1
|
Sanz MÁ, Polo M, Rodríguez-Pulido M, Huildore Bommanna R, Sáiz M. The antiviral response triggered by the cGAS/STING pathway is subverted by the foot-and-mouth disease virus proteases. Cell Mol Life Sci 2024; 81:148. [PMID: 38509419 PMCID: PMC10954996 DOI: 10.1007/s00018-024-05190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.
Collapse
Affiliation(s)
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
2
|
Sarry M, Caignard G, Dupré J, Zientara S, Vitour D, Bakkali Kassimi L, Blaise-Boisseau S. Host-Specific Interplay between Foot-and-Mouth Disease Virus 3D Polymerase and the Type-I Interferon Pathway. Viruses 2023; 15:666. [PMID: 36992375 PMCID: PMC10054395 DOI: 10.3390/v15030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. One of the issues related to this disease is the persistence of its causative agent, foot-and-mouth disease virus (FMDV). While the mechanisms of FMDV persistence remain unclear, there are clues that it may be related to protein-protein interactions (PPI) between viral proteins and cellular proteins involved in the interferon (IFN) response. Since FMDV persistence has been described in cattle, sheep and goats but not in swine, we screened PPI involving FMDV proteins and sixteen major type-I IFN pathway proteins from these four species by nanoluciferase-2-hybrid complementation assay, in order to identify new PPI and determine their host specificity. As the results concerning the 3Dpol were the most interesting in view of the limited data concerning its role in immune escape, we decided to focus particularly on this protein. The identified PPI were confirmed by GST pull-down. We identified PPI between 3Dpol and seven IFN pathway proteins, namely, IKKα, IKKε, IRF3, IRF7, NEMO, MDA5 and MAVS. These PPI are conserved among the four studied species, with the exception of the one between 3Dpol and MAVS, which was only found with the swine protein. We also showed, using luciferase reporter assays, that 3Dpol could inhibit the induction phase of the IFN pathway. These results demonstrate, for the first time, a putative role for 3Dpol in FMDV innate immune escape.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
- AgroParistech, 16 Rue Claude Bernard, 75005 Paris, France
| | - Grégory Caignard
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Juliette Dupré
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France; (G.C.); (J.D.); (S.Z.); (D.V.); (L.B.K.)
| |
Collapse
|
3
|
Sui N, Zhang R, Jiang Y, Yu H, Xu G, Wang J, Zhu Y, Xie Z, Hu J, Jiang S. Nonstructural protein 2A2 from Duck hepatitis A virus type 1 inhibits interferon beta production by interaction with mitochondrial antiviral signaling protein and TANK-binding kinase 1. Vet Microbiol 2023; 280:109679. [PMID: 36822034 DOI: 10.1016/j.vetmic.2023.109679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Type I interferon (IFN-I) is essential for the regulation of host-virus interactions, and viruses have evolved strategies to escape the host immune response. Duck hepatitis A virus type 1 (DHAV-1) causes severe liver necrosis and hemorrhage, neurological symptoms, and high mortality in ducklings. However, how DHAV-1 interacts with the duck innate immune system remains unclear. In this study, DHAV-1-encoded proteins were cloned, and DHAV-1 2A2 was shown to strongly suppress IFN-β-luciferase activity, triggered by Sendai virus and polyriboinosinic polyribocytidylic acid [poly(I:C)], along with the transcription of IFN-β and downstream antiviral genes, including OASL, PKR, and TNF-a. In addition, 2A2 interacts with the central adaptor proteins mitochondrial antiviral signaling (MAVS) and TANK-binding kinase 1 (TBK1) by its N-terminal 1-100 amino acids (aa), thus leading to the inhibition of IFN-β production. Importantly, the deletion of the N-terminal 1-100 aa region of 2A2 abolished inhibition of IFN-I production. Moreover, the transmembrane domain of the MAVS protein and the ubiquitin domain of TBK1 were demonstrated to be required for interaction with DHAV-1 2A2. These findings revealed a novel strategy by which DHAV-1 hijacks cellular immunosurveillance and provided new insights into controlling the disease.
Collapse
Affiliation(s)
- Nana Sui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Yue Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Honglei Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Jiaqing Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong GreenBlue Biotechnology Co. Ltd. Economic development zone, Tai'an 271400, China.
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
4
|
Miyamoto M, Himeda T, Ishihara K, Okuwa T, Kobayashi D, Nameta M, Karasawa Y, Chunhaphinyokul B, Yoshida Y, Tanaka N, Higuchi M, Komuro A. Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene 5, and Impairs Double-Stranded RNA-Mediated IFN Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:335-347. [PMID: 36525065 DOI: 10.4049/jimmunol.2200565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Kazuki Ishihara
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | - Yu Karasawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Benyapa Chunhaphinyokul
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University, Niigata, Japan; and
| | - Nobuyuki Tanaka
- Division of Tumor Immunology, Miyagi Cancer Center Research Institute, Medeshima-Shiode, Natori, Miyagi, Japan
| | - Masaya Higuchi
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
5
|
Ma X, Luo Z, Song R, Nian X, Choudhury SM, Ru Y, Yang F, Zhang Y, Zeng Z, Cao W, Pei J, Liu X, Zheng H. The Foot-and-Mouth Disease Virus Lb Protease Cleaves Intracellular Transcription Factors STAT1 and STAT2 to Antagonize IFN-β-Induced Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:283-296. [PMID: 36548461 PMCID: PMC9842942 DOI: 10.4049/jimmunol.2101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, one of the most highly infectious animal viruses throughout the world. The JAK-STAT signaling pathway is a highly conserved pathway for IFN-β-induced antiviral gene expression. Previous studies have shown that FMDV can strongly suppress the innate immune response. Moreover, although STAT1 and STAT2 (STAT1/2) have been well established in JAK-STAT signaling-induced antiviral gene expression, whether FMDV proteins inhibit IFN-β-induced JAK-STAT signaling remains poorly understood. In this study, we described the Lb leader protease (Lbpro) of FMDV as a candidate for inhibiting IFN-β-induced signaling transduction via directly interacting with STAT1/2. We further showed that Lbpro colocalized with STAT1/2 to inhibit their nuclear translocation. Importantly, Lbpro cleaved STAT1/2 to inhibit IFN-β-induced signal transduction, whereas the catalytically inactive mutant of LC51A (Lbpro with cysteine substituted with alanine at amino acid residue 51) had no effect on the stability of STAT1/2 proteins. The cleavage of the STAT1/2 proteins was also determined during FMDV infection in vitro. Lbpro could cleave the residues between 252 and 502 aa for STAT1 and the site spanning residues 140 - 150 aa (QQHEIESRIL) for STAT2. The in vivo results showed that Lbpro can cleave STAT1/2 in pigs. Overall, our findings suggest that FMDV Lbpro-mediated targeting of STAT1/2 may reveal a novel mechanism for viral immune evasion.
Collapse
Affiliation(s)
- XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - ZhiKuan Luo
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Song
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiaoFeng Nian
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - YuXia Zhang
- Comprehensive Technology Center of GanSu Entry Exit Inspection and Quarantine Bureau, Lanzhou, China
| | - ZongBo Zeng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - WeiJun Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - JingJing Pei
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiangTao Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and,Comprehensive Technology Center of GanSu Entry Exit Inspection and Quarantine Bureau, Lanzhou, China
| |
Collapse
|
6
|
Sarry M, Vitour D, Zientara S, Bakkali Kassimi L, Blaise-Boisseau S. Foot-and-Mouth Disease Virus: Molecular Interplays with IFN Response and the Importance of the Model. Viruses 2022; 14:v14102129. [PMID: 36298684 PMCID: PMC9610432 DOI: 10.3390/v14102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals with a significant socioeconomic impact. One of the issues related to this disease is the ability of its etiological agent, foot-and-mouth disease virus (FMDV), to persist in the organism of its hosts via underlying mechanisms that remain to be elucidated. The establishment of a virus–host equilibrium via protein–protein interactions could contribute to explaining these phenomena. FMDV has indeed developed numerous strategies to evade the immune response, especially the type I interferon response. Viral proteins target this innate antiviral response at different levels, ranging from blocking the detection of viral RNAs to inhibiting the expression of ISGs. The large diversity of impacts of these interactions must be considered in the light of the in vitro models that have been used to demonstrate them, some being sometimes far from biological systems. In this review, we have therefore listed the interactions between FMDV and the interferon response as exhaustively as possible, focusing on both their biological effect and the study models used.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- AgroParisTech, 75005 Paris, France
- Correspondence: (M.S.); (S.B.-B.)
| | - Damien Vitour
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stephan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France
- Correspondence: (M.S.); (S.B.-B.)
| |
Collapse
|
7
|
Abstract
Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.
Collapse
|
8
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
9
|
Inhibition of Antiviral Innate Immunity by Foot-and-Mouth Disease Virus L pro through Interaction with the N-Terminal Domain of Swine RNase L. J Virol 2021; 95:e0036121. [PMID: 33980594 DOI: 10.1128/jvi.00361-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the pathogen of foot-and-mouth disease (FMD), which is a highly contagious disease in cloven-hoofed animals. To survive in the host, FMDV has evolved multiple strategies to antagonize host innate immune responses. In this study, we showed that the leader protease (Lpro) of FMDV, a papain-like proteinase, promoted viral replication by evading the antiviral interferon response through counteracting the 2',5'-oligoadenylate synthetase (OAS)/RNase L system. Specifically, we observed that the titers of Lpro deletion virus were significantly lower than those of wild-type FMDV (FMDV-WT) in cultured cells. Our mechanistic studies demonstrated that Lpro interfered with the OAS/RNase L pathway by interacting with the N-terminal domain of swine RNase L (sRNase L). Remarkably, Lpro of FMDV exhibited species-specific binding to RNase L in that the interaction was observed only in swine cells, not human, monkey, or canine cells. Lastly, we presented evidence that by interacting with sRNase L, FMDV Lpro inhibited cellular apoptosis. Taken together, these results demonstrate a novel mechanism that Lpro utilizes to escape the OAS/RNase L-mediated antiviral defense pathway. IMPORTANCE FMDV is a picornavirus that causes a significant disease in agricultural animals. FMDV has developed diverse strategies to escape the host interferon response. Here, we show that Lpro of FMDV antagonizes the OAS/RNase L pathway, an important interferon effector pathway, by interacting with the N-terminal domain of sRNase L. Interestingly, such a virus-host interaction is species-specific because the interaction is detected only in swine cells, not in human, monkey, or canine cells. Furthermore, Lpro inhibits apoptosis through interacting with sRNase L. This study demonstrates a novel mechanism by which FMDV has evolved to inhibit host innate immune responses.
Collapse
|
10
|
Embarc-Buh A, Francisco-Velilla R, Martinez-Salas E. RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses 2021; 13:952. [PMID: 34064059 PMCID: PMC8224014 DOI: 10.3390/v13060952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.
Collapse
Affiliation(s)
| | | | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain; (A.E.-B.); (R.F.-V.)
| |
Collapse
|
11
|
Diaz-San Segundo F, Medina GN, Azzinaro P, Gutkoska J, Mogulothu A, Attreed SE, Lombardi KR, Shields J, Hudock TA, de Los Santos T. Use of Protein Pegylation to Prolong the Antiviral Effect of IFN Against FMDV. Front Microbiol 2021; 12:668890. [PMID: 34025625 PMCID: PMC8131870 DOI: 10.3389/fmicb.2021.668890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are considered the first line of defense against viral diseases. Due to their ability to modulate immune responses, they have become an attractive therapeutic option to control virus infections. In fact, like many other viruses, foot-and-mouth disease virus (FMDV), the most contagious pathogen of cloven-hoofed animals, is highly sensitive to the action of IFNs. Previous studies demonstrated that type I, II, and III IFNs, expressed using a replication defective human adenovirus 5 (Ad5) vector, can effectively block FMDV replication in vitro and can protect animals when challenged 1 day after Ad5-IFN treatment, in some cases providing sterile immunity. Rapidly spreading foot-and-mouth disease (FMD) is currently controlled with vaccination, although development of a protective adaptive immune response takes 5–7 days. Therefore, an optimal strategy to control FMD outbreaks is to block virus replication and spread through sustained IFN activity while the vaccine-stimulated adaptive immune response is developed. Challenges with methods of delivery and/or with the relative short IFN protein half-life in vivo, have halted the development of such approach to effectively control FMD in the animal host. One strategy to chemically improve drug pharmacodynamics is the use of pegylation. In this proof-of-concept study, we demonstrate that pegylated recombinant porcine (po)IFNα displays strong and long-lasting antiviral activity against FMDV in vitro and in vivo, completely protecting swine against FMD for at least five days after a single dose. These results highlight the potential of this biotherapeutics to use in combination with vaccines to fully control FMD in the field.
Collapse
Affiliation(s)
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, United States.,Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Paul Azzinaro
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, United States
| | - Joseph Gutkoska
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, United States
| | - Aishwarya Mogulothu
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, United States.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Sarah E Attreed
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, United States.,ORISE-PIADC Research Participation Program, Oak Ridge, TN, United States
| | | | - Jacob Shields
- Elanco Animal Health, Inc., Greenfield, IN, United States
| | | | - Teresa de Los Santos
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Greenport, NY, United States
| |
Collapse
|
12
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
13
|
Saiz M, Martinez-Salas E. Uncovering targets of the Leader protease: Linking RNA-mediated pathways and antiviral defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1645. [PMID: 33605051 PMCID: PMC8244099 DOI: 10.1002/wrna.1645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses have developed specialized mechanisms to subvert host RNA‐binding proteins (RBPs) favoring their own gene expression. The Leader (L) protein of foot‐and‐mouth disease virus, a member of the Picornaviridae family, is a papain‐like cysteine protease that self‐cleaves from the polyprotein. Early in infection, the L protease cleaves the translation initiation factors eIF4GI and eIF4GII, inducing the shutdown of cap‐dependent translation. However, the cleavage sites on the viral polyprotein, eIF4GI, and eIF4GII differ in sequence, challenging the definition of a consensus site for L targets. Identification of Gemin5 and Daxx proteolytic products in infected cells unveiled a motif centered on the RKAR sequence. The RBP Gemin5 is a member of the survival of motor neurons complex, a ribosome interacting protein, and a translation downregulator. Likewise, the Fas‐ligand Daxx is a multifunctional adaptor that plays key roles in transcription control, apoptosis, and innate immune antiviral response. Remarkably, the cleavage site on the RNA helicases MDA5 and LGP2, two relevant immune sensors of the retinoic acid‐inducible gene‐I (RIG‐I)‐like receptors family, resembles the L target site of Gemin5 and Daxx, and similar cleavage sites have been reported in ISG15 and TBK1, two proteins involved in type I interferon response and signaling pathway, respectively. In this review we dissect the features of the L cleavage sites in essential RBPs, eventually helping in the discovery of novel L targets. This article is categorized under:RNA in Disease and Development > RNA in Disease Translation > Translation Regulation
Collapse
Affiliation(s)
- Margarita Saiz
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
| | | |
Collapse
|
14
|
Kim H, Kim AY, Choi J, Park SY, Park SH, Kim JS, Lee SI, Park JH, Park CK, Ko YJ. Foot-and-Mouth Disease Virus Evades Innate Immune Response by 3C-Targeting of MDA5. Cells 2021; 10:271. [PMID: 33572945 PMCID: PMC7912020 DOI: 10.3390/cells10020271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease caused by FMD virus (FMDV) in cloven-hoofed animals. Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are representative receptors in the cytoplasm for the detection of viral RNA and trigger antiviral responses, leading to the production of type I interferon. Although MDA5 is a crucial receptor for sensing picornavirus RNA, the interplay between MDA5 and FMDV is relatively unknown compared to the interplay between RIG-I and FMDV. Here, we observed that the FMDV infection inhibits MDA5 protein expression. Of the non-structural proteins, the Lb and 3C proteinases (Lbpro and 3Cpro) were identified to be primarily responsible for this inhibition. However, the inhibition by 3Cpro was independent of proteasome, lysosome and caspase-dependent pathway and was by 3C protease activity. A direct interaction between 3Cpro and MDA5 protein was observed. In conclusion, this is the first report that 3Cpro inhibits MDA5 protein expression as a mechanism to evade the innate immune response during FMDV infection. These results elucidate the pathogenesis of FMDV and provide fundamental insights for the development of a novel vaccine or therapeutic agent.
Collapse
Affiliation(s)
- Hyejin Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Korea
| | - Ah-Young Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Jieun Choi
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Sun Young Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Korea
| | - Sang Hyun Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Jae-Seok Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Sim-In Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| | - Choi-Kyu Park
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Korea
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Korea; (H.K.); (A.-Y.K.); (J.C.); (S.Y.P.); (S.H.P.); (J.-S.K.); (S.-I.L.); (J.-H.P.)
| |
Collapse
|