1
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
4
|
Liu Z, Zeng Y, Li R, Yan Y, Yi S, Zhang K. Treatment of chronic obstructive pulmonary disease by traditional Chinese medicine Morin monomer regulated by autophagy. J Thorac Dis 2024; 16:6052-6063. [PMID: 39444855 PMCID: PMC11494543 DOI: 10.21037/jtd-23-1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a frequently occurring disorder. The aim of this study is to explore the mechanism of traditional Chinese medicine Morin monomer in the treatment of COPD via regulating autophagy based on the long non-coding RNA (lncRNA) H19/microRNA (miR)-194-5p/Sirtuin (SIRT)1 signal axis. Methods The COPD rat model was constructed, and the lung tissues were collected. The pathological analysis was performed using hematoxylin-eosin (HE), Masson, and periodic acid-Schiff (PAS) staining. Autophagosomes were observed using transmission electron microscope. LncRNA H19, miR-194-5p, SIRT1 genes in the rat lung tissues were detected using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The autophagy-related proteins including SIRT1, mammalian/mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, microtubule-associated protein light chain 3 (LC3), Beclin-1, autophagy-related (ATG)7, and p62 in each group were detected using Western blot. Results The rats in the control group had normal lung structure. Alveolar enlargement and destruction could be found in the rat lung tissues in the model group, accompanied with obvious infiltration of inflammatory cells, thickened bronchial walls, enlarged alveolar septum, collagen fibers deposition, and goblet cells proliferation. In comparison with the model group, Morin treatment relieved the lung injuries, which was optimized in the moderate- and high-dose groups. The number of autophagosomes in the lung tissues of the model rats was dramatically increased compared with the normal rats. However, the number of autophagosomes in each Morin treatment group was obviously less than that in the model group. LncRNA H19 and SIRT1 expression was significantly increased in the model group, and miR-194-5p was significantly decreased (P<0.05). Morin and 3-methyladenine (3-MA) could obviously reduce the lncRNA H19 and SIRT1 expression, and increase the miR-194-5p expression (P<0.05). Relative to control rats, ATG7, Beclin-1, LC3II/I and SIRT1 levels in the model group increased obviously, while the expression of p62, and p-mTOR/mTOR decreased (P<0.05). Morin treatment reduced the expression of ATG7, Beclin-1, SIRT1, LC3II/I significantly, and increased the p-mTOR/mTOR and p62 expression (P<0.05). Conclusions Morin decreased lncRNA H19 expression, resulting in upregulation of miR-194-5p expression, downregulation of SIRT1 expression, and increased of p-mTOR/mTOR expression. Furthermore, cell autophagy was inhibited, contributing to the COPD treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Zeng
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Yan
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sicheng Yi
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
5
|
Yu JM, Sun CQ, Xu HH, Jiang YL, Jiang XY, Ni SQ, Zhao TY, Liu LX. Navigating the labyrinth of long non-coding RNAs in colorectal cancer: From chemoresistance to autophagy. World J Gastrointest Oncol 2024; 16:3376-3381. [PMID: 39171173 PMCID: PMC11334040 DOI: 10.4251/wjgo.v16.i8.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 08/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity, have been found to impact colorectal cancer (CRC) through various biological processes. LncRNA expression can regulate autophagy, which plays dual roles in the initiation and progression of cancers, including CRC. Abnormal expression of lncRNAs is associated with the emergence of chemoresistance. Moreover, it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance. Two recent studies titled "Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506" and "Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription" revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC, respectively. In this editorial, we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.
Collapse
Affiliation(s)
- Jia-Mei Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Chong-Qi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Huan-Huan Xu
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Research Laboratory, Jiangsu Province Geriatric Hospital, Nanjing 210009, Jiangsu Province, China
| | - Ya-Li Jiang
- Central Laboratory, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining 835000, Xinjiang Uyghur Autonomous Region, China
| | - Xing-Yu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Si-Qi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ting-Yu Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ling-Xiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
6
|
He R, Li Y, He Y, Wang Q, Zhang S, Chen S. Berberine mitigates diclofenac-induced intestinal mucosal mechanical barrier dysfunction through the restoration of autophagy by inhibiting exosome-mediated lncRNA H19. Inflammopharmacology 2024; 32:2525-2540. [PMID: 38758516 DOI: 10.1007/s10787-024-01487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/21/2024] [Indexed: 05/18/2024]
Abstract
Small intestine damage caused by diclofenac is called diclofenac enteropathy. Berberine (BBR), a class of isoquinoline alkaloids derived from Berberis vulgaris and Phellodendron amurense, is widely used in intestinal diseases. The present study evaluated the protective effect of BBR on the intestinal mucosal mechanical barrier in diclofenac enteropathy and its possible action mechanism. The in vitro animal experiment revealed that BBR downregulated the expression of long non-coding RNA H19 (lncRNA H19) in the small intestine and exosomes. In the co-culture experiment involving exosomes and intestinal epithelial cell-6 (IEC-6) cells, the results of qRT-PCR, western blotting, and immunofluorescence assays demonstrated that the elevated expression of lncRNA H19 in the small intestine, conveyed via exosomes derived from the diclofenac group, suppressed the expression levels of autophagy-associated protein 5 (Atg 5) and light chain 3 (LC 3), as well as and the tight junction (TJ) proteins zonula occludens-1 (ZO-1), claudin-1, and occluding, relative to the control group. BBR treatment attenuated exosomal lncRNA H19 levels, upregulated the expression of Atg5 and LC3 expression, enhanced TJ protein expression, and increased the light chain 3 (LC3)-II/LC3-I ratio. These findings significantly elucidated that BBR promoted the restoration of autophagy in IECs by inhibiting exosomal lncRNA H19, thereby mitigating the impairment of the intestinal mucosal mechanical barrier function in diclofenac enteropathy. The process involving exosomal lncRNA H19 regulating autophagy, thereby affecting the intestinal mucosal mechanical barrier, offers a novel perspective for the application of BBR in the treatment of diclofenac enteropathy.
Collapse
Affiliation(s)
- Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yi He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Qianqian Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Shuo Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China.
| | - Shanshan Chen
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
7
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Li L, Gao Y, Yu B, Zhang J, Ma G, Jin X. Role of LncRNA H19 in tumor progression and treatment. Mol Cell Probes 2024; 75:101961. [PMID: 38579914 DOI: 10.1016/j.mcp.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
As one of the earliest discovered lncRNA molecules, lncRNA H19 is usually expressed in large quantities during embryonic development and is involved in cell differentiation and tissue formation. In recent years, the role of lncRNA H19 in tumors has been gradually recognized. Increasing evidence suggests that its aberrant expression is closely related to cancer development. LncRNA H19 as an oncogene not only promotes the growth, proliferation, invasion and metastasis of many tumors, but also develops resistance to treatment, affecting patients' prognosis and survival. Therefore, in this review, we summarise the extensive research on the involvement of lncRNA H19 in tumor progression and discuss how lncRNA H19, as a key target gene, affects tumor sensitivity to radiotherapy, chemotherapy and immunotherapy by participating in multiple cellular processes and regulating multiple signaling pathways, which provides a promising prospect for further research into the treatment of cancer.
Collapse
Affiliation(s)
- Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; School of Public Health, Lanzhou University, Gansu Province, Lanzhou, 730000, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang R, Zheng Y, Zhu Q, Gu X, Xiang B, Gu X, Xie T, Sui X. β-Elemene Reverses Gefitinib Resistance in NSCLC Cells by Inhibiting lncRNA H19-Mediated Autophagy. Pharmaceuticals (Basel) 2024; 17:626. [PMID: 38794196 PMCID: PMC11124058 DOI: 10.3390/ph17050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Lung cancer is a leading cause of mortality worldwide, especially among Asian patients with non-small cell lung cancer (NSCLC) who have epidermal growth factor receptor (EGFR) mutations. Initially, first-generation EGFR tyrosine kinase inhibitors (TKIs) are commonly administered as the primary treatment option; however, encountering resistance to these medications poses a significant obstacle. Hence, it has become crucial to address initial resistance and ensure continued effectiveness. Recent research has focused on the role of long noncoding RNAs (lncRNAs) in tumor drug resistance, especially lncRNA H19. β-elemene, derived from Curcuma aromatic Salisb., has shown strong anti-tumor effects. However, the relationship between β-elemene, lncRNA H19, and gefitinib resistance in NSCLC is unclear. This study aims to investigate whether β-elemene can enhance the sensitivity of gefitinib-resistant NSCLC cells to gefitinib and to elucidate its mechanism of action. The impact of gefitinib and β-elemene on cell viability was evaluated using the cell counting kit-8 (CCK8) assay. Furthermore, western blotting and qRT-PCR analysis were employed to determine the expression levels of autophagy-related proteins and genes, respectively. The influence on cellular proliferation was gauged through a colony-formation assay, and apoptosis induction was quantified via flow cytometry. Additionally, the tumorigenic potential in vivo was assessed using a xenograft model in nude mice. The expression levels of LC3B, EGFR, and Rab7 proteins were examined through immunofluorescence. Our findings elucidate that the resistance to gefitinib is intricately linked with the dysregulation of autophagy and the overexpression of lncRNA H19. The synergistic administration of β-elemene and gefitinib markedly attenuated the proliferative capacity of resistant cells, expedited apoptotic processes, and inhibited the in vivo proliferation of lung cancer. Notably, β-elemene profoundly diminished the expression of lncRNA H19 and curtailed autophagic activity in resistant cells, thereby bolstering their responsiveness to gefitinib. Moreover, β-elemene disrupted the Rab7-facilitated degradation pathway of EGFR, facilitating its repositioning to the plasma membrane. β-elemene emerges as a promising auxiliary therapeutic for circumventing gefitinib resistance in NSCLC, potentially through the regulation of lncRNA H19-mediated autophagy. The participation of Rab7 in this dynamic unveils novel insights into the resistance mechanisms operative in lung cancer, paving the way for future therapeutic innovations.
Collapse
Affiliation(s)
- Ruonan Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, China; (R.Z.); (B.X.)
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.Z.); (Q.Z.); (X.G.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yintao Zheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.Z.); (Q.Z.); (X.G.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.Z.); (Q.Z.); (X.G.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqing Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.Z.); (Q.Z.); (X.G.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, China; (R.Z.); (B.X.)
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310002, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.Z.); (Q.Z.); (X.G.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.Z.); (Q.Z.); (X.G.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Zhang J, Wu L, Wang C, Xie X, Han Y. Research Progress of Long Non-Coding RNA in Tumor Drug Resistance: A New Paradigm. Drug Des Devel Ther 2024; 18:1385-1398. [PMID: 38689609 PMCID: PMC11060174 DOI: 10.2147/dddt.s448707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
In the past few decades, chemotherapy has been one of the most effective cancer treatment options. Drug resistance is currently one of the greatest obstacles to effective cancer treatment. Even though drug resistance mechanisms have been extensively investigated, they have not been fully elucidated. Recent genome-wide investigations have revealed the existence of a substantial quantity of long non-coding RNAs (lncRNAs) transcribed from the human genome, which actively participate in numerous biological processes, such as transcription, splicing, epigenetics, the cell cycle, cell differentiation, development, pluripotency, immune microenvironment. The abnormal expression of lncRNA is considered a contributing factor to the drug resistance. Furthermore, drug resistance may be influenced by genetic and epigenetic variations, as well as individual differences in patient treatment response, attributable to polymorphisms in metabolic enzyme genes. This review focuses on the mechanism of lncRNAs resistance to target drugs in the study of tumors with high mortality, aiming to establish a theoretical foundation for targeted therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Le Wu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Chenchen Wang
- Department of Critical Care Medicine, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People’s Republic of China
| | - Xin Xie
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuying Han
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
- Department of Critical Care Medicine, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People’s Republic of China
- Science and Education Department, Xi’an No. 5 Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
11
|
Darmadi D, Chugaeva UY, Saleh RO, Hjazi A, Saleem HM, Ghildiyal P, Alwaily ER, Alawadi A, Alnajar MJ, Ihsan A. Critical roles of long noncoding RNA H19 in cancer. Cell Biochem Funct 2024; 42:e4018. [PMID: 38644608 DOI: 10.1002/cbf.4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Hillah, Iraq
| | | | - Ali Ihsan
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
12
|
Weng X, Ma T, Chen Q, Chen BW, Shan J, Chen W, Zhi X. Decreased expression of H19/miR-675 ameliorates hypoxia-induced oxaliplatin resistance in colorectal cancer. Heliyon 2024; 10:e27027. [PMID: 38449593 PMCID: PMC10915565 DOI: 10.1016/j.heliyon.2024.e27027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Hypoxic microenvironment, a hallmark of solid tumors, contributes to chemoresistance, and long noncoding (lnc) RNAs are involved in hypoxia-induced drug resistance. However, the role of lncRNAs in hypoxic tumor chemotherapy resistance remains unclear. Here, we aimed to elucidate the effects of lncRNAs in hypoxia-mediated resistance in colorectal cancer (CRC), as well as the underlying mechanisms. The results indicated that the expression of lncRNA H19 was enhanced in hypoxia- or oxaliplatin-treated CRC cells; moreover, H19 contributed to drug resistance in CRC cells both in vitro and in vivo. Mechanistically, H19 was noted to act as a competitive endogenous RNA of miR-675-3p to regulate epithelial-mesenchymal transition (EMT). Notably, an miR-675-3p mimic could attenuate the effects of H19 deficiency in CRC cells with hypoxia-induced chemoresistance. In conclusion, H19 downregulation may counteract hypoxia-induced chemoresistance by sponging miR-675-3p to regulate EMT; as such, the H19/miR-675-3p axis might be a promising therapeutic target for drug resistance in CRC.
Collapse
Affiliation(s)
- Xingyue Weng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Qi Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Bryan Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
13
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
14
|
Yang Y, Yuan Q, Tang W, Ma Y, Duan J, Yang G, Fang Y. Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1346413. [PMID: 38487724 PMCID: PMC10937456 DOI: 10.3389/fonc.2024.1346413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC.
Collapse
Affiliation(s)
- Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - QuPing Yuan
- Puer People’s Hospital, Department of Critical Medicine, PuEr, Yunnan, China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Ya Ma
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - JingYan Duan
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - GuoNing Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - Yuan Fang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
16
|
Zhang Y, Tang J, Wang C, Zhang Q, Zeng A, Song L. Autophagy-related lncRNAs in tumor progression and drug resistance: A double-edged sword. Genes Dis 2024; 11:367-381. [PMID: 37588204 PMCID: PMC10425854 DOI: 10.1016/j.gendis.2023.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 08/18/2023] Open
Abstract
The incidence and mortality rates of cancer are increasing every year worldwide but the survival rate of cancer patients is still unsatisfactory. Therefore, it is necessary to further elucidate the molecular mechanisms involved in tumor development and drug resistance to improve cancer cure or survival rates. In recent years, autophagy has become a hot topic in the field of oncology research, which plays a double-edged role in tumorigenesis, progression, and drug resistance. Meanwhile, long non-coding RNA (lncRNA) has also been shown to regulate autophagy, and the two-sided nature of autophagy determines the dual regulatory role of autophagy-related lncRNAs (ARlncRNAs). Therefore, ARlncRNAs can be effective therapeutic targets for various cancers. Furthermore, the high abundance and stability of ARlncRNAs in tumor tissues make them promising biomarkers. In this review, we summarized the roles and mechanisms of ARlncRNAs in tumor cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, radiation resistance, and immune regulation. In addition, we described the clinical significance of these ARlncRNAs, including as biomarkers/therapeutic targets and their association with clinical drugs.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiayu Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| |
Collapse
|
17
|
Wang XW, Jiang YH, Ye W, Shao CF, Xie JJ, Li X. SIRT1 promotes the progression and chemoresistance of colorectal cancer through the p53/miR-101/KPNA3 axis. Cancer Biol Ther 2023; 24:2235770. [PMID: 37575080 PMCID: PMC10431729 DOI: 10.1080/15384047.2023.2235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
INTRODUCTION Sirtuin 1 (SIRT1) is a key modulator in several types of cancer, including colorectal cancer (CRC). Here, we probed into the molecular mechanism of SIRT1 regulating the development and chemoresistance of CRC. METHODS Differentially expressed genes related to the growth, metastasis and chemoresistance of CRC were identified by bioinformatics analysis. The expression of SIRT1 in clinical tissues from CRC patients and CRC cell lines was detected by RT-qPCR. Interactions among SIRT1, p53, miR-101 and KPNA3 were analyzed. The effect of SIRT1 on the cell viability, migration, invasion, epithelial-mesenchymal transformation and chemoresistance to 5-FU was evaluated using loss-function investigations in CRC cells. Finally, a xenograft model of CRC and a metastasis model were constructed for further exploration of the roles of SIRT1 in vivo. RESULTS SIRT1 was elevated in CRC tissues and cell lines. SIRT1 decreased p53 via deacetylation, and consequently downregulated the expression of miR-101 while increasing that of the miR-101 target gene KPNA3. By this mechanism, SIRT1 enhanced the proliferation, migration, invasion, epithelial-mesenchymal transformation, and resistance to 5-FU of CRC cells. In addition, in vivo data also showed that SIRT1 promoted the growth, metastasis and chemoresistance to 5-FU of CRC cells via regulation of the p53/miR-101/KPNA3 axis. CONCLUSIONS In conclusion, SIRT1 can function as an oncogene in CRC by accelerating the growth, metastasis and chemoresistance to 5-FU of CRC cells through the p53/miR-101/KPNA3 axis.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Ying-Hao Jiang
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Wei Ye
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Chun-Fa Shao
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Jian-Jin Xie
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| | - Xia Li
- Department of Anorectal Surgery, The First People’s Hospital of Wenling, Wenling, China
| |
Collapse
|
18
|
Chowdhury PR, Salvamani S, Gunasekaran B, Peng HB, Ulaganathan V. H19: An Oncogenic Long Non-coding RNA in Colorectal Cancer. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:495-509. [PMID: 38161577 PMCID: PMC10751868 DOI: 10.59249/tdbj7410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) has been recorded amongst the most common cancers in the world, with high morbidity and mortality rates, and relatively low survival rates. With risk factors such as chronic illness, age, and lifestyle associated with the development of CRC, the incidence of CRC is increasing each year. Thus, the discovery of novel biomarkers to improve the diagnosis and prognosis of CRC has become beneficial. Long non-coding RNAs (lncRNAs) have been emerging as potential players in several tumor types, one among them is the lncRNA H19. The paternally imprinted oncofetal gene is expressed in the embryo, downregulated at birth, and reappears in tumors. H19 aids in CRC cell growth, proliferation, invasion, and metastasis via various mechanisms of action, significantly through the lncRNA-microRNA (miRNA)-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network, where H19 behaves as a miRNA sponge. The RNA transcript of H19 obtained from the first exon of the H19 gene, miRNA-675 also promotes CRC carcinogenesis. Overexpression of H19 in malignant tissues compared to adjacent non-malignant tissues marks H19 as an independent prognostic marker in CRC. Besides its prognostic value, H19 serves as a promising target for therapy in CRC treatment.
Collapse
Affiliation(s)
- Prerana R. Chowdhury
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Hoh B. Peng
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Vaidehi Ulaganathan
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
20
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
22
|
Zichittella C, Loria M, Celesia A, Di Liberto D, Corrado C, Alessandro R, Emanuele S, Conigliaro A. Long non-coding RNA H19 enhances the pro-apoptotic activity of ITF2357 (a histone deacetylase inhibitor) in colorectal cancer cells. Front Pharmacol 2023; 14:1275833. [PMID: 37841928 PMCID: PMC10572549 DOI: 10.3389/fphar.2023.1275833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in colorectal cancer (CRC) and plays critical roles in tumor development, proliferation, metastasis, and drug resistance. Indeed, the expression of lncH19 usually affects the outcomes of chemo-, endocrine, and targeted therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that revealed a significant anti-tumor action by inducing apoptosis in different tumor models, including leukemia, melanoma, and glioblastoma. However, no data are present in the literature regarding the use of this compound for CRC treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in CRC cells. Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow cytometric analyses were performed to assess the anti-proliferative and pro-apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19. RT-PCR and Western blot were used to study the effects of ITF2357 on autophagy and apoptosis markers. Finally, bioinformatics analyses were used to identify miRNAs targeting pro-apoptotic factors that can be sponged by lncH19. Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell viability, inducing apoptosis, as demonstrated by the increase in annexin-V positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1) degradation. Interestingly, the apoptotic effect of ITF2357 was much less evident in lncH19-silenced cells. We showed that lncH19 plays a functional role in the pro-apoptotic activity of the drug by stabilizing TP53 and its transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in CRC cells, which was interpreted as a pro-survival response not correlated with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-fluorouracil-resistant HCT-116 cells that express high levels of lncH19. Conclusion: This study shows that lncH19 expression contributes to ITF2357-induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil chemoresistance.
Collapse
Affiliation(s)
- Chiara Zichittella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Biochemistry Building, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
24
|
Baljon KJ, Ramaiah P, Saleh EAM, Al-Dolaimy F, Al-Dami FH, Gandla K, Alkhafaji AT, Abbas AHR, Alsaalamy AH, Bisht YS. LncRNA PVT1: as a therapeutic target for breast cancer. Pathol Res Pract 2023; 248:154675. [PMID: 37531833 DOI: 10.1016/j.prp.2023.154675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
A significant number of women are identified with breast cancer (BC) every year, making it among the most prevalent malignancies and one of the leading causes of mortality globally. Despite significant progress in understanding BC pathogenesis and treatment options, there is still a need to identify new therapeutic targets and develop more effective treatments. LncRNAs have been discovered as biomarkers and a promising target for various cancers, including BC. PVT1 is a particular one of these lncRNAs, and research has indicated that it has a significant impact on the appearance and progression of BC.PVT1 is an attractive therapeutic target for BC due to its role in promoting cancer cell growth, metastasis and invasion. In addition to its potential as a treatment strategy, PVT1 may also have diagnostic value in BC. In this article, we will discuss targeting PVT1 as a treatment strategy for BC.
Collapse
Affiliation(s)
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry,College of Arts and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | - Farqad Hassan Al-Dami
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | | | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
25
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
26
|
Vejdandoust F, Moosavi R, Fattahi Dolatabadi N, Zamani A, Tabatabaeian H. MIMT1 and LINC01550 are uncharted lncRNAs down-regulated in colorectal cancer. Int J Exp Pathol 2023; 104:107-116. [PMID: 36727289 PMCID: PMC10182369 DOI: 10.1111/iep.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Incomplete knowledge of the molecular basis of colorectal cancer, with subsequent limitations in early diagnosis and effective treatment, has contributed to this form of malignancy becoming the second most common cause of cancer-related death worldwide. With the advances in high-throughput profiling techniques and the availability of public data sets such as The Cancer Genome Atlas Program (TCGA), a broad range of coding transcripts have been profiled and their underlying modes of action have been mapped. However, there is still a huge gap in our understanding of noncoding RNA dysregulation. To this end, we used a bioinformatics approach to shortlist and evaluate yet-to be-profiled long noncoding RNAs (lncRNAs) in colorectal cancer. We analysed the TCGA RNA-seq data and followed this by validating the expression patterns using a qPCR technique. Analysing in-house clinical samples, the real-time PCR method revealed that the shortlisted lncRNAs, that is MER1 Repeat Containing Imprinted Transcript 1 (MIMT1) and Non-Protein Coding RNA 1550 (LINC01550), were down-regulated in colorectal cancer tumours compared with the paired adjacent normal tissues. Mechanistically, the in silico results suggest that LINC01550 could form a complex competitive endogenous RNA (ceRNA) network leading to the subsequent regulation of colorectal cancer-related genes, such as CUGBP Elav-Like Family Member (CELF2), Polypyrimidine Tract Binding Protein 1 (PTBP1) and ELAV Like RNA Binding Protein 1 (ELAV1). The findings of this work indicate that MIMT1 and LINC01550 could be novel tumour suppressor genes that can be studied further to assess their roles in regulating the cancer signalling pathway(s).
Collapse
Affiliation(s)
| | - Rahmaneh Moosavi
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterDevonUK
| | | | - Atefeh Zamani
- Gene Raz Bu AliGenetics and Biotechnology AcademyIsfahanIran
| | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
- Anahid Cancer ClinicIsfahan Healthcare CityIsfahanIran
| |
Collapse
|
27
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
28
|
Kumar A, Girisa S, Alqahtani MS, Abbas M, Hegde M, Sethi G, Kunnumakkara AB. Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics. Cells 2023; 12:cells12050810. [PMID: 36899946 PMCID: PMC10000689 DOI: 10.3390/cells12050810] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer has become a global health hazard accounting for 10 million deaths in the year 2020. Although different treatment approaches have increased patient overall survival, treatment for advanced stages still suffers from poor clinical outcomes. The ever-increasing prevalence of cancer has led to a reanalysis of cellular and molecular events in the hope to identify and develop a cure for this multigenic disease. Autophagy, an evolutionary conserved catabolic process, eliminates protein aggregates and damaged organelles to maintain cellular homeostasis. Accumulating evidence has implicated the deregulation of autophagic pathways to be associated with various hallmarks of cancer. Autophagy exhibits both tumor-promoting and suppressive effects based on the tumor stage and grades. Majorly, it maintains the cancer microenvironment homeostasis by promoting viability and nutrient recycling under hypoxic and nutrient-deprived conditions. Recent investigations have discovered long non-coding RNAs (lncRNAs) as master regulators of autophagic gene expression. lncRNAs, by sequestering autophagy-related microRNAs, have been known to modulate various hallmarks of cancer, such as survival, proliferation, EMT, migration, invasion, angiogenesis, and metastasis. This review delineates the mechanistic role of various lncRNAs involved in modulating autophagy and their related proteins in different cancers.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| |
Collapse
|
29
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
30
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
31
|
Qin K, Zhang F, Wang H, Wang N, Qiu H, Jia X, Gong S, Zhang Z. circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis. BMB Rep 2023; 56:184-189. [PMID: 36617466 PMCID: PMC10068343 DOI: 10.5483/bmbrep.2022-0175] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 09/10/2023] Open
Abstract
Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC. [BMB Reports 2023; 56(3): 184-189].
Collapse
Affiliation(s)
- Kaiyun Qin
- Department of Gynecology, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Fenghua Zhang
- Department of Breast & Thyroid Surgery, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Hongxia Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Na Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Hongbing Qiu
- Department of Gynecology, Hebei Xingtai People’s Hospital, Hebei Shijiazhuang 054001, China
| | - Xinzhuan Jia
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Shan Gong
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Zhengmao Zhang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| |
Collapse
|
32
|
Qin K, Zhang F, Wang H, Wang N, Qiu H, Jia X, Gong S, Zhang Z. circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis. BMB Rep 2023; 56:184-189. [PMID: 36617466 PMCID: PMC10068343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC. [BMB Reports 2023; 56(3): 184-189].
Collapse
Affiliation(s)
- Kaiyun Qin
- Department of Gynecology, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Fenghua Zhang
- Department of Breast & Thyroid Surgery, Hebei General Hospital, Hebei Shijiazhuang 050057, China
| | - Hongxia Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Na Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Hongbing Qiu
- Department of Gynecology, Hebei Xingtai People’s Hospital, Hebei Shijiazhuang 054001, China
| | - Xinzhuan Jia
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Shan Gong
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| | - Zhengmao Zhang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China
| |
Collapse
|
33
|
LncGMDS-AS1 promotes the tumorigenesis of colorectal cancer through HuR-STAT3/Wnt axis. Cell Death Dis 2023; 14:165. [PMID: 36849492 PMCID: PMC9970971 DOI: 10.1038/s41419-023-05700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
Chronic inflammation promotes the tumorigenesis and cell stemness maintenance of colorectal cancer (CRC). However, the bridge role of long noncoding RNA (lncRNA) in linking chronic inflammation to CRC development and progression needs better understanding. Here, we elucidated a novel function of lncRNA GMDS-AS1 in persistently activated signal transducer and transcription activator 3 (STAT3) and Wnt signaling and CRC tumorigenesis. Interleukin-6 (IL-6) and Wnt3a induced lncRNA GMDS-AS1 expression, which was highly expressed in the CRC tissues and plasma of CRC patients. GMDS-AS1 knockdown impaired the survival, proliferation and stem cell-like phenotype acquisition of CRC cells in vitro and in vivo. We performed RNA sequencing (RNA-seq) and mass spectrometry (MS) to probe target proteins and identify their contributions to the downstream signaling pathways of GMDS-AS1. In CRC cells, GMDS-AS1 physically interacted with the RNA-stabilizing protein HuR, thereby protecting the HuR protein from polyubiquitination- and proteasome-dependent degradation. HuR stabilized STAT3 mRNA and upregulated the levels of basal and phosphorylated STAT3 protein, persistently activating STAT3 signaling. Our research revealed that the lncRNA GMDS-AS1 and its direct target HuR constitutively activate STAT3/Wnt signaling and promote CRC tumorigenesis, the GMDS-AS1-HuR-STAT3/Wnt axis is a therapeutic, diagnostic and prognostic target in CRC.
Collapse
|
34
|
Fu L, Li Z, Wu Y, Zhu T, Ma Z, Dong L, Ding J, Zhang C, Yu G. Hsa-miR-195-5p Inhibits Autophagy and Gemcitabine Resistance of Lung Adenocarcinoma Cells via E2F7/CEP55. Biochem Genet 2023:10.1007/s10528-023-10330-y. [PMID: 36658310 DOI: 10.1007/s10528-023-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.
Collapse
Affiliation(s)
- Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Jianyi Ding
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
35
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
36
|
Yang Z, Wan J, Ma L, Li Z, Yang R, Yang H, Li J, Zhou F, Ming L. Long non-coding RNA HOXC-AS1 exerts its oncogenic effects in esophageal squamous cell carcinoma by interaction with IGF2BP2 to stabilize SIRT1 expression. J Clin Lab Anal 2022; 37:e24801. [PMID: 36510377 PMCID: PMC9833966 DOI: 10.1002/jcla.24801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNA HOXC cluster antisense RNA 1 (HOXC-AS1) is a novel lncRNA whose cancer-promoting effect in gastric cancer and nasopharyngeal carcinoma has already been demonstrated. However, its functions in esophageal squamous cell carcinoma (ESCC) remains unknown. LncRNAs can interact with RNA-binding proteins (RBPs) and affect gene expression levels through post-transcriptional regulation. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is a widely studied RBP, and sirtuin 1 also known as SIRT1 has been reported to be involved in cancer progression. METHODS Establishment of in vivo models, HE and immunohistochemistry staining verified the oncogenic effect of HOXC-AS1. The interaction relationship between HOXC-AS1, IGF2BP2 and SIRT1 was verified by RNA pulldown and RNA immunoprecipitation (RIP) assay. Relative expression and stability changes of genes were detected by qPCR and actinomycin D experiments. Finally, the effect of HOXC-AS1-IGF2BP2-SIRT1 axis on ESCC was verified by rescue experiments. RESULTS HOXC-AS1 is highly expressed in ESCC cells and plays oncogenic effects in vivo. qPCR showed the positive relationship between HOXC-AS1 and SIRT1 following HOXC-AS1 knockdown or overexpression. RNA-pulldown, mass spectrometry and RIP assay demonstrated that IGF2BP2 is an RBP downstream of HOXC-AS1. Then, RIP and qPCR showed that IGF2BP2 could bind to SIRT1 mRNA and knockdown IGF2BP2 resulted in decreased SIRT1 mRNA level. Finally, a series of rescue assay showed that the HOXC-AS1-IGF2BP2-SIRT1 axis can affect the function of ESCC. CONCLUSION LncRNA HOXC-AS1 acts as an oncogenic role in ESCC, which impacts ESCC progression by interaction with IGF2BP2 to stabilize SIRT1 expression.
Collapse
Affiliation(s)
- Zhengwu Yang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, and the Key Clinical Laboratory of Henan ProvinceHenanChina
| | - Junhu Wan
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, and the Key Clinical Laboratory of Henan ProvinceHenanChina
| | - Liwei Ma
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, and the Key Clinical Laboratory of Henan ProvinceHenanChina
| | - Zhuofang Li
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, and the Key Clinical Laboratory of Henan ProvinceHenanChina
| | - Ruotong Yang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, and the Key Clinical Laboratory of Henan ProvinceHenanChina
| | - Haijun Yang
- Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal CancerAnyangChina
| | - Junkuo Li
- Department of PathologyAnyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and TechnologyHenanChina
| | - Fuyou Zhou
- Thoracic DepartmentAnyang Tumor Hospital, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal CancerAnyangChina
| | - Liang Ming
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, and the Key Clinical Laboratory of Henan ProvinceHenanChina
| |
Collapse
|
37
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2022; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China,Corresponding author.
| |
Collapse
|
38
|
Zhao B, Wang Y, Zhao X, Ni J, Zhu X, Fu Y, Yang F. SIRT1 enhances oxaliplatin resistance in colorectal cancer through microRNA-20b-3p/DEPDC1 axis. Cell Biol Int 2022; 46:2107-2117. [PMID: 36200529 DOI: 10.1002/cbin.11905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Oxaliplatin (L-OHP) is a standard treatment drug for colorectal cancer (CRC), but acquired drug resistance limits the outcome of patients. We investigated the involvement of sirtuin 1 (SIRT1) in L-OHP resistance in the setting of CRC via microRNA-20b-3p/DEP domain containing 1 (miR-20b-3p/DEPDC1) axis. CRC tissues that were resistant or sensitive to L-OHP were harvested, in which SIRT1, miR-20b-3p, and DEPDC1 levels were tested. L-OHP-resistant-resistant CRC cells were transfected, subsequently, cellular proliferation, invasion, migration, and apoptosis were tested, and tumor resistance to L-OHP was observed. The binding of SIRT1 to miR-20b-3p promoter and the targeting relationship between miR-20b-3p and DEPDC1 were verified. An aberrant elevation in SIRT1 expression was seen in L-OHP-resistant CRC tissues and cells. Knockdown of SIRT1 sensitized CRC cells and xenografted CRC tumors to L-OHP. SIRT1 bound with miR-20b-3p promoter to regulate DEPDC1. Reducing miR-20b-3p or raising DEPDC1 levels weakened the effect of SIRT1 knockdown on L-OHP-resistant-CRC cells. SIRT1 enhances L-OHP resistance in CRC by mediating miR-20b-3p/DEPDC1 axis.
Collapse
Affiliation(s)
- Bin Zhao
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Yuncui Wang
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Xingwang Zhao
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Jian Ni
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Xiaowen Zhu
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Yan Fu
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| | - Fan Yang
- Four Departments of General Surgery, The First Affiliated Hospital of Jiamusi Medical University, Jiamusi, Heilongjiang, China
| |
Collapse
|
39
|
Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, Xiong H, Ju S, Wang L, Zhou Y, Zhou J. The role of lncRNA H19 in tumorigenesis and drug resistance of human Cancers. Front Genet 2022; 13:1005522. [PMID: 36246634 PMCID: PMC9555214 DOI: 10.3389/fgene.2022.1005522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic therapy is one of the most significant cancer treatments. However, drug resistance often appears and has become the primary cause of cancer therapy failure. Regulation of drug target, drug metabolism and drug efflux, cell death escape (apoptosis, autophagy, et al.), epigenetic changes, and many other variables are complicatedly involved in the mechanisms of drug resistance. In various types of cancers, long non-coding RNA H19 (lncRNA H19) has been shown to play critical roles in tumor development, proliferation, metastasis, and multiple drug resistance as well. The efficacy of chemotherapy, endocrine therapy, and targeted therapy are all influenced by the expression of H19, especially in breast cancer, liver cancer, lung cancer and colorectal cancer. Here, we summarize the relationship between lncRNA H19 and tumorigenesis, and illustrate the drug resistance mechanisms caused by lncRNA H19 as well. This review may provide more therapeutic potential targets for future cancer treatments.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Bize Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shreya Singh
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchu Xiong
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Yulu Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
- *Correspondence: Linbo Wang, ; Yulu Zhou, ; Jichun Zhou,
| |
Collapse
|
40
|
Mathur R, Jha NK, Saini G, Jha SK, Shukla SP, Filipejová Z, Kesari KK, Iqbal D, Nand P, Upadhye VJ, Jha AK, Roychoudhury S, Slama P. Epigenetic factors in breast cancer therapy. Front Genet 2022; 13:886487. [PMID: 36212140 PMCID: PMC9539821 DOI: 10.3389/fgene.2022.886487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non—coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
Collapse
Affiliation(s)
- Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaurav Saini
- Department of Civil Engineering, Netaji Subhas University of Technology, Delhi, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, India
| | - Zita Filipejová
- Small Animal Clinic, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Parma Nand
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Petr Slama
- Department of Animal Morphology, Physiology, and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
41
|
Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance. Cell Death Dis 2022; 8:383. [PMID: 36100611 PMCID: PMC9470550 DOI: 10.1038/s41420-022-01174-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapy has been one of the most important treatments for advanced cancer in recent decades. Although the sensitivity rate of initial chemotherapy is high, patients with chemotherapy resistant tumors, experience tumor recurrence. In recent years, many studies have shown that homeobox transcript antisense intergenic RNA (HOTAIR) is involved in many pathological processes including carcinogenesis. The abnormal regulation of a variety of cell functions by HOTAIR, such as apoptosis, the cell cycle, epithelial-mesenchymal transition, autophagy, self-renewal, and metabolism, is associated with chemotherapy resistance. Therefore, there is an urgent need to understand the biology and mechanism underlying the role of HOTAIR in tumor behavior and its potential as a biomarker for predicting the effect of chemotherapy. In this manuscript, we review the mechanisms underlying HOTAIR-related drug resistance and discuss the limitations of current knowledge and propose potential future directions.
Collapse
|
42
|
Overcoming Basal Autophagy, Kangai Injection Enhances Cisplatin Cytotoxicity by Regulating FOXO3a-Dependent Autophagic Cell Death and Apoptosis in Human Lung Adenocarcinoma A549/DDP Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6022981. [PMID: 36093402 PMCID: PMC9458369 DOI: 10.1155/2022/6022981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
Cisplatin resistance is one of the major obstacles in the treatment of nonsmall cell lung cancer (NSCLC). Kangai injection (KAI), a Chinese herbal medicine, has been used in tumors as adjuvant treatment, but its exact antitumor mechanism is still unclear. In this study, we first demonstrated that cisplatin-resistant A549/DDP cells showed a higher level of basal autophagy in response to cisplatin treatment with increasing autophagic protein expression levels of Beclin 1, p62, and LC3 compared to cisplatin-sensitive A549/DDP cells; then, we assessed the antitumor effect of KAI in cisplatin-resistant lung adenocarcinoma A549/DDP cells. Our results showed that KAI exhibited direct cytotoxic and chemosensitizing effects in A549/DDP cells. Combining KAI with cisplatin promoted A549/DDP cell apoptosis, which was confirmed by cell cycle arrest, condensed nuclear chromatin, annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, and apoptosis-related protein expression. In addition, combining KAI with cisplatin induced autophagic cell death in A549/DDP cells with a high level of basal autophagy, as indicated by an increase in LC3 spot count, an accumulation of Beclin 1 and LC3 II, and reduced p62 protein expression. We also found that the apoptosis and autophagic cell death induced by cotreatment of KAI and cisplatin in A549/DDP cells were FOXO3a-dependent as indicated by decreased p-FOXO3a expression and increased FOXO3a nuclear localization, respectively. Furthermore, the FOXO3a gene knockdown assay further confirmed that KAI enhanced cisplatin cytotoxicity in A549/DDP cells with a high level of basal autophagy by inducing apoptosis and autophagic cell death in a FOXO3a-dependent manner. These findings suggest that the combination of KAI and cisplatin might support the potential clinical treatment as a novel strategy to overcome cisplatin resistance.
Collapse
|
43
|
Chen Z, Tang W, Zhou Y, He Z. The role of LINC01419 in regulating the cell stemness in lung adenocarcinoma through recruiting EZH2 and regulating FBP1 expression. Biol Direct 2022; 17:23. [PMID: 36050791 PMCID: PMC9438337 DOI: 10.1186/s13062-022-00336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Recent years have witnessed a growing academic interest in the effects of lncRNAs on tumors. LINC01419 is found to facilitate proliferation and metastasis of lung adenocarcinoma (LUAD) cells, but there is a great deal of uncertainty about how LINC01419 works on LUAD cell stemness. For this reason, the focus of this research is centered on the regulatory impact of LINC01419 on LUAD cell stemness. Methods For the detection of the expression level of LINC01419 in LUAD, qRT-PCR was performed. And how oe-LINC01419 and sh-LINC01419 affected LUAD cell proliferation as well as stem cell sphere-formation were examined by CCK-8 and cell sphere-forming assays. In addition, whether LINC01419 could recruit EZH2 and regulate FBP1 expression were determined by bioinformatics analysis, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP). Western blot was utilized to detect the protein expression levels of FBP1, CD44, CD133, and ALDH-1 as well. Results On the basis of the findings from those assays, an up-regulation of LINC01419 level was demonstrated in LUAD cell lines, and a remarkable upregulation of it in CD44 + LUAD cells. In LUAD cells, proliferation and stem cell sphere-formation that were attenuated by LINC01419 knockdown were discovered to be facilitated by LINC01419 overexpression. And a binding relationship between LINC01419 and EZH2 was determined by RIP assay. Besides, EZH2 was capable of binding to FBP1 promoter region, as found by ChIP-PCR assay. Finally, it was demonstrated by in vitro experiments that LINC01419 could inhibit FBP1 expression by recruiting EZH2, resulting in promotion of LUAD cell proliferation and stemness. Significance To summarize, our findings demonstrate a cancer-promoting role of LINC01419 in LUAD. LINC01419, by recruiting EZH2 and regulating FBP1 expression, contributes to LUAD cell stemness. According to these findings, the potential of LINC01419 to be the target for LUAD treatment is hence determined, which also adds more possibility to the enrichment of therapeutic strategies for lung cancer stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00336-8.
Collapse
|
44
|
Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M, Salimimoghadam S, Gunduz ES, Taheriazam A, Mirzaei S, Samarghandian S. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy. Pharmacol Res 2022; 184:106418. [PMID: 36038043 DOI: 10.1016/j.phrs.2022.106418] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
Initiation and development of cancer depend on multiple factors that mutations in genes and epigenetic level can be considered as important drivers. Epigenetic factors include a large family of members and understanding their function in cancer has been a hot topic. LncRNAs are RNA molecules with no capacity in synthesis of proteins, and they have regulatory functions in cells. LncRNAs are localized in nucleus and cytoplasm, and their abnormal expression is related to development of tumor. This manuscript emphasizes on the role of lncRNA H19 in various cancers and its association with tumor hallmarks. The function of lncRNA H19 in most tumors is oncogenic and therefore, tumor cells increase its expression for promoting their progression. LncRNA H19 contributes to enhancing growth and cell cycle of cancers and by EMT induction, it is able to elevate metastasis rate. Silencing H19 induces apoptotic cell death and disrupts progression of tumors. LncRNA H19 triggers chemo- and radio-resistance in cancer cells. miRNAs are dually upregulated/down-regulated by lncRNA H19 in increasing tumor progression. Anti-cancer agents reduce lncRNA H19 in impairing tumor progression and increasing therapy sensitivity. A number of downstream targets and molecular pathways for lncRNA H19 have been detected in cancers including miRNAs, RUNX1, STAT3, β-catenin, Akt2 and FOXM1. Clinical studies have revealed potential of lncRNA H19 as biomarker and its association with poor prognosis. LncRNA H19 can be transferred to cancer cells via exosomes in enhancing their progression.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Sadat Moosavi
- Department of Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Hedyeh Maghareh Abed
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Aalipour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Ali Heydari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Emine Selda Gunduz
- Vocational School of Health Services, Department of First and Emergency Aid, Akdeniz University, Antalya, Turkey.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
45
|
Sun XY, Zhang HJ, Sun Q, Gao EQ. Two cationic iron-based crystalline porous materials for encapsulation and sustained release of 5-fluorouracil. Dalton Trans 2022; 51:13263-13271. [PMID: 35979932 DOI: 10.1039/d2dt01854c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron-based crystalline porous materials (CPMs) emerged as a new class of biodegradable and non-toxic materials of high interest for drug delivery systems (DDSs) due to their high loading capacity and controllable structures. This work constructed two kinds of Fe-CPM coordination polymers (CPM-83 and CPM-85) from typical oxo-centered trimers of the iron octahedra cluster [Fe3O(RCOO)3(TPT)] with two functional modules. The tri-topic pyridine ligand (TPT) occupied the open metal sites of the trinuclear cluster, precluding the attachment of neutralizing anions, leading to three-dimensional frameworks with a positive charge and higher stability. Moreover, the triazine ligand TPT divides the original columnar channel into small domains, improving the adsorption efficiency and maximizing the host-guest interaction. Hence, the suitable pore size and electrostatic force make the materials highly adsorption selective for the anticancer drug 5-fluorouracil (5-Fu). We show that Fe-CPM-83 and Fe-CPM-85 loaded with 5-Fu are efficient drug delivery vehicles with loading content as high as 60.5 (wt%) and 32.8 (wt%) within 2-5 h of loading time. Simultaneously, their sustained release kinetics can be up to 96 hours with a completely different pH-responsive controlled release. The released content is 77% or 85% for each complex, significantly prolonging the release process and decreasing the plasma concentration. The MTT assay was performed on mouse fibroblasts (L929) to demonstrate the satisfactory biocompatibility of the matrix. This work has momentous research significance and application value for developing novel drug-delivery materials.
Collapse
Affiliation(s)
- Xi-Yu Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Hong-Jing Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
46
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Chen S, Yang J, Wang F, Gao X, Liu Q, Liu Q, Zhang Y, Yu Y. Rapamycin Enhanced Sensitivity of HT-29 Cells to 5-Fluororacil by Promoting Autophagy. Bull Exp Biol Med 2022; 173:448-453. [DOI: 10.1007/s10517-022-05585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 12/09/2022]
|
48
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
49
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is third most common cancer with second most common cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNA, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
50
|
Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Aghaei Zarch SM, Movahedpour A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418:113294. [PMID: 35870535 DOI: 10.1016/j.yexcr.2022.113294] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|