circular RNAs.
Collapse
Affiliation(s)
- Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengxiao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
33
|
Jiang Q, Su DY, Wang ZZ, Liu C, Sun YN, Cheng H, Li XM, Yan B. Retina as a window to cerebral dysfunction following studies with circRNA signature during neurodegeneration. Theranostics 2021; 11:1814-1827. [PMID: 33408783 PMCID: PMC7778582 DOI: 10.7150/thno.51550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-induced cerebral injury is a major cause of dementia or death worldwide. The pre-diagnosis is still challenging due to the retarded symptoms. The retina is regarded as the extension of cerebral tissue. Circular RNAs have emerged as the crucial regulators in gene regulatory network and disease progression. However, it is still unknown whether circRNAs can be used as the common regulators and diagnostic markers for cerebral neurodegeneration and retinal neurodegeneration. Methods: C57BL/6J mice were subjected to transient middle cerebral artery occlusion and circRNA microarray profiling was performed to identify neurodegeneration-related circRNAs. Quantitative reverse-transcription PCR (qRT-PCR) assays were performed to verify circRNA expression pattern. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to determine the biologic modules and signaling pathway. TTC staining, Nissl's staining, and immunofluorescence staining assays were performed to investigate the role of circRNA in cerebral neurodegeneration and retinal neurodegeneration in vivo. MTT assay, Propidium iodide (PI)/Calcein-AM staining, and Rhodamine 123 assays were performed to investigate the role of circRNA in neuronal injury in vitro. Bioinformatics, RIP, and luciferase activity assays were performed to determine the regulatory mechanism of circRNA in neurodegeneration. Results: 217 differentially expressed circRNAs were identified between ischemic cerebral tissues and normal controls. Among them, cGLIS3 was shown as the common regulator of cerebral neurodegeneration and retinal neurodegeneration. cGLIS3 silencing alleviated ischemia-induced retinal neurodegeneration and MCAO-induced cerebral neurodegeneration in vivo. cGLIS3 silencing protected against OGD/R-induced RGC injury in vitro. The circulating levels of cGLIS3 were significantly increased in the patients with ischemic stroke compared to healthy subjects. cGLIS3 levels were also increased in the aqueous humor of the patients with retinal vein occlusion. cGLIS3 regulated neuronal cell injury by acting as miR-203 sponge and its level was controlled by EIF4A3. Conclusions: This study provides molecular evidence that the retina is window of the brain from circRNA perspective. cGLIS3 is a common regulator and diagnostic marker of cerebral neurodegeneration and retinal neurodegeneration.
Collapse
Affiliation(s)
- Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dong-Yuan Su
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhen-Zhen Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Cheng
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
34
|
Wei M, Li L, Zhang Y, Zhang M, Su Z. Downregulated circular RNA zRANB1 mediates Wnt5a/β-Catenin signaling to promote neuropathic pain via miR-24-3p/LPAR3 axis in CCI rat models. Gene 2020; 761:145038. [DOI: 10.1016/j.gene.2020.145038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
|
35
|
Chen X, Zhou R, Shan K, Sun Y, Yan B, Sun X, Wang J. Circular RNA Expression Profiling Identifies Glaucoma-Related Circular RNAs in Various Chronic Ocular Hypertension Rat Models. Front Genet 2020; 11:556712. [PMID: 33133146 PMCID: PMC7575816 DOI: 10.3389/fgene.2020.556712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs are characterized as a class of covalently closed circular RNA transcripts and are associated with a variety of cellular processes and neurological diseases by sponging microRNAs. Expression profiling of circular RNAs in glaucoma, which is a form of optic neuropathy, has not been performed to date. The most common characteristic of all forms of glaucoma is the loss of retinal ganglion cells. While the pathogenesis of glaucoma is not fully understood, intraocular pressure is unquestionably the only proven modifiable factor which makes chronic ocular hypertension (COH) animals the classical glaucoma models. Based on these findings, we completed the first in-depth study of rat retinal circular RNA expression profiling to identify probable biomarkers for the diagnosis of glaucoma. Two ocular hypertension models were induced by episcleral vein ligation (EVL) and microbead injection in rats. Overall, 15,819 circular RNA were detected. Furthermore, 3,502 differentially expressed circular RNAs verified in both COH rats were identified, of which 691 were upregulated and 2,811 were downregulated. Seven significantly downregulated (both log2FoldChange < -2.5 and adjusted P < 0.001) and seven significantly upregulated (both log2FoldChange > 2.5 and adjusted P < 0.001) circular RNAs were shown. Six target microRNAs aligned with the top 14 circular RNAs were identified. According to the construction of the circular RNA-microRNA network and circBase information, only RNO_CIRCpedia_1775 had the homologous hsa_circ_0023826 in the human genome. The hsa_circ_0023826 and mRNA of the host gene TENM4 (teneurin transmembrane protein 4) were validated in aqueous humor samples of five glaucoma patients and five cataract control patients. The expression of hsa_circ_0023826 showed a significant decrease in glaucoma patients, while TENM4 mRNA showed no significant difference compared to cataract patients (P = 0.024 and P = 0.294, respectively). The results of this study comprehensively characterized the expression profiles of circular RNA in glaucoma-affected eyes, as verified by two different ocular hypertension rat models. Together with the target microRNAs underlying the top differentially expressed circular RNAs, a new target of hsa_circ_0023826 and its host gene TENM4 were identified and further verified in the aqueous humor of glaucoma patients, indicating a promising biomarker for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Rongmei Zhou
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
| | - Kun Shan
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
| | - Yanan Sun
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
| | - Biao Yan
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jiajian Wang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
37
|
Zhang C, Hu J, Yu Y. CircRNA Is a Rising Star in Researches of Ocular Diseases. Front Cell Dev Biol 2020; 8:850. [PMID: 33015046 PMCID: PMC7494781 DOI: 10.3389/fcell.2020.00850] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
A newly rediscovered subclass of noncoding RNAs, circular RNAs (circRNAs), is produced by a back-splicing mechanism with a covalently closed loop structure. They not only serve as the sponge for microRNAs (miRNAs) and proteins but also regulate gene expression and epigenetic modification, translate into peptides, and generate pseudogenes. Dysregulation of circRNA expression has opened a new chapter in the etiology of various human disorders, including cancer and cardiovascular, neurodegenerative, and ocular diseases. Recent studies recognized the vital roles that circRNAs played in the pathogenesis of various eye diseases, highlighting circRNAs as promising biomarkers for diagnosis and assessment of progression and prognosis. Interventions targeting circRNAs provide insights for developing novel treatments for these ocular diseases. This review summarizes our current perception of the properties, biogenesis, and functions of circRNAs and the development of circRNA researches related to ophthalmologic diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, glaucoma, corneal neovascularization, cataract, pterygium, proliferative vitreoretinopathy, retinoblastoma, and ocular melanoma.
Collapse
Affiliation(s)
- Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
He M, Zhou R, Liu S, Cheng W, Wang W. Circular RNAs: Potential Star Molecules Involved in Diabetic Retinopathy. Curr Eye Res 2020; 46:277-283. [PMID: 32865040 DOI: 10.1080/02713683.2020.1812086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: To summarize the research status on the function and mechanism of circRNAs in regulating the occurrence of diabetic retinopathy (DR). Methods: We systematically searched PubMed, Embase.com, and ARVO Abstracts website and reviewed relevant studies. Results: Thousands of circRNAs were found to be aberrantly expressed in DR patients, animal models, or cell models. A few circRNAs, such as cPWWP2A, circDNMT3B, circHIPK3, circ_0005015, et al were demonstrated to play an important role in DR by regulating the angiogenesis, proliferation, apoptosis, and inflammatory response of various cells in the retina. Conclusion: CircRNAs are involved in the development of DR. CircRNAs can not only serve as DR biomarkers, but also become therapeutic targets for DR. The role of plenty of circRNAs in DR is yet to be discovered.
Collapse
Affiliation(s)
- Miao He
- Department of Ophthalmology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou, People's Republic of China
| | - Rouxi Zhou
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha , Hunan, China
| | - Sen Liu
- School of Medicine, Sun Yat-sen University , Guangzhou, China
| | - Weijing Cheng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University , Guangzhou, People's Republic of China
| | - Wei Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University , Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
40
|
Zhou RM, Shi LJ, Shan K, Sun YN, Wang SS, Zhang SJ, Li XM, Jiang Q, Yan B, Zhao C. Circular RNA-ZBTB44 regulates the development of choroidal neovascularization. Am J Cancer Res 2020; 10:3293-3307. [PMID: 32194869 PMCID: PMC7053208 DOI: 10.7150/thno.39488] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Choroidal neovascularization (CNV) is a major cause of severe vision loss and occurs in many ocular diseases, especially neovascular age-related macular degeneration (nAMD). Circular RNAs (circRNAs) are emerging as a new class of endogenous noncoding RNAs, which have been implicated in the regulation of endothelial cell dysfunction in diabetes mellitus and cancer. In this study, we aimed to determine the role of circRNA-ZBTB44 (cZBTB44) in the pathogenesis of CNV. Methods: Quantitative polymerase chain reaction was conducted to detect cZBTB44 expression pattern during CNV development. Isolectin B4 staining, hematoxylin and eosin (HE) staining, and choroidal sprouting assay ex vivo were conducted to evaluate the role of cZBTB44 in the development of CNV. Endothelial cell proliferation, migration and tube formation assays were conducted to determine the role of cZBTB44 in angiogenic effect in vitro. Bioinformatics analysis, RNA immunoprecipitation assay, luciferase assay, and in vitro studies were conducted to investigate the mechanism of cZBTB44-mediated CNV development. Results: cZBTB44 expression was significantly up-regulated in a laser-induced CNV mouse model in vivo and in endothelial cells upon hypoxia stress in vitro. cZBTB44 silencing retarded CNV development, while overexpression of cZBTB44 showed the opposite effects. The role of cZBTB44 in CNV development was confirmed in choroidal sprouting assay ex vivo. cZBTB44 silencing reduced endothelial cell viability, proliferation, migration and tube formation in vitro. cZBTB44 acted as miR-578 sponge to sequester and inhibit miR-578 activity, which led to increased expression of vascular endothelial growth factor A (VEGFA) and vascular cell adhesion molecule-1 (VCAM1). Overexpression of miR-578 mimicked cZBTB44 silencing-mediated anti-angiogenic effects in vivo and in vitro. Furthermore, dysregulated cZBTB44 expression was detected in the clinical samples of nAMD patients. Conclusions: This study provided novel insights into the molecular pathogenesis of CNV. The cZBTB44-miR-578-VEGFA/VCAM1 axis might be a potential source of novel therapeutic targets for neovascularization-related diseases.
Collapse
|
41
|
George AK, Master K, Majumder A, Homme RP, Laha A, Sandhu HS, Tyagi SC, Singh M. Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain. Can J Physiol Pharmacol 2019; 97:463-472. [DOI: 10.1139/cjpp-2018-0505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts that are produced via alternative, noncanonical pre-mRNA back-splicing events. These single-stranded RNA molecules have been identified in organisms ranging from the worm (Cortés-López et al. 2018. BMC Genomics, 19: 8; Ivanov et al. 2015. Cell Rep. 10: 170–177) to higher eukaryotes (Yang et al. 2017. Cell Res. 27: 626–641) to plants (Li et al. 2017. Biochem. Biophys. Res. Commun. 488: 382–386). At present, research on circRNAs is an active area because of their diverse roles in development, health, and diseases. Partly because their circularity makes them resistant to degradation, they hold great promise as unique biomarkers for ocular and central nervous system (CNS) disorders. We believe that further work on their applications could help in developing them as “first-in-class” diagnostics, therapeutics, and prognostic targets for numerous eye conditions. Interestingly, many circRNAs play key roles in transcriptional regulation by acting as miRNAs sponges, meaning that they serve as master regulators of RNA and protein expression. Since the retina is an extension of the brain and is part of the CNS, we highlight the current state of circRNA biogenesis, properties, and function and we review the crucial roles that they play in the eye and the brain. We also discuss their regulatory roles as miRNA sponges, regulation of their parental genes or linear mRNAs, translation into micropeptides or proteins, and responses to cellular stress. We posit that future advances will provide newer insights into the fields of RNA metabolism in general and diseases of the aging eye and brain in particular. Furthermore, in keeping pace with the rapidly evolving discipline of RNA“omics”-centered metabolism and to achieve uniformity among researchers, we recently introduced the term “cromics” (circular ribonucleic acids based omics) (Singh et al. 2018. Exp. Eye Res. 174: 80–92).
Collapse
Affiliation(s)
- Akash K. George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kruyanshi Master
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Avisek Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rubens Petit Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Harpal S. Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
42
|
Duan X, Li L, Gan J, Peng C, Wang X, Chen W, Peng D. Identification and functional analysis of circular RNAs induced in rats by middle cerebral artery occlusion. Gene 2019; 701:139-145. [DOI: 10.1016/j.gene.2019.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
|
43
|
Guo N, Liu XF, Pant OP, Zhou DD, Hao JL, Lu CW. Circular RNAs: Novel Promising Biomarkers in Ocular Diseases. Int J Med Sci 2019; 16:513-518. [PMID: 31171902 PMCID: PMC6535655 DOI: 10.7150/ijms.29750] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs produced by back-splicing. They are found to be expressed in eukaryotic cells and play certain roles in various cellular functions, including fibrosis, cell proliferation, differentiation, apoptosis and angiogenesis. Dysregulated circRNAs are found in several human disorders including, malignancy, vascular, inflammatory as well as nervous diseases. Although, increasing evidence suggests that circRNAs may also contribute in different ocular diseases, the outline of circRNAs in ocular diseases remains obscure. In this review we consider the current state of knowledge regarding the potential role and underlying mechanism of circRNAs in ocular diseases including pterygium, age-related cataract, glaucoma, diabetic retinopathy, retinoblastoma, retinal vascular dysfunction and hyperhomocysteinemia induced ocular diseases, emphasizing that circRNAs could be promising biomarkers for the diagnosis and prognosis evaluation. Future circRNAs-targeted intervention may become a novel therapeutic tool for the treatment of ocular diseases.
Collapse
Affiliation(s)
| | | | | | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, No. 71 of xinmin St., Changchun, Jilin Province, 130021, China
| | | | | |
Collapse
|