1
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
2
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
3
|
Yuan X, Liu X, Zhu F, Huang B, Lin L, Huang J, Wen L, Kilby MD, Baker PN, Fu Y, Wu W, Qi H, Tang J, Tong C. Endoplasmic reticulum stress impairs trophoblast syncytialization through upregulation of HtrA4 and causes early-onset preeclampsia. J Hypertens 2023; 41:2095-2106. [PMID: 37728094 DOI: 10.1097/hjh.0000000000003541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
OBJECTIVE Syncytiotrophoblasts form via mononuclear cytotrophoblast fusion during placentation and play a critical role in maternal-fetal communication. Impaired syncytialization inevitably leads to pregnancy-associated complications, including preeclampsia. Endoplasmic reticulum stress (ERS) is reportedly linked with preeclampsia, but little is known about its association with syncytialization. High temperature requirement factor A4 (HtrA4), a placental-specific protease, is responsible for protein quality control and placental syncytialization. This study aimed to investigate the relationship among HtrA4, ERS, and trophoblast syncytialization in the development of early-onset preeclampsia (EO-PE). METHODS HtrA4 expression and ERS in preeclamptic placentas and control placentas were analyzed by Western blotting and qRT-PCR. HtrA4 and ERS localization in placentas was determined by immunohistochemistry and immunofluorescence. BeWo cells were used to stimulate the effects of HtrA4 and ERS on syncytialization. RESULTS HtrA4 expression was upregulated in EO-PE and positively correlated with ERS. HtrA4 activity was increased in preeclampsia. Under normoxia, HtrA4 overexpression in BeWo cells did not alter the ERS level. In addition, treatment with hypoxia/reoxygenation (H/R) or an ERS inducer increased HtrA4 expression. HtrA4 upregulation suppressed the levels of syncytin-2 and β-HCG in the presence of forskolin (FSK), and this change was exaggerated after ERS activation. In addition, treatment with an ERS inhibitor markedly suppressed FSK-treated cell fusion in a manner related to downregulation of HtrA4 expression. CONCLUSION Our results suggest that ERS enables syncytialization of placental development by upregulating HtrA4, but that excessive HtrA4 expression and preexisting ERS impair syncytialization and cause EO-PE.
Collapse
Affiliation(s)
- Xi Yuan
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Fangyu Zhu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Biao Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Li Lin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust
- Institute of Metabolism & Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University
| | - Jing Tang
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
- School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University
| |
Collapse
|
4
|
Zhou J, Sheridan MA, Tian Y, Dahlgren KJ, Messler M, Peng T, Ezashi T, Schulz LC, Ulery BD, Roberts RM, Schust DJ. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560327. [PMID: 37873440 PMCID: PMC10592868 DOI: 10.1101/2023.09.30.560327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development of human trophoblast stem cells (hTSC) and stem cell-derived trophoblast organoids has enabled investigation of placental physiology and disease and early maternal-fetal interactions during a stage of human pregnancy that previously had been severely restricted. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates placental villous morphology in vivo nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here we have successfully established properly-polarized human trophoblast stem cell (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage with HLA-G + migratory cells that invade into an extracellular matrix-based hydrogel. Compared to previous hTSC organoid methods, organoids created by this method more closely mimic the architecture of the developing human placenta and provide a novel platform to study normal and abnormal human placental development and to model exposures to pharmaceuticals, pathogens and environmental insults. Motivation Human placental organoids have been generated to mimic physiological cell-cell interactions. However, those published models derived from human trophoblast stem cells (hTSCs) or placental villi display a non-physiologic "inside-out" morphology. In vivo , the placental villi have an outer layer of syncytialized cells that are in direct contact with maternal blood, acting as a conduit for gas and nutrient exchange, and an inner layer of progenitor, single cytotrophoblast cells that fuse to create the syncytiotrophoblast layer. Existing "inside-out" models put the cytotrophoblast cells in contact with culture media and substrate, making physiologic interactions between syncytiotrophoblast and other cells/tissues and normal and pathogenic exposures coming from maternal blood difficult to model. The goal of this study was to develop an hTSC-derived 3-D human trophoblast organoid model that positions the syncytiotrophoblast layer on the outside of the multicellular organoid. Graphical abstract
Collapse
|
5
|
Ru X, Yang M, Teng Y, Han Y, Hu Y, Wang J, Tao F, Huang K. Association of maternal thyroid peroxidase antibody during pregnancy with placental morphology and inflammatory and oxidative stress responses. Front Endocrinol (Lausanne) 2023; 14:1182049. [PMID: 37810887 PMCID: PMC10556745 DOI: 10.3389/fendo.2023.1182049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Studies suggest that thyroid peroxidase antibody (TPOAb) positivity exposure during pregnancy may contribute to changes in placental morphology and pathophysiology. However, little is known about the association of maternal TPOAb during pregnancy with placental morphology and cytokines. This study focuses on the effect of repeated measurements of maternal TPOAb during pregnancy on the placental morphology and cytokines. Methods Based on Ma'anshan Birth Cohort (MABC) in China, maternal TPOAb levels were retrospectively detected in the first, second and third trimesters. Placental tissues were collected 30 minutes after childbirth, placental morphological indicators were obtained by immediate measurement and formula calculation, and cytokine mRNA expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR) afterward. Generalized linear models and linear mixed models were analyzed for the relationships of maternal TPOAb in the first, second and third trimesters with placental indicators. Results Totally 2274 maternal-fetal pairs were included in the analysis of maternal TPOAb levels and placental morphology, and 2122 pairs were included in that of maternal TPOAb levels and placental cytokines. Maternal TPOAb levels in early pregnancy were negatively associated with placental length, thickness, volume, weight and disc eccentricity, while positively correlated with placental IL-6, TNF-α, CRP, CD68, MCP-1, IL-10, HO-1, HIF-1α and GRP78. In mid-pregnancy, maternal TPOAb levels were negatively correlated with placental length, width and area. In late pregnancy, maternal TPOAb levels were negatively correlated with placental length, area, volume and weight. Repeated measures analysis showed that maternal TPOAb positivity tended to increase placental TNF-α, CD68 and MCP-1 while decreasing placental length, width and area than TPOAb negativity. Repeated measures analysis showed that maternal TPOAb levels were positively correlated with placental IL-6, TNF-α, CD68, MCP-1, IL-10, HO-1, HIF-1α and GRP78, while negatively correlated with placental length, area, volume, weight, and disc eccentricity. Conclusion There may be trimester-specific associations between maternal TPOAb levels and placental morphology and inflammatory and oxidative stress responses. The effect of maternal TPOAb levels on placental morphology is present throughout pregnancy. Early pregnancy may be the critical period for the association between maternal TPOAb levels and placental inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Xue Ru
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Mengting Yang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Yuzhu Teng
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Yan Han
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Yabin Hu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Jianqing Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Kun Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University (AHMU), Ministry of Education of the People's Republic of China, National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University (AHMU), Hefei, China
| |
Collapse
|
6
|
Karpathiou G, Dridi M, Papoudou-Bai A, Perard M, Clemenson A, Chauleur C, Peoc'h M. The Presence of the Autophagic Markers LC3B and Sequestosome 1/p62 in the Hydatidiform Mole. Int J Gynecol Pathol 2023; 42:301-307. [PMID: 35512216 DOI: 10.1097/pgp.0000000000000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autophagy is implicated in normal pregnancy and various pathologic pregnancy conditions. Its presence in hydatidiform moles (HM) is unknown. We immunohistochemically studied 36 HM for LC3B and p62 to precisely determine their expression in the decidua, endometrium, and villi. Nineteen nonmolar pregnancies were also studied. LC3B was found in almost half of the villi and p62 was found in almost all villi. LC3B expression was significantly higher in complete HM than in partial HM. LC3B showed different expression patterns in trophoblast layers. LC3B and p62 expression was higher in molar than nonmolar pregnancies. Autophagic markers are present in HM and their expression differs between complete and partial moles.
Collapse
|
7
|
Nakashima A, Furuta A, Yamada K, Yoshida-Kawaguchi M, Yamaki-Ushijima A, Yasuda I, Ito M, Yamashita S, Tsuda S, Yoneda S, Cheng S, Sharma S, Shima T. The Role of Autophagy in the Female Reproduction System: For Beginners to Experts in This Field. BIOLOGY 2023; 12:biology12030373. [PMID: 36979065 PMCID: PMC10045718 DOI: 10.3390/biology12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Autophagy is a fundamental process involved in regulating cellular homeostasis. Autophagy has been classically discovered as a cellular process that degrades cytoplasmic components non-selectively to produce energy. Over the past few decades, this process has been shown to work in energy production, as well as in the reduction of excessive proteins, damaged organelles, and membrane trafficking. It contributes to many human diseases, such as neurodegenerative diseases, carcinogenesis, diabetes mellitus, development, longevity, and reproduction. In this review, we provide important information for interpreting results related to autophagic experiments and present the role of autophagy in this field.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
- Correspondence: ; Tel.: +81-76-434-7357
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Masami Ito
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Satoshi Yamashita
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| | - Shibin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Toyama Autophagy Team in Gynecology and Obstetrics, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
8
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
9
|
Dos Anjos Cordeiro JM, Santos LC, de Oliveira LS, Santos BR, Santos EO, Barbosa EM, de Macêdo IO, de Freitas GJC, Santos DDA, de Lavor MSL, Silva JF. Maternal hypothyroidism causes oxidative stress and endoplasmic reticulum stress in the maternal-fetal interface of rats. Free Radic Biol Med 2022; 191:24-39. [PMID: 36038036 DOI: 10.1016/j.freeradbiomed.2022.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Maternal hypothyroidism is associated with pre-eclampsia and intrauterine growth restriction, gestational diseases involving oxidative stress (OS) and endoplasmic reticulum stress (ERS) in the placenta. However, it is not known whether hypothyroidism also causes OS and ERS at the maternal-fetal interface. The aim was to evaluate the fetal-placental development and the expression of mediators of OS and of the unfolded protein response (UPR) in the maternal-fetal interface of hypothyroid rats. Hypothyroidism was induced in Wistar rats with propylthiouracil and the fetal-placental development and placental and decidual expression of antioxidant, hypoxia, and UPR mediators were analyzed at 14 and 18 days of gestation (DG), as well the expression of 8-OHdG and MDA, and reactive oxygen species (ROS) and peroxynitrite levels. Hypothyroidism reduced fetal weight at 14 and 18 DG, in addition to increasing the percentage of fetal death and reducing the weight of the uteroplacental unit at 18 DG. At 14 DG, there was greater decidual and/or placental immunostaining of Hif1α, 8-OHdG, MDA, SOD1, GPx1/2, Grp78 and CHOP in hypothyroid rats, while there was a reduction in placental and/or decidual gene expression of Sod1, Gpx1, Atf6, Perk, Ho1, Xbp1, Grp78 and Chop in the same gestational period. At 18 DG, hypothyroidism increased the placental ROS levels and the decidual and/or placental immunostaining of HIF1α, 8-OHdG, MDA, ATF4, GRP78 and CHOP, while it reduced the immunostaining and enzymatic activity of SOD1, CAT, GST. Hypothyroidism increased the placental mRNA expression of Hifα, Nrf2, Sod2, Gpx1, Cat, Perk, Atf6 and Chop at 18 DG, while decreasing the decidual expression of Sod2, Cat and Atf6. These findings demonstrated that fetal-placental restriction in female rats with hypothyroidism is associated with hypoxia and dysregulation in placental and decidual expression of UPR mediators and antioxidant enzymes, and activation of oxidative stress and endoplasmic reticulum stress at the maternal-fetal interface.
Collapse
Affiliation(s)
- Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel de Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Sérgio Lima de Lavor
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil.
| |
Collapse
|
10
|
Effect of endoplasmic reticulum stress on human trophoblast cells: Survival triggering or catastrophe resulting in death. Acta Histochem 2022; 124:151951. [PMID: 35998395 DOI: 10.1016/j.acthis.2022.151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to play a role in the pathogenesis of intrauterine growth retardation and preeclampsia, especially implantation failure. Although in vitro ER stress studies in human trophoblast cell line have been conducted in recent years, the influence of Thapsigargin on intracellular dynamics on calcium homeostasis has not been proven. Here, the effects of ER stress and impaired calcium homeostasis on apoptosis, autophagy, cytoskeleton, hypoxia, and adhesion molecules in 2D and spheroid cultures of human trophectoderm cells were investigated at gene expression and protein levels. Thapsigargin caused ER stress by increasing GRP78 gene expression and protein levels. Human trophectoderm cells displayed different characterization properties in 2D and spheroids. While it moves in the pathway of EIF2A and IRE1A mechanisms in 2D, it proceeds in the pathway of EIF2A and ATF6 mechanisms in spheroids and triggers different responses in survival and programmed cell death mechanisms such as apoptosis and autophagy. This led to changes in the cytoskeleton, cell adhesion molecules and cell-cell interactions by affecting the hypoxia mechanism.
Collapse
|
11
|
Yart L, Bastida-Ruiz D, Allard M, Dietrich PY, Petignat P, Cohen M. Linking unfolded protein response to ovarian cancer cell fusion. BMC Cancer 2022; 22:622. [PMID: 35672715 PMCID: PMC9172076 DOI: 10.1186/s12885-022-09648-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Polyploid giant cancer cells (PGCCs) have been observed in epithelial ovarian tumors. They can resist antimitotic drugs, thus participating in tumor maintenance and recurrence. Although their origin remains unclear, PGCC formation seems to be enhanced by conditions that trigger the unfolded protein response (UPR) such as hypoxia or chemotherapeutic drugs like paclitaxel. Hypoxia has been shown to promote the formation of ovarian PGCCs by cell fusion. We thus hypothesized that the UPR could be involved in EOC cell fusion, possibly explaining the occurrence of PGCCs and the aggressiveness of EOC. Methods The UPR was induced in two ovarian cancer cell lines (SKOV3 and COV318). The UPR activation was assessed by Western blot and polyploidy indexes were calculated. Then, to confirm the implication of cell fusion in PGCC formation, two populations of SKOV3 cells were transfected with plasmids encoding for two distinct nuclear fluorescent proteins (GFP and mCherry) associated with different antibiotic resistance genes, and the two cell populations were mixed in co-culture. The co-culture was submitted to a double-antibiotic selection. The resulting cell population was characterized for its morphology, cyclicity, and proliferative and tumorigenic capacities, in addition to transcriptomic characterization. Results We demonstrated that cell fusion could be involved in the generation of ovarian PGCCs and this process was promoted by paclitaxel and the UPR activation. Double-antibiotic treatment of PGCCs led to the selection of a pure population of cells containing both GFP- and mCherry-positive nuclei. Interestingly, after 3 weeks of selection, we observed that these cells were no longer polynucleated but displayed a single nucleus positive for both fluorescent proteins, suggesting that genetic material mixing had occurred. These cells had reinitiated their normal cell cycles, acquired an increased invasive capacity, and could form ovarian tumors in ovo. Conclusions The UPR activation increased the in vitro formation of PGCCs by cell fusion, with the newly generated cells further acquiring new properties. The UPR modulation in ovarian cancer patients could represent an interesting therapeutic strategy to avoid the formation of PGCCs and therefore limit cancer relapse and drug resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09648-4.
Collapse
Affiliation(s)
- Lucile Yart
- Center for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland.,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland
| | - Daniel Bastida-Ruiz
- Center for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland.,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland
| | - Mathilde Allard
- Center for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland.,Present address: Research Center of Cancerology and Immunology Nantes-Angers, Department of Biology, University of Nantes, FR-44035, Nantes, France
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland
| | - Patrick Petignat
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland
| | - Marie Cohen
- Center for Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland. .,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1206, Geneva, Switzerland.
| |
Collapse
|
12
|
The Autophagy-Lysosomal Machinery Enhances Cytotrophoblast–Syncytiotrophoblast Fusion Process. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poor placentation is closely related with the etiology of preeclampsia and may impact fetal growth restriction. For placental developmental growth, we have demonstrated that dysregulation of autophagy, a key mechanism to maintain cellular homeostasis, in trophoblasts contributes to the pathophysiology of preeclampsia, a severe pregnancy complication, associated with poor placentation. It remains, however, unknown whether autophagy inhibition affects trophoblast syncytialization. This study evaluated the effect of autophagy in an in vitro syncytialization method using BeWo cells and primary human trophoblasts (PHT). In this study, we observed that autophagic activity decreased in PHT and BeWo cells during syncytialization. This decreased activity was accompanied by downregulation of the transcription factor, TFEB. Next, bafilomycin A1, an inhibitor of autophagy via suppressing V-ATPase in lysosomes, inhibited hCG production, CYP11A1 expression (a marker of differentiation), p21 expression (a senescence marker), and cell fusion in BeWo cells and PHT cells. Finally, LLOMe, an agent inducing lysosomal damage, also inhibited syncytialization and led to TFEB downregulation. Taken together, the autophagy-lysosomal machinery plays an important role in cytotrophoblast fusion, resulting in syncytiotrophoblasts. As autophagy inhibition contributed to the failure of differentiation in cytotrophoblasts, this may result in the poor placentation observed in preeclampsia.
Collapse
|
13
|
Choi M, Byun N, Hwang JR, Choi YS, Sung JH, Choi SJ, Kim JS, Oh SY, Roh CR. Effect of hydroxychloroquine and chloroquine on syncytial differentiation and autophagy in primary human trophoblasts. Biomed Pharmacother 2022; 149:112916. [DOI: 10.1016/j.biopha.2022.112916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
14
|
Sethuraman V, Pu Y, Gingrich J, Jing J, Long R, Olomu IN, Veiga-Lopez A. Expression of ABC transporters during syncytialization in preeclampsia. Pregnancy Hypertens 2022; 27:181-188. [PMID: 35124425 PMCID: PMC9017055 DOI: 10.1016/j.preghy.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia complicates 2-8% of pregnancies and is associated with prematurity and intrauterine growth restriction. Cholesterol and sterol transport is a key function of the placenta and it is elicited through ATP binding cassette (ABC) transporters. ABCA1 expression changes during trophoblast cell fusion, a process required to form the placental syncytium that enables maternal-fetal nutrient transfer. ABCA1 expression is dysregulated in preeclamptic placentas. But whether ABC transporters expression during trophoblast fusion is disrupted in preeclampsia remains unknown. We investigated if cholesterol and sterol ABC transporters are altered in term and preterm preeclampsia placentas and during human cytotrophoblast syncytialization. Human placental biopsies were collected from healthy term (≥37 weeks; n = 11) and term preeclamptic (≥36 6/7 weeks; n = 8) and pre-term preeclamptic (28-35 weeks; n = 8) pregnancies. Both, protein and mRNA expression for ABCA1, ABCG1, ABCG5, and ABCG8 were evaluated. Primary cytotrophoblasts isolated from a subset of placentas were induced to syncytialize for 96 h and ABCA1, ABCG1 and ABCG8 mRNA expression evaluated at 0 h and 96 h. Protein and gene expression of ABC transporters were not altered in preeclamptic placentas. In the healthy Term group, ABCA1 expression was similar before and after syncytialization. After 96 h of syncytialization, mRNA expression of ABCA1 and ABCG1 increased significantly, while ABCG8 decreased significantly in term-preeclampsia, but not pre-term preeclampsia. While placental expression of ABCA1 and ABCG1 remained unaltered in term preeclampsia, the disruption in their dynamic expression pattern during cytotrophoblast syncytialization suggests that cholesterol transport may contribute to the pathophysiologic role of the placenta in preeclampsia.
Collapse
Affiliation(s)
- Visalakshi Sethuraman
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago
| | - Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Jiongjie Jing
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Robert Long
- Department of Obstetrics and Gynecology, Sparrow Health System, East Lansing, Michigan, USA
| | - Isoken Nicholas Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, USA; Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Zhang L, Li C, Fu L, Yu Z, Xu G, Zhou J, Shen M, Feng Z, Zhu H, Xie T, Zhou L, Zhou X. Protection of catalpol against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. PeerJ 2022; 10:e12759. [PMID: 35036109 PMCID: PMC8742543 DOI: 10.7717/peerj.12759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Catalpol significantly reduces triptolide-induced hepatotoxicity, which is closely related to autophagy. The aim of this study was to explore the unclear protective mechanism of catalpol against triptolide. The detoxification effect of catalpol on triptolide was investigated in HepaRG cell line. The detoxification effects were assessed by measuring cell viability, autophagy, and apoptosis, as well as the endoplasmic reticulum stress protein and mRNA expression levels. We found that 5-20 µg/L triptolide treatments increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as the expression of autophagy proteins including LC3 and Beclin1. The expression of P62 was downregulated and the production of autophagosomes was increased, as determined by transmission electron microscope and monodansylcadaverine staining. In contrast, 40 µg/L catalpol reversed these triptolide-induced changes in the liver function index, autophagy level, and apoptotic protein expression, including Cleaved-caspase3 and Cleaved-caspase9 by inhibiting excessive autophagy. Simultaneously, catalpol reversed endoplasmic reticulum stress, including the expression of PERK, which regulates autophagy. Moreover, we used the PERK inhibitor GSK2656157 to prove that the PERK-ATF4-CHOP pathway of the unfolded protein response is an important pathway that could induce autophagy. Catalpol inhibited excessive autophagy by suppressing the PERK pathway. Altogether, catalpol protects against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. The results of this study are beneficial to clarify the detoxification mechanism of catalpol against triptolide-induced hepatotoxicity and to promote the application of triptolide.
Collapse
Affiliation(s)
- Linluo Zhang
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Changqing Li
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Ling Fu
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China,Department of Second Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Zhichao Yu
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Gengrui Xu
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Jie Zhou
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Meiyu Shen
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Zhe Feng
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Huaxu Zhu
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Tong Xie
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Lingling Zhou
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| | - Xueping Zhou
- Department of First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing City, Jiangsu, China
| |
Collapse
|
16
|
Miranda AL, Racca AC, Kourdova LT, Rojas ML, Cruz Del Puerto M, Rodriguez-Lombardi G, Salas AV, Travella C, da Silva ECO, de Souza ST, Fonseca EJS, Marques ALX, Borbely AU, Genti-Raimondi S, Panzetta-Dutari GM. Krüppel-like factor 6 (KLF6) requires its amino terminal domain to promote villous trophoblast cell fusion. Placenta 2021; 117:139-149. [PMID: 34894601 DOI: 10.1016/j.placenta.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Villous cytotrophoblast (vCTB) cells fuse to generate and maintain the syncytiotrophoblast layer required for placental development and function. Krüppel-like factor 6 (KLF6) is a ubiquitous transcription factor with an N-terminal acidic transactivation domain and a C-terminal zinc finger DNA-binding domain. KLF6 is highly expressed in placenta, and it is required for proper placental development. We have demonstrated that KLF6 is necessary for cell fusion in human primary vCTBs, and in the BeWo cell line. MATERIALS AND METHODS Full length KLF6 or a mutant lacking its N-terminal domain were expressed in BeWo cells or in primary vCTB cells isolated from human term placentas. Cell fusion, gene and protein expression, and cell proliferation were analyzed. Moreover, Raman spectroscopy and atomic force microscopy (AFM) were used to identify biochemical, topography, and elasticity cellular modifications. RESULTS The increase in KLF6, but not the expression of its deleted mutant, is sufficient to trigger cell fusion and to raise the expression of β-hCG, syncytin-1, the chaperone protein 78 regulated by glucose (GRP78), the ATP Binding Cassette Subfamily G Member 2 (ABCG2), and Galectin-1 (Gal-1), all molecules involved in vCTB differentiation. Raman and AFM analysis revealed that KLF6 reduces NADH level and increases cell Young's modulus. KLF6-induced differentiation correlates with p21 upregulation and decreased cell proliferation. Remarkable, p21 silencing reduces cell fusion triggered by KLF6 and the KLF6 mutant impairs syncytialization and decreases syncytin-1 and β-hCG expression. DISCUSSION KLF6 induces syncytialization through a mechanism that involves its regulatory transcriptional domain in a p21-dependent manner.
Collapse
Affiliation(s)
- Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Maria Laura Rojas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Gonzalo Rodriguez-Lombardi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Andrea V Salas
- Servicio de Ginecología y Obstetricia, Hospital Privado Universitario de Córdoba, X5000HUA, Córdoba, Argentina
| | - Claudia Travella
- Servicio de Ginecología y Obstetricia, Hospital Privado Universitario de Córdoba, X5000HUA, Córdoba, Argentina
| | - Elaine C O da Silva
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Samuel T de Souza
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Aldilane L X Marques
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Alexandre U Borbely
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
17
|
Toschi P, Baratta M. Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview. Front Vet Sci 2021; 8:755034. [PMID: 34746288 PMCID: PMC8565373 DOI: 10.3389/fvets.2021.755034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Correct placental development during early gestation is considered the main determinant of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across the early developmental window has been linked to a wide range of pregnancy disorders affecting placental transport capacity and consequently the fetal nutrient supply line, with long-term implications for offspring health and productivity. In livestock, ruminant species specifically experience maternal undernutrition in extensive systems due to seasonal changes in food availability, with significant economic losses for the farmer in some situations. In this review, we aim to discuss the effects of reduced maternal nutrition during early pregnancy on placental development with a specific focus on ruminant placenta physiology. Different types of placental adaptation strategies were examined, also considering the potential effects on the epigenetic landscape, which is known to undergo extensive reprogramming during early mammalian development. We also discussed the involvement of autophagy as a cellular degradation mechanism that may play a key role in the placental response to nutrient deficiency mediated by mammalian target of rapamycin, named the mTOR intracellular pathway.
Collapse
Affiliation(s)
- Paola Toschi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, Viale delle Scienze, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin-Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021; 9:biomedicines9101332. [PMID: 34680449 PMCID: PMC8533592 DOI: 10.3390/biomedicines9101332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Placental development and function implicate important morphological and physiological adaptations to thereby ensure efficient maternal–fetal exchanges, as well as pregnancy-specific hormone secretion and immune modulation. Incorrect placental development can lead to severe pregnancy disorders, such as preeclampsia (PE), which endangers both the mother and the infant. The implication of the systemic renin–angiotensin system (RAS) in the pregnancy-related physiological changes is now well established. However, despite the fact that the local uteroplacental RAS has been described for several decades, its role in placental development and function seems to have been underestimated. In this review, we provide an overview of the multiple roles of the uteroplacental RAS in several cellular processes of placental development, its implication in the regulation of placental function during pregnancy, and the consequences of its dysregulation in PE pathogenesis.
Collapse
Affiliation(s)
- Lucile Yart
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
- Correspondence:
| |
Collapse
|
19
|
Almada M, Costa L, Fonseca B, Alves P, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The endocannabinoid 2-arachidonoylglycerol promotes endoplasmic reticulum stress in placental cells. Reproduction 2021; 160:171-180. [PMID: 32357311 PMCID: PMC7354702 DOI: 10.1530/rep-19-0539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Proliferation, differentiation and apoptosis of trophoblast cells are required for normal placental development. Impairment of those processes may lead to pregnancy-related diseases. Disruption of endoplasmic reticulum (ER) homeostasis has been associated with several reproductive pathologies including recurrent pregnancy loss and preeclampsia. In the unfolded protein response (UPR), specific ER-stress signalling pathways are activated to restore ER homeostasis, but if the adaptive response fails, apoptosis is triggered. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and Activating transcription factor 6 (ATF6) are central players in UPR and in ER-stress-induced apoptosis, as well as downstream transcription factors, as C/EBP homologous protein (CHOP). Our previous studies have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) modulates trophoblast cell turnover. Nevertheless, the role of ER-stress on 2-AG induced apoptosis and cannabinoid signalling in trophoblast has never been addressed. In this work, we used BeWo cells and human primary cytotrophoblasts isolated from term-placenta. The expression of ER-stress markers was analysed by qRT-PCR and Western blotting. ROS generation was assessed by fluorometric methods, while apoptosis was detected by the evaluation of caspase -3/-7 activities and Poly (ADP-ribose) polymerase (PARP) cleavage. Our findings indicate that 2-AG is able to induce ER-stress and apoptosis. Moreover, the eukaryotic initiation factor 2 (eIF2α)/CHOP pathway involved in ER-stress-induced apoptosis is triggered through a mechanism dependent on cannabinoid receptor CB2 activation. The results bring novel insights on the importance of ER-stress and cannabinoid signalling on 2-AG mechanisms of action in placenta.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lia Costa
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Bruno Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte Dr Albino Aroso, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte Dr Albino Aroso, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
21
|
Fraichard C, Bonnet-Serrano F, Laguillier-Morizot C, Hebert-Schuster M, Lai-Kuen R, Sibiude J, Fournier T, Cohen M, Guibourdenche J. Protease Inhibitor Anti-HIV, Lopinavir, Impairs Placental Endocrine Function. Int J Mol Sci 2021; 22:E683. [PMID: 33445576 PMCID: PMC7827556 DOI: 10.3390/ijms22020683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Protease Inhibitors (PI e.g., ritonavir (RTV) and lopinavir (LPV)) used to treat pregnant mothers infected by HIV induce prematurity and endocrine dysfunctions. The maintenance of pregnancy relies on placental hormone production (human Chorionic Gonadotrophin (hCG) and progesterone (P4)). Those functions are ensured by the villous trophoblast and are mainly regulated by the Unfolded Protein Response (UPR) pathway and mitochondria. We investigated, in vitro, if PI impair hCG and P4 production and the potential intracellular mechanisms involved. Term villous cytotrophoblast (VCT) were cultured with or without RTV or LPV from 6 to 48 h. VCT differentiation into syncytiotrophoblast (ST) was followed measuring hCG and P4 secretion. We evaluated the expression of P4 synthesis partners (Metastatic Lymph Node 64 (MLN64), cholesterol side-chain cleavage (P450SCC), Hydroxy-delta-5-Steroid Dehydrogenase and 3 Beta-and steroid delta-isomerase 1 (HSD3B1)), of mitochondrial pro-fusion factors (Mitofusin 2 (Mfn2), Optic Atrophy 1 (OPA1)) and of UPR factors (Glucose-Regulated Protein 78 (GRP78), Activating Transcription Factor 4 (ATF4), Activating Transcription Factor 6 (ATF6), spliced X-box Binding Protein 1 (sXBP1)). RTV had no significant effect on hCG and P4 secretion, whereas lopinavir significantly decreased both secretions. LPV also decreased P450SCC and HSD3B1 expression, whereas it increased Mfn2, GRP78 and sXBP1 expression in ST. RTV has no effect on the endocrine placenta. LPV impairs both villous trophoblast differentiation and P4 production. It is likely to act via mitochondrial fusion and UPR pathway activation. These trophoblastic alterations may end in decreased P4 levels in maternal circulation, inducing prematurity.
Collapse
Affiliation(s)
- Camille Fraichard
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
| | | | - Christelle Laguillier-Morizot
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
- Service d’Hormonologie, CHU Cochin, HUPC, AP-HP, 75014 Paris, France;
| | - Marylise Hebert-Schuster
- Service de Gynécologie-Obstétrique, Faculté de Médecine, Université de Genève, 1206 Genève, Suisse; (M.H.-S.); (M.C.)
| | - René Lai-Kuen
- INSERM UMS 025—CNRS UMS 3612, Faculté de Pharmacie, Université de Paris, 75006 Paris, France;
| | - Jeanne Sibiude
- Service de Gynécologie-Obstétrique, CHU Louis Mourier, HUPN, AP-HP, 92700 Colombes, France;
| | - Thierry Fournier
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
| | - Marie Cohen
- Service de Gynécologie-Obstétrique, Faculté de Médecine, Université de Genève, 1206 Genève, Suisse; (M.H.-S.); (M.C.)
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (C.F.); (C.L.-M.); (T.F.)
- Service d’Hormonologie, CHU Cochin, HUPC, AP-HP, 75014 Paris, France;
| |
Collapse
|
22
|
Bastida-Ruiz D, Wuillemin C, Pederencino A, Yaron M, Martinez de Tejada B, Pizzo SV, Cohen M. Activated α 2-macroglobulin binding to cell surface GRP78 induces trophoblastic cell fusion. Sci Rep 2020; 10:9666. [PMID: 32541810 PMCID: PMC7295802 DOI: 10.1038/s41598-020-66554-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
The villous cytotrophoblastic cells have the ability to fuse and differentiate, forming the syncytiotrophoblast (STB). The syncytialisation process is essential for placentation. Nevertheless, the mechanisms involved in cell fusion and differentiation are yet to be fully elucidated. It has been suggested that cell surface glucose-regulated protein 78 (GRP78) was involved in this process. In multiple cancer cells, cell membrane-located GRP78 has been reported to act as a receptor binding to the active form of α2-macroglobulin (α2M*), activating thus several cellular signalling pathways implicated in cell growth and survival. We hypothesised that GRP78 interaction with α2M* may also activate signalling pathways in trophoblastic cells, which, in turn, may promote cell fusion. Here, we observed that α2M mRNA is highly expressed in trophoblastic cells, whereas it is not expressed in the choriocarcinoma cell line BeWo. We thus took advantage of forskolin-induced syncytialisation of BeWo cells to study the effect of exogenous α2M* on syncytialisation. We first demonstrated that α2M* induced trophoblastic cell fusion. This effect is dependent on α2M*-GRP78 interaction, ERK1/2 and CREB phosphorylation, and unfolded protein response (UPR) activation. Overall, these data provide novel insights into the signalling molecules and mechanisms regulating trophoblastic cell fusion.
Collapse
Affiliation(s)
- Daniel Bastida-Ruiz
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Christine Wuillemin
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Aude Pederencino
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Michal Yaron
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland.
| |
Collapse
|