1
|
Li Y, Guo B. GSDMD-mediated pyroptosis: molecular mechanisms, diseases and therapeutic targets. MOLECULAR BIOMEDICINE 2025; 6:11. [PMID: 39994107 PMCID: PMC11850691 DOI: 10.1186/s43556-025-00249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Pyroptosis is a regulated form of inflammatory cell death in which Gasdermin D (GSDMD) plays a central role as the key effector molecule. GSDMD-mediated pyroptosis is characterized by complex biological features and considerable heterogeneity in its expression, mechanisms, and functional outcomes across various tissues, cell types, and pathological microenvironments. This heterogeneity is particularly pronounced in inflammation-related diseases and tumors. In the context of inflammatory diseases, GSDMD expression is typically upregulated, and its activation in macrophages, neutrophils, T cells, epithelial cells, and mitochondria triggers both pyroptotic and non-pyroptotic pathways, leading to the release of pro-inflammatory cytokines and exacerbation of tissue damage. However, under certain conditions, GSDMD-mediated pyroptosis may also serve a protective immune function. The expression of GSDMD in tumors is regulated in a more complex manner, where it can either promote immune evasion or, in some instances, induce tumor cell death. As our understanding of GSDMD's role continues to progress, there have been advancements in the development of inhibitors targeting GSDMD-mediated pyroptosis; however, these therapeutic interventions remain in the preclinical phase. This review systematically examines the cellular and molecular complexities of GSDMD-mediated pyroptosis, with a particular emphasis on its roles in inflammation-related diseases and cancer. Furthermore, it underscores the substantial therapeutic potential of GSDMD as a target for precision medicine, highlighting its promising clinical applications.
Collapse
Affiliation(s)
- Yujuan Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Bin Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
2
|
Yang S, Zou Y, Zhong C, Zhou Z, Peng X, Tang C. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1522206. [PMID: 39917567 PMCID: PMC11798966 DOI: 10.3389/fcell.2025.1522206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Pyroptosis, a form of programmed cell death induced by inflammasome with a mechanism distinct from that of apoptosis, occurs via one of the three pathway types: classical, non-classical, and granzyme A/B-dependent pyroptosis pathways. Pyroptosis is implicated in various diseases, notably exhibiting a dual role in liver diseases. It facilitates the clearance of damaged hepatocytes, preventing secondary injury, and triggers immune responses to eliminate pathogens and damaged cells. Conversely, excessive pyroptosis intensifies inflammatory responses, exacerbates hepatocyte damage and promotes the activation and proliferation of hepatic stellate cells, accelerating liver fibrosis. Furthermore, by sustaining an inflammatory state, impacts the survival and proliferation of cancer cells. This review comprehensively summarizes the dual role of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical foundations and practical guidance for preventing and treating of liver diseases.
Collapse
Affiliation(s)
| | | | | | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Zhu JH, Ouyang SX, Zhang GY, Cao Q, Xin R, Yin H, Wu JW, Zhang Y, Zhang Z, Liu Y, Fu JT, Chen YT, Tong J, Zhang JB, Liu J, Shen FM, Li DJ, Wang P. GSDME promotes MASLD by regulating pyroptosis, Drp1 citrullination-dependent mitochondrial dynamic, and energy balance in intestine and liver. Cell Death Differ 2024; 31:1467-1486. [PMID: 39009654 PMCID: PMC11519926 DOI: 10.1038/s41418-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Dysregulated metabolism, cell death, and inflammation contribute to the development of metabolic dysfunction-associated steatohepatitis (MASH). Pyroptosis, a recently identified form of programmed cell death, is closely linked to inflammation. However, the precise role of pyroptosis, particularly gasdermin-E (GSDME), in MASH development remains unknown. In this study, we observed GSDME cleavage and GSDME-associated interleukin-1β (IL-1β)/IL-18 induction in liver tissues of MASH patients and MASH mouse models induced by a choline-deficient high-fat diet (CDHFD) or a high-fat/high-cholesterol diet (HFHC). Compared with wild-type mice, global GSDME knockout mice exhibited reduced liver steatosis, steatohepatitis, fibrosis, endoplasmic reticulum stress, lipotoxicity and mitochondrial dysfunction in CDHFD- or HFHC-induced MASH models. Moreover, GSDME knockout resulted in increased energy expenditure, inhibited intestinal nutrient absorption, and reduced body weight. In the mice with GSDME deficiency, reintroduction of GSDME in myeloid cells-rather than hepatocytes-mimicked the MASH pathologies and metabolic dysfunctions, as well as the changes in the formation of neutrophil extracellular traps and hepatic macrophage/monocyte subclusters. These subclusters included shifts in Tim4+ or CD163+ resident Kupffer cells, Ly6Chi pro-inflammatory monocytes, and Ly6CloCCR2loCX3CR1hi patrolling monocytes. Integrated analyses of RNA sequencing and quantitative proteomics revealed a significant GSDME-dependent reduction in citrullination at the arginine-114 (R114) site of dynamin-related protein 1 (Drp1) during MASH. Mutation of Drp1 at R114 reduced its stability, impaired its ability to redistribute to mitochondria and regulate mitophagy, and ultimately promoted its degradation under MASH stress. GSDME deficiency reversed the de-citrullination of Drp1R114, preserved Drp1 stability, and enhanced mitochondrial function. Our study highlights the role of GSDME in promoting MASH through regulating pyroptosis, Drp1 citrullination-dependent mitochondrial function, and energy balance in the intestine and liver, and suggests that GSDME may be a potential therapeutic target for managing MASH.
Collapse
Affiliation(s)
- Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hang Yin
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Wen Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiang-Tao Fu
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Ting Chen
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jian Liu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Cheng CK, Yi M, Wang L, Huang Y. Role of gasdermin D in inflammatory diseases: from mechanism to therapeutics. Front Immunol 2024; 15:1456244. [PMID: 39253076 PMCID: PMC11381298 DOI: 10.3389/fimmu.2024.1456244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Inflammatory diseases compromise a clinically common and diverse group of conditions, causing detrimental effects on body functions. Gasdermins (GSDM) are pore-forming proteins, playing pivotal roles in modulating inflammation. Belonging to the GSDM family, gasdermin D (GSDMD) actively mediates the pathogenesis of inflammatory diseases by mechanistically regulating different forms of cell death, particularly pyroptosis, and cytokine release, in an inflammasome-dependent manner. Aberrant activation of GSDMD in different types of cells, such as immune cells, cardiovascular cells, pancreatic cells and hepatocytes, critically contributes to the persistent inflammation in different tissues and organs. The contributory role of GSDMD has been implicated in diabetes mellitus, liver diseases, cardiovascular diseases, neurodegenerative diseases, and inflammatory bowel disease (IBD). Clinically, alterations in GSDMD levels are potentially indicative to the occurrence and severity of diseases. GSDMD inhibition might represent an attractive therapeutic direction to counteract the progression of inflammatory diseases, whereas a number of GSDMD inhibitors have been shown to restrain GSDMD-mediated pyroptosis through different mechanisms. This review discusses the current understanding and future perspectives on the role of GSDMD in the development of inflammatory diseases, as well as the clinical insights of GSDMD alterations, and therapeutic potential of GSDMD inhibitors against inflammatory diseases. Further investigation on the comprehensive role of GSDM shall deepen our understanding towards inflammation, opening up more diagnostic and therapeutic opportunities against inflammatory diseases.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Luyendyk JP, Morozova E, Copple BL. Good Cells Go Bad: Immune Dysregulation in the Transition from Acute Liver Injury to Liver Failure After Acetaminophen Overdose. Drug Metab Dispos 2024; 52:722-728. [PMID: 38050055 PMCID: PMC11257689 DOI: 10.1124/dmd.123.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The role of inflammatory cells and other components of the immune system in acetaminophen (APAP)-induced liver injury and repair has been extensively investigated. Although this has resulted in a wealth of information regarding the function and regulation of immune cells in the liver after injury, apparent contradictions have fueled controversy around the central question of whether the immune system is beneficial or detrimental after APAP overdose. Ultimately, this may not be a simple assignment of "good" or "bad." Clinical studies have clearly demonstrated an association between immune dysregulation and a poor outcome in patients with severe liver damage/liver failure induced by APAP overdose. To date, studies in mice have not uniformly replicated this connection. The apparent disconnect between clinical and experimental studies has perhaps stymied progress and further complicated investigation of the immune system in APAP-induced liver injury. Mouse models are often dismissed as not recapitulating the clinical scenario. Moreover, clinical investigation is most often focused on the most severe APAP overdose patients, those with liver failure. Notably, recent studies have made it apparent that the functional role of the immune system in the pathogenesis of APAP-induced liver injury is highly context dependent and greatly influenced by the experimental conditions. In this review, we highlight some of these recent findings and suggest strategies seeking to resolve and build on existing disconnects in the literature. SIGNIFICANCE STATEMENT: Acetaminophen overdose is the most frequent cause of acute liver failure in the United States. Studies indicate that dysregulated innate immunity contributes to the transition from acute liver injury to acute liver failure. In this review, we discuss the evidence for this and the potential underlying causes.
Collapse
Affiliation(s)
- James P Luyendyk
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| | - Elena Morozova
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| | - Bryan L Copple
- Departments of Pathobiology and Diagnostic Investigation (J.P.L., E.M.) and Pharmacology and Toxicology (B.L.C.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Zhou QY, Ren C, Li JY, Wang L, Duan Y, Yao RQ, Tian YP, Yao YM. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis 2024; 15:299. [PMID: 38678018 PMCID: PMC11055915 DOI: 10.1038/s41419-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ying-Ping Tian
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Du J, Zhang X, Li B, Huo S, Zhang J, Fu Y, Song M, Shao B, Li Y. The hepatotoxicity of hexafluoropropylene oxide trimer acid caused by apoptosis via endoplasmic reticulum-mitochondrial crosstalk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171234. [PMID: 38428612 DOI: 10.1016/j.scitotenv.2024.171234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
As a ubiquitous pollutant in the environment, hexafluoropropylene oxide trimer acid (HFPO-TA) has been proven to have strong hepatotoxicity. However, the underlying mechanism is still unclear. Consequently, in vivo and in vitro models of HFPO-TA exposure were established to investigate the detrimental effects of HFPO-TA on the liver. In vivo, we discovered that HFPO-TA enhanced endoplasmic reticulum (ER)-mitochondrial association, caused mitochondrial oxidative damage, activated ER stress, and induced apoptosis in mouse livers. In vitro experiments confirmed that IP3R overexpression on ER structure increased mitochondrial calcium levels, which led to mitochondrial damage and mitochondria-dependent apoptosis in HepG2 cells exposed to HFPO-TA. Subsequently, damaged mitochondria released a large amount of mitochondrial ROS, which activated ER stress and ER stress-dependent apoptosis. In conclusion, this study demonstrates that HFPO-TA can induce apoptosis by regulating the crosstalk between ER and mitochondria, ultimately leading to liver damage. These findings reveal the significant hepatotoxicity of HFPO-TA and its potential mechanisms.
Collapse
Affiliation(s)
- Jiayu Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Department of Veterinary Medicine, Heze Vocational College, Heze 274031, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Liu M, Lu J, Hu J, Chen Y, Deng X, Wang J, Zhang S, Guo J, Li W, Guan S. Sodium sulfite triggered hepatic apoptosis, necroptosis, and pyroptosis by inducing mitochondrial damage in mice and AML-12 cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133719. [PMID: 38335615 DOI: 10.1016/j.jhazmat.2024.133719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Sodium sulfite (SS) is a biological derivative of the air pollutant sulfur dioxide, and is often used as a food and pharmaceutical additive. Improper or excessive SS exposure in liver cell death. The phenomenon of simultaneous regulation of apoptosis, necroptosis, and pyroptosis is defined as PANoptosis. However, the specific types of programmed cell death (PCD) caused by SS and their interconnections remain unclear. In the present study, C57BL/6 mice were orally administered SS for 30 d, consecutively, to establish an in vivo mouse exposure model. AML-12 cells were treated with SS for 24 h to establish an in vitro exposure model. The results showed that SS-induced mitochondrial reactive oxygen species (mtROS) accumulation activated the BAX/Bcl-2/caspase 3 pathway to trigger apoptosis and RIPK1/RIPK3/p-MLKL to trigger necroptosis. Interestingly, ROS-activated p-MLKL perforated not the cell membrane as well as the lysosomal membrane. We determined that p-MLKL mediates lysosomal membrane permeabilization (LMP), resulting in cathepsin B (CTSB) release. Furthermore, knockdown of MLKL, a CTSB inhibitor (CA074-ME) and an NLRP3 inhibitor (MCC950) alleviated SS-induced pyroptosis. In summary, our study showed that SS induced apoptosis and necroptosis though mtROS accumulation, whereas the activation of p-MLKL mediated NLRP3-dependent pyroptosis by causing CTSB leakage through LMP. This study comprehensively explored the mechanism unerlying SS-induced PCD and provided an experimental basis for p-MLKL as a potential regulatory protein in PANoptosis.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jinpin Hu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Shengzhuo Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiakang Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Weiru Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Peleman C, Francque S, Berghe TV. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 2024; 102:105088. [PMID: 38537604 PMCID: PMC11026979 DOI: 10.1016/j.ebiom.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Ouyang S, Zhu J, Cao Q, Liu J, Zhang Z, Zhang Y, Wu J, Sun S, Fu J, Chen Y, Tong J, Liu Y, Zhang J, Shen F, Li D, Wang P. Gasdermin-E-Dependent Non-Canonical Pyroptosis Promotes Drug-Induced Liver Failure by Promoting CPS1 deISGylation and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305715. [PMID: 38417117 PMCID: PMC11040357 DOI: 10.1002/advs.202305715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Indexed: 03/01/2024]
Abstract
Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.
Collapse
Affiliation(s)
- Shen‐Xi Ouyang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jia‐Hui Zhu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jian Liu
- Department of Hepatic SurgeryThe Eastern Hepatobiliary Surgery HospitalNaval Medical University/Second Military Medical UniversityShanghai200438China
| | - Zhen Zhang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Zhang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jing‐Wen Wu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Si‐Jia Sun
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jiang‐Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Yi‐Ting Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jie Tong
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yi Liu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jia‐Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Fu‐Ming Shen
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Dong‐Jie Li
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| |
Collapse
|
11
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
12
|
Jaeschke H, Ramachandran A. Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. ANNUAL REVIEW OF PATHOLOGY 2024; 19:453-478. [PMID: 38265880 PMCID: PMC11131139 DOI: 10.1146/annurev-pathmechdis-051122-094016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| |
Collapse
|
13
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pyroptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19:2177484. [PMID: 36967609 PMCID: PMC9980590 DOI: 10.1080/15476278.2023.2177484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
Affiliation(s)
- Joud Mulla
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Katti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Sun Z, Zhang T, Ning C, Shen D, Pei W, Zhou R, Zhu S, Huang G. CONSTRUCTION OF SEPSIS DIAGNOSTIC MODELS AND IDENTIFICATION OF MACROPHAGE SUBPOPULATIONS BASED ON PYROPTOSIS-RELATED GENES. Shock 2023; 60:1-10. [PMID: 37179249 PMCID: PMC10417255 DOI: 10.1097/shk.0000000000002137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
ABSTRACT Background: Numerous studies have shown that pyroptosis is associated with sepsis progression, which can lead to dysregulated host immune responses and organ dysfunction. Therefore, investigating the potential prognostic and diagnostic values of pyroptosis in patients with sepsis is essential. Methods: We conducted a study using bulk and single-cell RNA sequencing (scRNA-seq) from the Gene Expression Omnibus database to examine the role of pyroptosis in sepsis. Univariate logistic analysis, least absolute shrinkage, and selection operator regression analysis were used to identify pyroptosis-related genes (PRGs), construct a diagnostic risk score model, and evaluate the selected genes' diagnostic value. Consensus clustering analysis was used to identify the PRG-related sepsis subtypes with varying prognoses. Functional and immune infiltration analyses were used to explain the subtypes' distinct prognoses, and scRNA-seq data were used to differentiate immune-infiltrating cells and macrophage subsets and study cell-cell communication. Results: A risk model was established based on 10 key PRGs ( NAIP , ELANE , GSDMB , DHX9 , NLRP3 , CASP8 , GSDMD , CASP4 , APIP , and DPP9 ), of which four ( ELANE , DHX9 , GSDMD , and CASP4 ) were associated with prognosis. Two subtypes with different prognoses were identified based on the key PRG expressions. Functional enrichment analysis revealed diminished nucleotide oligomerization domain-like receptor pathway activity and enhanced neutrophil extracellular trap formation in the subtype with a poor prognosis. Immune infiltration analysis suggested a different immune status between the two sepsis subtypes, with the subtype with a poor prognosis exhibiting stronger immunosuppression. The single-cell analysis identified a macrophage subpopulation characterized by gasdermin D (GSDMD) expression that may be involved in pyroptosis regulation, which was associated with the prognosis of sepsis. Conclusion: We developed and validated a risk score for sepsis identification based on 10 PRGs, four of which also have potential value in the prognosis of sepsis. We identified a subset of gasdermin D macrophages associated with poor prognosis, providing new insights into the role of pyroptosis in sepsis.
Collapse
Affiliation(s)
- Zefang Sun
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Caihong Ning
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dingcheng Shen
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenwu Pei
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Zhu
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gengwen Huang
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
He J, Cui J, Shi Y, Wang T, Xin J, Li Y, Shan X, Zhu Z, Gao Y. Astragaloside IV Attenuates High-Glucose-Induced Impairment in Diabetic Nephropathy by Increasing Klotho Expression via the NF- κB/NLRP3 Axis. J Diabetes Res 2023; 2023:7423661. [PMID: 37261217 PMCID: PMC10228232 DOI: 10.1155/2023/7423661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Deficiencies in klotho are implicated in various kidney dysfunctions including diabetic nephropathy (DN) related to inflammatory responses. Klotho is closely related to inflammatory responses and is a potential target for ameliorating kidney failure. Pyroptosis, an inflammatory form of programmed cell death, is reported to take part in DN pathogenesis recently. This study is aimed at exploring whether and how klotho inhibited podocyte pyroptosis and whether astragaloside IV (AS-IV) protect podocyte through the regulation of klotho. Materials and Methods SD rat model of DN and conditionally immortalized mouse podocytes exposed to high glucose were treated with AS-IV. Biochemical assays and morphological examination, cell viability assay, cell transfection, phalloidin staining, ELISA, LDH release assay, SOD and MDA detection, MMP assay, ROS level detection, flow cytometry analysis, TUNEL staining assay, PI/Hoechst 33342 staining, immunofluorescence assay, and western blot were performed to elucidate podocyte pyroptosis and to observe the renal morphology. Results The treatment of AS-IV can improve renal function and protect podocytes exposed to high glucose. Klotho was decreased, and AS-IV increased klotho levels in serum and kidney tissue of DN rats as well as podocytes exposed to high glucose. AS-IV can inhibit DN glomeruli pyroptosis in vivo. In vitro, overexpressed klotho and treatment with AS-IV inhibited pyroptosis of podocytes cultured in high glucose. Klotho knockdown promoted podocyte pyroptosis, and treatment with AS-IV reversed this effect. Furthermore, the overexpression of klotho and AS-IV reduces oxidative stress levels and inhibited NF-κB activation and NLRP3-mediated podocytes' pyroptosis which was abolished by klotho knockdown. In addition, both the ROS inhibitor NAC and the NF-κB pathway inhibitor PDTC can inhibit NLRP3 inflammasome activation. NLRP3 inhibitor MCC950 can inhibit pyroptosis of podocytes exposed to high glucose. Conclusion Altogether, our results demonstrate that the protective effect of AS-IV in upregulating klotho expression in diabetes-induced podocyte injury is associated with the inhibition of NLRP3-mediated pyroptosis via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiaxin He
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jialin Cui
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimin Shi
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Tao Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Junyan Xin
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimeng Li
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Shan
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Zhiyao Zhu
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
16
|
Xu L, Gao X, Xing J, Guo Z. Identification of a necroptosis-related gene signature as a novel prognostic biomarker of cholangiocarcinoma. Front Immunol 2023; 14:1118816. [PMID: 36936916 PMCID: PMC10017743 DOI: 10.3389/fimmu.2023.1118816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Cholangiocarcinoma (CHOL) is the most prevalent type of malignancy and the second most common form of primary liver cancer, resulting in high rates of morbidity and mortality. Necroptosis is a type of regulated cell death that appears to be involved in the regulation of several aspects of cancer biology, including tumorigenesis, metastasis, and cancer immunity. This study aimed to construct a necroptosis-related gene (NRG) signature to investigate the prognosis of CHOL patients using an integrated bioinformatics analysis. Methods CHOL patient data were acquired from the Gene Expression Omnibus (GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases, with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Univariate and multivariate regression analyses were performed to establish the NRG signatures. Kaplan-Meier (KM) curves were used to evaluate the prognosis of patients with CHOL. Functional enrichment analysis was performed to identify key NRG-associated biological signaling pathways. We also applied integrative multi-omics analysis to the high- and low-risk score groups. Spearman's rank correlation was used to clarify the relationship between the NRG signature and immune infiltration. Results 65 differentially expressed (DE) NRGs were screened, five of which were selected to establish the prognostic signature of NRGS based on multivariate Cox regression analysis. We observed that low-risk patients survived significantly longer than high-risk patients. We found that patients with high-risk scores experienced higher immune cell infiltration, drug resistance, and more somatic mutations than patients with low-risk scores. We further found that sensitivities to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were significantly higher in the low-risk group than in the high-risk group. Finally, we validated the expression of five NRGs in CHOL tissues using the TCGA database, HPA database and our clinical data. Conclusion These findings demonstrate that the five-NRG prognostic signature for CHOL patients is reasonably accurate and valid, and it may prove to be of considerable value for the treatment and prognosis of CHOL patients in the future.
Collapse
Affiliation(s)
- Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueping Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan, Chongqing, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhixian Guo,
| |
Collapse
|
17
|
Abstract
Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release potassium, interleukin-1β (IL-1β), IL-18, and other small molecules in a sublytic phase, which can be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in hepatocytes. Based on the critical evaluation of the currently available literature and understanding of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant contributor to APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Multi-Omics Analysis Reveals the Protection of Gasdermin D in Concanavalin A-Induced Autoimmune Hepatitis. Microbiol Spectr 2022; 10:e0171722. [PMID: 35972273 PMCID: PMC9602755 DOI: 10.1128/spectrum.01717-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive inflammation-associated liver injury. Pyroptosis is a novel inflammatory programmed cell death wherein gasdermin D (GSDMD) serves as the executioner. Our work challenged Gsdmd-/- mice with concanavalin A (ConA) to try to unveil the actual role of GSDMD in AIH. After ConA injection, Gsdmd-/- mice exhibited more severe liver damage characterized by a lower survival rate, more extensive hepatocyte necrosis and apoptosis, and higher serum transaminase levels, indicating the protection of GSDMD in ConA-induced AIH. Furthermore, the Gsdmd-/- mice exhibited higher hepatic expression and serum levels of inflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-17A [IL-17A]) and more infiltration of macrophages and neutrophils after ConA treatment than did wild-type (WT) mice. Gsdmd-/- mice with AIH showed increased hepatic l-glutamine levels but decreased glycerophospholipid metabolites levels. L-glutamine levels showed positive correlations while glycerophospholipid metabolites showed negative associations with liver injury indexes and inflammation markers. We further observed a destroyed intestinal barrier in Gsdmd-/- mice after ConA injection as indicated by decreased transcriptional expressions of Tjp1, Ocln, Reg3g, and Muc2. ConA-treated Gsdmd-/- mice also exhibited higher serum LPS binding protein (LBP) concentrations and hepatic Tlr4 and Cd14 mRNA levels. Further fecal 16S rRNA gene sequencing demonstrated decreased relative abundances of Lactobacillus and Roseburia but increased relative abundances of Allobaculum and Dubosiella in Gsdmd-/- mice with AIH. Lactobacillus was negatively correlated with liver injury and inflammation indexes and positively associated with Ocln, Muc2, and Reg3g levels. Allobaculum was positively related to liver injury and inflammatory cytokines and negatively correlated with gut barrier indexes. IMPORTANCE Our study provides the first direct clues to the protective role of gasdermin D (GSDMD) in autoimmune hepatitis (AIH). We demonstrated that Gsdmd knockout exacerbated concanavalin A (ConA)-induced AIH in mice. It may be due to the destroyed intestinal barrier and changes in certain intestinal microbes and hepatic metabolites resulting in increased liver injury and inflammation in ConA-treated Gsdmd-/- mice. This finding suggested a nonnegligible role of GSDMD in AIH and also confirmed its physiological nonpyroptosis effects on the host. The role of GSDMD in autoimmune liver diseases or other liver diseases is complex and intriguing, deserving deep investigation.
Collapse
|
19
|
Pan Y, Cai W, Huang J, Cheng A, Wang M, Yin Z, Jia R. Pyroptosis in development, inflammation and disease. Front Immunol 2022; 13:991044. [PMID: 36189207 PMCID: PMC9522910 DOI: 10.3389/fimmu.2022.991044] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
In the early 2000s, caspase-1, an important molecule that has been shown to be involved in the regulation of inflammation, cell survival and diseases, was given a new function: regulating a new mode of cell death that was later defined as pyroptosis. Since then, the inflammasome, the inflammatory caspases (caspase-4/5/11) and their substrate gasdermins (gasdermin A, B, C, D, E and DFNB59) has also been reported to be involved in the pyroptotic pathway, and this pathway is closely related to the development of various diseases. In addition, important apoptotic effectors caspase-3/8 and granzymes have also been reported to b involved in the induction of pyroptosis. In our article, we summarize findings that help define the roles of inflammasomes, inflammatory caspases, gasdermins, and other mediators of pyroptosis, and how they determine cell fate and regulate disease progression.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng, ; Renyong Jia,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng, ; Renyong Jia,
| |
Collapse
|
20
|
Gasdermin D Deficiency Does Not Protect Mice from High-Fat Diet-Induced Glucose Intolerance and Adipose Tissue Inflammation. Mediators Inflamm 2022; 2022:7853482. [PMID: 36065376 PMCID: PMC9440627 DOI: 10.1155/2022/7853482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
The adipose tissue NLRP3 inflammasome has recently emerged as a contributor to obesity-related metabolic inflammation. Recent studies have demonstrated that the activation of the NLRP3 inflammasome cleaves gasdermin D (GSDMD) and induces pyroptosis, a proinflammatory programmed cell death. However, whether GSDMD is involved in the regulation of adipose tissue function and the development of obesity-induced metabolic disease remains unknown. The aim of the present study was to investigate the role of GSDMD in adipose tissue inflammation as well as whole-body metabolism using GSDMD-deficient mice fed a high-fat diet (HFD) for 30 weeks. The effects of GSDMD deficiency on adipose tissue, liver, and isolated macrophages from wild-type (WT) and GSDMD knockout (KO) mice were examined. In addition, 3T3-L1 cells were used to examine the expression of GSDMD during adipogenesis. The results demonstrate that although HFD-induced inflammation was partly ameliorated in isolated macrophages and liver, adipose tissue remained unaffected by GSDMD deficiency. Compared with the WT HFD mice, GSDMD KO HFD mice exhibited a mild increase in HFD-induced glucose intolerance with increased systemic and adipose tissue IL-1β levels. Interestingly, GSDMD deficiency caused accumulation of fat mass when challenged with HFD, partly by suppressing the expression of peroxisome proliferator-activated receptor gamma (PPARγ). The expression of GSDMD mRNA and protein was dramatically suppressed during adipocyte differentiation and was inversely correlated with PPARγ expression. Together, these findings indicate that GSDMD is not a prerequisite for HFD-induced adipose tissue inflammation and suggest a noncanonical function of GSDMD in regulation of fat mass through PPARγ.
Collapse
|
21
|
Chen X, Tian PC, Wang K, Wang M, Wang K. Pyroptosis: Role and Mechanisms in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:897815. [PMID: 35647057 PMCID: PMC9130572 DOI: 10.3389/fcvm.2022.897815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD) is a common disease that poses a huge threat to human health. Irreversible cardiac damage due to cardiomyocyte death and lack of regenerative capacity under stressful conditions, ultimately leading to impaired cardiac function, is the leading cause of death worldwide. The regulation of cardiomyocyte death plays a crucial role in CVD. Previous studies have shown that the modes of cardiomyocyte death include apoptosis and necrosis. However, another new form of death, pyroptosis, plays an important role in CVD pathogenesis. Pyroptosis induces the amplification of inflammatory response, increases myocardial infarct size, and accelerates the occurrence of cardiovascular disease, and the control of cardiomyocyte pyroptosis holds great promise for the treatment of cardiovascular disease. In this paper, we summarized the characteristics, occurrence and regulation mechanism of pyroptosis are reviewed, and also discussed its role and mechanisms in CVD, such as atherosclerosis (AS), myocardial infarction (MI), arrhythmia and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peng-Chao Tian
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Lv X, Chen J, He J, Hou L, Ren Y, Shen X, Wang Y, Ji T, Cai X. Gasdermin D-mediated pyroptosis suppresses liver regeneration after 70% partial hepatectomy. Hepatol Commun 2022; 6:2340-2353. [PMID: 35509206 PMCID: PMC9426395 DOI: 10.1002/hep4.1973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/26/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pyroptosis is a kind of programmed cell death primarily mediated by gasdermin D (GSDMD) and shown to regulate multiple diseases. However, its contribution to liver regeneration, a fine‐tuned tissue repair process mediated primarily by hepatocytes after mass loss, remains unclear. Herein, we found that caspase‐11/GSDMD‐mediated pyroptosis was activated in regenerating liver after 70% partial hepatectomy. Impeding pyroptosis by deleting GSDMD significantly reduced liver injury and accelerated liver regeneration. Mechanistically, GSDMD deficiency up‐regulates the activation of hepatocyte growth factor/c‐Met and epidermal growth factor receptor mitogenic pathways at the initiation phase. Moreover, activin A and glypican 3 (GPC3), two terminators of liver regeneration, were inhibited when GSDMD was absent. In vitro study suggested the expressions of activin A and GPC3 were induced by interleukin (IL)–1β and IL‐18, whose maturations were regulated by GSDMD‐mediated pyroptosis. Similarly, pharmacologically inhibiting GSDMD recapitulates these phenomena. Conclusion: This study characterizes the role of GSDMD‐mediated pyroptosis in liver regeneration and lays the foundation for enhancing liver restoration by targeting GSDMD in liver patients with impaired regenerative capacity.
Collapse
Affiliation(s)
- Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Jiayan He
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Lidan Hou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Yiyue Ren
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Xiaoyun Shen
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, China
| |
Collapse
|
23
|
Ubiquitinated gasdermin D mediates arsenic-induced pyroptosis and hepatic insulin resistance in rat liver. Food Chem Toxicol 2021; 160:112771. [PMID: 34920032 DOI: 10.1016/j.fct.2021.112771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023]
Abstract
As an environmental toxicant, arsenic exposure may cause insulin resistance (IR). Previous studies have shown that pyroptosis plays an important role in the occurrence and development of IR. Although gasdermin D (GSDMD) functions as an executor of pyroptosis, the relationship between GSDMD-mediated pyroptosis and hepatic IR remains unclear. Here, we observed that sodium arsenite (NaAsO2) activated NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasomes, promoted GSDMD activation, induced pyroptosis and hepatic IR, while GSDMD knockdown attenuated pyroptosis and hepatic IR caused by NaAsO2. However, GSDMD interference did not affect NLRP3 activation. Ubiquitination modification is widely involved in protein regulation and intracellular signal transduction, and whether it regulates GSDMD and affects its degradation, and exerts effects on arsenic-induced pyroptosis remain unclear. We observed that NaAsO2 reduced the K48- and K63-linked ubiquitination of GSDMD, thereby inhibiting its degradation through the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP), causing GSDMD to accumulate and lyse into GSDMD-N, which promoted pyroptosis. In summary, we demonstrated that GSDMD participated in arsenic-induced hepatic IR. Moreover, NaAsO2 reduced GSDMD ubiquitination and decreased its intracellular degradation, aggravating pyroptosis and hepatic IR. We have revealed the molecular mechanism underpinning arsenic-induced IR, and we provide potential solutions for the prevention and treatment of type 2 diabetes (T2D).
Collapse
|
24
|
Yang C, Liu J, Zhao S, Ying J, Liu Y, Ma L, Shang Q, Meng X, Feng K, Zheng B, Guo C, Wang X, Wang X. Establishment and validation of a gasdermin signature to evaluate the immune status and direct risk-group classification in luminal-B breast cancer. Clin Transl Med 2021; 11:e614. [PMID: 34841669 PMCID: PMC8571949 DOI: 10.1002/ctm2.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangtao Zhao
- Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Hebei, China
| | - Li Ma
- Breast Center, The Fourth Hospital of Hebei Medical University, Hebei, China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangzhi Meng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Knorr J, Wree A, Feldstein AE. Pyroptosis in Steatohepatitis and Liver Diseases. J Mol Biol 2021; 434:167271. [PMID: 34592216 DOI: 10.1016/j.jmb.2021.167271] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis is an inflammatory form of regulated cell death, which functions in the clearance of intracellularly replicating pathogens by cell lysis in order to induce further immune response. Since the discovery of the gasdermin (GSDM) family, pyroptosis has attracted attention in a wide range of inflammatory diseases such as nonalcoholic steatohepatitis and other liver diseases. Due to the cleavage of GSDMs by different caspases, the amino-terminal GSDM fragments form membrane pores essential for pyroptosis that facilitate the release of inflammatory cytokines by loss of ionic gradient and membrane rupture. In this review, we address the key molecular and cellular processes that induce pyroptosis in the liver and its significance in the pathogenesis of common liver diseases in different human and experimental mice studies.
Collapse
Affiliation(s)
- Jana Knorr
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany; Department of Pediatric Gastroenterology, University of California, San Diego (UCSD), California and Rady Children's Hospital, San Diego, CA, United States
| | - Ariel E Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego (UCSD), California and Rady Children's Hospital, San Diego, CA, United States.
| |
Collapse
|
26
|
Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sin B 2021; 11:2768-2782. [PMID: 34589396 PMCID: PMC8463274 DOI: 10.1016/j.apsb.2021.02.006] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis is the process of inflammatory cell death. The primary function of pyroptosis is to induce strong inflammatory responses that defend the host against microbe infection. Excessive pyroptosis, however, leads to several inflammatory diseases, including sepsis and autoimmune disorders. Pyroptosis can be canonical or noncanonical. Upon microbe infection, the canonical pathway responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), while the noncanonical pathway responds to intracellular lipopolysaccharides (LPS) of Gram-negative bacteria. The last step of pyroptosis requires the cleavage of gasdermin D (GsdmD) at D275 (numbering after human GSDMD) into N- and C-termini by caspase 1 in the canonical pathway and caspase 4/5/11 (caspase 4/5 in humans, caspase 11 in mice) in the noncanonical pathway. Upon cleavage, the N-terminus of GsdmD (GsdmD-N) forms a transmembrane pore that releases cytokines such as IL-1β and IL-18 and disturbs the regulation of ions and water, eventually resulting in strong inflammation and cell death. Since GsdmD is the effector of pyroptosis, promising inhibitors of GsdmD have been developed for inflammatory diseases. This review will focus on the roles of GsdmD during pyroptosis and in diseases.
Collapse
Key Words
- 7DG, 7-desacetoxy-6,7-dehydrogedunin
- ADRA2B, α-2B adrenergic receptor
- AIM, absent in melanoma
- ASC, associated speck-like protein
- Ac-FLTD-CMK, acetyl-FLTD-chloromethylketone
- BMDM, bone marrow-derived macrophages
- CARD, caspase activation
- CD, Crohn’s disease
- CTM, Chinese traditional medicine
- CTSG, cathepsin G
- Caspase
- DAMP, damage-associated molecular pattern
- DFNA5, deafness autosomal dominant 5
- DFNB59, deafness autosomal recessive type 59
- DKD, diabetic kidney disease
- DMF, dimethyl fumarate
- Damage-associated molecular patterns (DAMPs)
- ELANE, neutrophil expressed elastase
- ESCRT, endosomal sorting complexes required for transport
- FADD, FAS-associated death domain
- FDA, U.S. Food and Drug Administration
- FIIND, function to find domain
- FMF, familial Mediterranean fever
- GI, gastrointestinal
- GPX, glutathione peroxidase
- Gasdermin
- GsdmA/B/C/D/E, gasdermin A/B/C/D/E
- HAMP, homeostasis altering molecular pattern
- HIN, hematopoietic expression, interferon-inducible nature, and nuclear localization
- HIV, human immunodeficiency virus
- HMGB1, high mobility group protein B1
- IBD, inflammatory bowel disease
- IFN, interferon
- ITPR1, inositol 1,4,5-trisphosphate receptor type 1
- Inflammasome
- Inflammation
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAP3K7, mitogen-activated protein kinase kinase kinase 7
- MCC950, N-[[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)amino]carbonyl]-4-(1-hydroxy-1-methylethyl)-2-furansulfonamide
- NAIP, NLR family apoptosis inhibitory protein
- NBD, nucleotide-binding domain
- NEK7, NIMA-related kinase 7
- NET, neutrophil extracellular trap
- NIK, NF-κB inducing kinase
- NLR, NOD-like receptor
- NLRP, NLR family pyrin domain containing
- NSAID, non-steroidal anti-inflammatory drug
- NSCLC, non-small cell lung cancer
- NSP, neutrophil specific serine protease
- PAMP, pathogen-associated molecular pattern
- PKA, protein kinase A
- PKN1/2, protein kinase1/2
- PKR, protein kinase-R
- PRR, pattern recognition receptors
- PYD, pyrin domain
- Pathogen-associated molecular patterns (PAMPs)
- Pyroptosis
- ROS, reactive oxygen species
- STING, stimulator of interferon genes
- Sepsis
- TLR, Toll-like receptor
- UC, ulcerative colitis
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP–AMP synthase
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Brandon E. Burdette
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Ashley N. Esparza
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Hua Zhu
- Department of Surgery, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shanzhi Wang
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| |
Collapse
|
27
|
Li Y, Lv J, Shi W, Feng J, Liu M, Gan S, Wu H, Fan W, Shi M. Inflammasome Signaling: A Novel Paradigm of Hub Platform in Innate Immunity for Cancer Immunology and Immunotherapy. Front Immunol 2021; 12:710110. [PMID: 34421915 PMCID: PMC8374049 DOI: 10.3389/fimmu.2021.710110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are fundamental innate immune mechanisms that promote inflammation and induce an inflammatory form of programmed cell death, pyroptosis. Pyroptotic inflammasome has been reported to be closely associated with tumorigenesis and prognosis of multiple cancers. Emerging studies show that the inflammasome assembly into a higher-order supramolecular complex has been utilized to evaluate the status of the innate immune response. The inflammasomes are now regarded as cellular signaling hubs of the innate immunity that drive the production of inflammatory cytokines and consequent recruitment of immune cells to the tumor sites. Herein, we provided an overview of molecular characteristics and biological properties of canonical and non-canonical inflammasome signaling in cancer immunology and immunotherapy. We also focus on the mechanism of regulating pyroptotic inflammasome in tumor cells, as well as the potential roles of inflammasome-mediated pyroptotic cell death in cancers, to explore the potential diagnostic and therapeutic markers contributing to the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Ying Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,International Research Center for Regenerative Medicine, BOAO International Hospital, Qionghai, China
| | - Jiao Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weikai Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jia Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mingxi Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shenao Gan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongjin Wu
- International Research Center for Regenerative Medicine, BOAO International Hospital, Qionghai, China
| | - Weiwei Fan
- Department of Infectious and Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
28
|
Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 2021; 20:384-405. [PMID: 33692549 PMCID: PMC7944254 DOI: 10.1038/s41573-021-00154-z] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/09/2022]
Abstract
Gasdermins were recently identified as the mediators of pyroptosis - inflammatory cell death triggered by cytosolic sensing of invasive infection and danger signals. Upon activation, gasdermins form cell membrane pores, which release pro-inflammatory cytokines and alarmins and damage the integrity of the cell membrane. Roles for gasdermins in autoimmune and inflammatory diseases, infectious diseases, deafness and cancer are emerging, revealing potential novel therapeutic avenues. Here, we review current knowledge of the family of gasdermins, focusing on their mechanisms of action and roles in normal physiology and disease. Efforts to develop drugs to modulate gasdermin activity to reduce inflammation or activate more potent immune responses are highlighted.
Collapse
Affiliation(s)
- Xing Liu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Shiyu Xia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Fischer FA, Chen KW, Bezbradica JS. Posttranslational and Therapeutic Control of Gasdermin-Mediated Pyroptosis and Inflammation. Front Immunol 2021; 12:661162. [PMID: 33868312 PMCID: PMC8050342 DOI: 10.3389/fimmu.2021.661162] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Pyroptosis is a proinflammatory form of cell death, mediated by membrane pore-forming proteins called gasdermins. Gasdermin pores allow the release of the pro-inflammatory cytokines IL-1β and IL-18 and cause cell swelling and cell lysis leading to release of other intracellular proteins that act as alarmins to perpetuate inflammation. The best characterized, gasdermin D, forms pores via its N-terminal domain, generated after the cleavage of full length gasdermin D by caspase-1 or -11 (caspase-4/5 in humans) typically upon sensing of intracellular pathogens. Thus, gasdermins were originally thought to largely contribute to pathogen-induced inflammation. We now know that gasdermin family members can also be cleaved by other proteases, such as caspase-3, caspase-8 and granzymes, and that they contribute to sterile inflammation as well as inflammation in autoinflammatory diseases or during cancer immunotherapy. Here we briefly review how and when gasdermin pores are formed, and then focus on emerging endogenous mechanisms and therapeutic approaches that could be used to control pore formation, pyroptosis and downstream inflammation.
Collapse
Affiliation(s)
- Fabian A. Fischer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Kaiwen W. Chen
- Immunology Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jelena S. Bezbradica
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Bai L, Kong M, Duan Z, Liu S, Zheng S, Chen Y. M2-like macrophages exert hepatoprotection in acute-on-chronic liver failure through inhibiting necroptosis-S100A9-necroinflammation axis. Cell Death Dis 2021; 12:93. [PMID: 33462187 PMCID: PMC7814003 DOI: 10.1038/s41419-020-03378-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Necroptosis has emerged as a novel and crucial player in acute and chronic liver diseases. Necroptotic cells lead to the release of DAMPs including S100A9, followed by the development of necroinflammation. We previously have documented the beneficial hepatoprotection conferred by M2-like macrophages in acute-on-chronic liver failure (ACLF) in vitro and in vivo, namely, M2-like macrophages protect hepatocytes against apoptosis. Herein, we integrated necroptosis, S100A9, and necroinflammation into this hepatoprotection, and hypothesized M2-like macrophages exert a hepatoprotective effect through inhibiting necroptosis-S100A9-necroinflammation axis. To testify this hypothesis, control mice were pre-treated with necroptosis or S100A9 inhibitors followed by D-GalN/LPS challenge. The extent of liver injury and M1/M2 macrophage activation was assessed. Necroptosis signaling and S100A9 expression were analysed and compared in control and fibrotic mice with or without acute insult. To document the pivotal role of M2-like macrophages in necroptosis and S100A9 inhibition, loss-of-function and gain-of-function experiments were performed. In addition, necroinflammation and its dependence on necroptosis and S100A9 were analysed. Moreover, the inhibitory effects of M2-like macrophages on necroinflammation were investigated in vivo and in vitro. We found that: firstly, the inhibition of necroptosis signaling and S100A9 expression alleviated D-GalN/LPS-induced hepatic damage, which was accompanied by M2-like macrophage activation; secondly, fibrosis inhibited necroptosis signaling and S100A9 expression, which could be attributed to M2-like macrophage activation; thirdly, S100A9 may function as a downstream player of necroptosis signaling; fourthly, fibrosis suppressed necroptosis- and S100A9-dependent necroinflammation; and finally, M2-like macrophages inhibited NLRP3 inflammasome activation and resultant necroinflammation via IL-10. Therefore, M2-like macrophages exert a beneficial hepatoprotection by inhibiting necroptosis-S100A9-necroinflammation axis in ACLF. Our findings provide novel insight for treating ACLF patients by specially targeting this signaling axis.
Collapse
Affiliation(s)
- Li Bai
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, the Fourth Department of hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Ming Kong
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, the Fourth Department of hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, the Fourth Department of hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuang Liu
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, the Fourth Department of hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Sujun Zheng
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, the Fourth Department of hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yu Chen
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, the Fourth Department of hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
31
|
Shojaie L, Iorga A, Dara L. Cell Death in Liver Diseases: A Review. Int J Mol Sci 2020; 21:ijms21249682. [PMID: 33353156 PMCID: PMC7766597 DOI: 10.3390/ijms21249682] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is pivotal in directing the severity and outcome of liver injury. Hepatocyte cell death is a critical event in the progression of liver disease due to resultant inflammation leading to fibrosis. Apoptosis, necrosis, necroptosis, autophagy, and recently, pyroptosis and ferroptosis, have all been investigated in the pathogenesis of various liver diseases. These cell death subroutines display distinct features, while sharing many similar characteristics with considerable overlap and crosstalk. Multiple types of cell death modes can likely coexist, and the death of different liver cell populations may contribute to liver injury in each type of disease. This review addresses the known signaling cascades in each cell death pathway and its implications in liver disease. In this review, we describe the common findings in each disease model, as well as the controversies and the limitations of current data with a particular focus on cell death-related research in humans and in rodent models of alcoholic liver disease, non-alcoholic fatty liver disease and steatohepatitis (NASH/NAFLD), acetaminophen (APAP)-induced hepatotoxicity, autoimmune hepatitis, cholestatic liver disease, and viral hepatitis.
Collapse
Affiliation(s)
- Layla Shojaie
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (L.S.); (A.I.)
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrea Iorga
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (L.S.); (A.I.)
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lily Dara
- Division of Gastrointestinal & Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (L.S.); (A.I.)
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
32
|
Wang X, Blanco LP, Carmona-Rivera C, Nakabo S, Pedersen HL, Yu ZX, Kaplan MJ. Effects of Gasdermin D in Modulating Murine Lupus and its Associated Organ Damage. Arthritis Rheumatol 2020; 72:2118-2129. [PMID: 32692482 DOI: 10.1002/art.41444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Gasdermin D (GSDMD) is the key executioner of an inflammatory cell death mechanism known as pyroptosis. Recent reports have also implicated GSDMD in other mechanisms of cell death, including apoptosis, necroptosis, and NETosis. Given the role of dysregulated cell death in autoimmune syndromes such as systemic lupus erythematosus (SLE), this study was undertaken in a murine lupus model to investigate whether GSDMD plays a pathogenic role in systemic autoimmunity by promoting inflammatory cell death, leading to increased generation of nuclear autoantigens and autoantibodies. METHODS An imiquimod-induced model of SLE was tested in GSDMD-/- mice (n = 30), with wild-type (WT) mice as controls (n = 34), on a C57BL/6 background. At the time of euthanasia, the mice were examined for serum autoantibodies, immune complex deposition, organ inflammation, immune dysregulation, and type I interferon responses. A model of pristane-induced lung injury in GSDMD-/- mice (n = 7), with WT mice as controls (n = 10), was used to confirm the pulmonary phenotype. Regulation of various mechanisms of cell death by GSDMD was investigated in the mice. RESULTS Unexpectedly, GSDMD-/- mice developed enhanced mortality, more severe renal and pulmonary inflammation, and exacerbated autoantibody production in response to imiquimod. Pulmonary involvement was also more severe in the absence of GSDMD in mice with pristane-induced lung injury. Compared to WT mice, lack of GSDMD was associated with increased levels of circulating nuclear autoantigens (P < 0.01), anti-double-stranded DNA autoantibodies (P < 0.01), tissue immune complex deposition (P < 0.05), expansion of myeloid cell subsets (P < 0.05), and enhanced B cell activation and plasma cell differentiation (P = 0.001). Moreover, in the absence of GSDMD, enhanced autoantigen generation was associated with increased local induction of cell death in vivo. CONCLUSION GSDMD negatively regulates autoantigen generation and immune dysregulation in response to tissue injury and may play previously unappreciated protective roles in systemic autoimmunity.
Collapse
Affiliation(s)
- Xinghao Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States
| | - Luz P Blanco
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States
| | - Carmelo Carmona-Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States
| | - Shuichiro Nakabo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States
| | - Hege L Pedersen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, United States
| |
Collapse
|
33
|
Gautheron J, Gores GJ, Rodrigues CMP. Lytic cell death in metabolic liver disease. J Hepatol 2020; 73:394-408. [PMID: 32298766 PMCID: PMC7371520 DOI: 10.1016/j.jhep.2020.04.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/02/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Regulated cell death is intrinsically associated with inflammatory liver disease and is pivotal in governing outcomes of metabolic liver disease. Different types of cell death may coexist as metabolic liver disease progresses to inflammation, fibrosis, and ultimately cirrhosis. In addition to apoptosis, lytic forms of hepatocellular death, such as necroptosis, pyroptosis and ferroptosis elicit strong inflammatory responses due to cell membrane permeabilisation and release of cellular components, contributing to the recruitment of immune cells and activation of hepatic stellate cells. The control of liver cell death is of fundamental importance and presents novel opportunities for potential therapeutic intervention. This review summarises the underlying mechanism of distinct lytic cell death modes and their commonalities, discusses their relevance to metabolic liver diseases of different aetiologies, and acknowledges the limitations of current knowledge in the field. We focus on the role of hepatocyte necroptosis, pyroptosis and ferroptosis in non-alcoholic fatty liver disease, alcohol-associated liver disease and other metabolic liver disorders, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Jérémie Gautheron
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
34
|
Sarcognato S, de Jong IEM, Fabris L, Cadamuro M, Guido M. Necroptosis in Cholangiocarcinoma. Cells 2020; 9:cells9040982. [PMID: 32326539 PMCID: PMC7226990 DOI: 10.3390/cells9040982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Necroptosis is a type of regulated cell death that is increasingly being recognized as a relevant pathway in different pathological conditions. Necroptosis can occur in response to multiple stimuli, is triggered by the activation of death receptors, and is regulated by receptor-interacting protein kinases 1 and 3 and mixed-lineage kinase domain-like, which form a regulatory complex called the necrosome. Accumulating evidence suggests that necroptosis plays a complex role in cancer, which is likely context-dependent and can vary among different types of neoplasms. Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis and, as a pro-inflammatory death type, it may inhibit tumor progression by releasing damage-associated molecular patterns to elicit robust cross-priming of anti-tumor CD8+ T cells. The development of therapeutic strategies triggering necroptosis shows great potential for anti-cancer therapy. In this review, we summarize the current knowledge on necroptosis and its role in liver biliary neoplasms, underlying the potential of targeting necroptosis components for cancer treatment.
Collapse
Affiliation(s)
- Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Iris E. M. de Jong
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands
| | - Luca Fabris
- Department of Molecular Medicine—DMM, University of Padova, 35121 Padova, Italy
| | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine—DIMED, University of Padova, 35121 Padova, Italy
- Correspondence: ; Tel.: +39-0422-322750
| |
Collapse
|
35
|
Tsuchiya K. Inflammasome‐associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol Immunol 2020; 64:252-269. [DOI: 10.1111/1348-0421.12771] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawa Japan
- Institute for Frontier Science Initiative (InFiniti)Kanazawa UniversityKanazawa Japan
| |
Collapse
|
36
|
Feng M, Zhang R, Yang P, Wang K, Qiang H. [Interaction between necroptosis and apoptosis in MC3T3-E1 cell death induced by dexamethasone]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1030-1037. [PMID: 31640957 DOI: 10.12122/j.issn.1673-4254.2019.09.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate the relationship between necroptosis and apoptosis in MCET3-E1 cell death induced by glucocorticoids. METHODS MC3T3-E1 cells were incubated with 10-6 mol/L dexamethasone followed by treatment with the apoptosis inhibitor z-VAD-fmk (40 μmol/L) or the necroptosis inhibitor necrostatin-1 (40 μmol/L) for 2 h. At 72 h after incubation with dexamethasone, the cells were harvested to determine the cell viability using WST-1 assay and the rate of necrotic cells using annexin V/PI double staining; the percentage of apoptotic cells was determined using Hoechst staining. The mitochondrial membrane potential and the level of ATP in the cells were also evaluated. Transmission electron microscopy was used to observe the microstructural changes of the cells. The expressions of RIP-1 and RIP-3 in the cells were detected by Western blotting. RESULTS At a concentration of 10-6 mol/L, dexamethasone induced both apoptosis and necroptosis in MC3T3- E1 cells. Annexin V/PI double staining showed that inhibition of cell apoptosis caused an increase in cell necrosis manifested by such changes as mitochondrial swelling and plasma membrane disruption, as shown by electron microscopy; Hoechst staining showed that the percentage of apoptotic cells was significantly reduced. When necroptosis was inhibited by necrostatin-1, MC3T3-E1 cells showed significantly increased apoptosis as shown by both AV/PI and Hoechst staining, and such changes were accompanied by changes in mitochondrial membrane potential and ATP level in the cells. CONCLUSIONS In the process of dexamethasone-induced cell death, necroptosis and apoptosis can transform reciprocally accompanied by functional changes of the mitochondria.
Collapse
Affiliation(s)
- Min Feng
- Shaanxi Provincial People's Hospital; Third affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, China
| | - Ruirui Zhang
- 521 Hospital of North Industries, Xi'an 710065, China
| | - Pei Yang
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kunzheng Wang
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui Qiang
- Shaanxi Provincial People's Hospital; Third affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, China
| |
Collapse
|
37
|
Li Y, Xia W, Wu M, Yin J, Wang Q, Li S, Zhang A, Huang S, Zhang Y, Jia Z. Activation of GSDMD contributes to acute kidney injury induced by cisplatin. Am J Physiol Renal Physiol 2019; 318:F96-F106. [PMID: 31682173 DOI: 10.1152/ajprenal.00351.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most effective antitumor agents, but its clinical use is highly limited by its severe side effects, especially nephrotoxicity. Recently, the active form of gasdermin D (GSDMD), termed GSDMD-N, was identified to mediate pyroptotic inflammatory cell death in several diseases. However, the role of the GSDMD-N fragment in cisplatin-induced acute kidney injury (AKI) remains unclear. In the present study, we found that pyroptosis was induced by cisplatin in both mouse kidney tissues and renal tubular epithelial cells, accompanied by increased expression of the GSDMD-N fragment. In GSDMD knockout mice with cisplatin-induced AKI, we found that cisplatin-induced loss of renal function, renal tubular injury, and inflammation was significantly attenuated compared with wild-type mice. Furthermore, the GSDMD-N fragment was overexpressed by an established rapid plasmid tail vein injection approach to evaluate the role of this cleaved form of GSDMD in AKI. As expected, mice with GSDMD-N fragment overexpression in the kidney were more susceptible to cisplatin-induced AKI than control mice, as evidenced by further elevated serum levels of blood urea nitrogen and creatinine, aggravated renal pathology, increased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, and enhanced renal inflammatory cytokine secretion, which indicates a pathogenic role of GSDMD-N in cisplatin-induced AKI by triggering cell pyroptosis. Similar results were also observed in renal tubular epithelial cells overexpressing the GSDMD-N fragment. Thus these findings suggested that the activation of GSDMD contributes to cisplatin-induced AKI, possibly through triggering pyroptosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuzhen Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Orning P, Lien E, Fitzgerald KA. Gasdermins and their role in immunity and inflammation. J Exp Med 2019; 216:2453-2465. [PMID: 31548300 PMCID: PMC6829603 DOI: 10.1084/jem.20190545] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is an important component of the innate immune system. Gasdermin D, the mediator of pyroptosis, has been shown to be crucial for optimal defense against microbial infection. In this review, the authors discuss gasdermin D and its role in disease. The gasdermins are a family of pore-forming proteins recently implicated in the immune response. One of these proteins, gasdermin D (GSDMD), has been identified as the executioner of pyroptosis, an inflammatory form of lytic cell death that is induced upon formation of caspase-1–activating inflammasomes. The related proteins GSDME and GSDMA have also been implicated in autoimmune diseases and certain cancers. Most gasdermin proteins are believed to have pore-forming capabilities. The best-studied member, GSDMD, controls the release of the proinflammatory cytokines IL-1ß and IL-18 and pyroptotic cell death. Because of its potential as a driver of inflammation in septic shock and autoimmune diseases, GSDMD represents an attractive drug target. In this review, we discuss the gasdermin proteins with particular emphasis on GSDMD and its mechanism of action and biological significance.
Collapse
Affiliation(s)
- Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|