1
|
de Haas EN, Pértille F, Kjaer JB, Jensen P, Guerrero-Bosagna C. Genetic and neuro-epigenetic effects of divergent artificial selection for feather pecking behaviour in chickens. BMC Genomics 2024; 25:1219. [PMID: 39702044 DOI: 10.1186/s12864-024-11137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Feather pecking (FP) is a repetitive behaviour in chickens, influenced by genetic, epigenetic, and environmental factors, similar to behaviours seen in human developmental disorders (e.g., hyperactivity, autism). This study examines genetic and neuro-epigenetic factors in the thalamus of chickens from lines selected for seven generations for high or low FP behaviour (HFP or LFP). We integrate data on Differentially Methylated Regions (DMRs), Single Nucleotide Polymorphisms (SNPs), and Copy Number Variations (CNVs) in this controlled artificial selection process. Significant differences in behaviour, immunology, and neurology have been reported in these lines. We identified 710 SNPs in these lines that indicate new potentially important genes for FP such as TMPRSS6 (implicated in autism), and SST and ARNT2 (somatostatin function). CNV were the omic level most affected during selection. The largest CNVs found were in RIC3 (gain in HFP) and SH3RF2 (gain in LFP) genes, linked to nicotinic acetylcholine receptor regulation and human oncogenesis, respectively. Our study also suggests that promoters and introns are hotspots for CpG depletion. The overlapping of the omic levels investigated here with data from a public FP Quantitative Trait Loci (QTL) database revealed novel candidate genes for understanding repetitive behaviours, such as RTKN2, associated with Alzheimer's disease in humans. This study suggests CNVs as a crucial initial step for genomic diversification, potentially more impactful than SNPs.
Collapse
Affiliation(s)
- Elske N de Haas
- Department of Veterinary Science, Animals in Science and Society, Utrecht University, Utrecht, The Netherlands.
- Behavioural Ecology Group and Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Fábio Pértille
- Escola Superior de Agricultura "Luiz de Queiroz", São Paulo, Brazil
- IFM Biology, Avian Behaviour Physiology and Genomics Group, Linköping University, Linköping, Sweden
| | - Joergen B Kjaer
- Federal Research Institute for Animal Health, Celle, Germany
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Jensen
- IFM Biology, Avian Behaviour Physiology and Genomics Group, Linköping University, Linköping, Sweden
| | - Carlos Guerrero-Bosagna
- IFM Biology, Avian Behaviour Physiology and Genomics Group, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Ghosh S, Sharma A, Kumar RS, Nasare V. Sorcin: mechanisms of action in cancer hallmarks, drug resistance and opportunities in therapeutics. Med Oncol 2024; 42:29. [PMID: 39673665 DOI: 10.1007/s12032-024-02580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Soluble resistant related calcium binding protein (Sorcin) plays an important role in tumor progression, angiogenesis, metastasis, and multidrug resistance. Differential expression of Sorcin across different cancers significantly correlates with key clinicopathological characteristics and survival outcomes, underscoring its potential as a prognostic marker. Its involvement in drug-resistant cancers further advert Sorcin as a promising therapeutic target. This review summarizes the mechanistic role of Sorcin in cancer, its contribution to drug resistance, clinical relevance, and the current and emerging therapeutic approaches aimed at translating Sorcin-targeted therapies into clinical practice.
Collapse
Affiliation(s)
- Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, India
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Arpana Sharma
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, India
| | - R Suresh Kumar
- Molecular Biology Division, National Institute of Cancer Prevention and Research, ICMR, Noida, Delhi, India
| | - Vilas Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
3
|
Carillo KJ, He Y, Ye Q, Delaeter N, Chen Y, Orban J, Liu Y. Solution NMR backbone resonance assignment of the full-length resistance-related calcium-binding protein Sorcin. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:253-256. [PMID: 39215797 DOI: 10.1007/s12104-024-10196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sorcin is a penta-EF hand calcium-binding protein that confers multidrug resistance in cancer cells. It regulates cellular Ca2+ homeostasis by interacting with calcium channels such as Ryanodine receptor 2 and Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in a calcium-dependent manner. The crystal structure of the Sorcin has been determined in both calcium-free and calcium-bound states to understand calcium-binding induced conformational change. However, due to its flexibility, most of the N-terminal domain is invisible in these crystal structures. Here we report the 1H, 13C, and 15N backbone resonance assignments of full-length Sorcin in the calcium-free state using solution NMR. The protein secondary structure was predicted based on the assigned backbone chemical shifts using TALOS+ and CSI 3.0. Our backbone resonance assignment of the full-length Sorcin provides a foundation for future NMR spectroscopic studies to uncover the mechanism of Ca2+ sensing by Sorcin.
Collapse
Affiliation(s)
- Kathleen Joyce Carillo
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Yanan He
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Qiushi Ye
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
- School of Physics, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Nicolas Delaeter
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Yihong Chen
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Yanxin Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
| |
Collapse
|
4
|
Lopergolo D, Gallus GN, Pieraccini G, Boscaro F, Berti G, Serni G, Volpi N, Formichi P, Bianchi S, Cassandrini D, Sorrentino V, Rossi D, Santorelli FM, De Stefano N, Malandrini A. CCDC78: Unveiling the Function of a Novel Gene Associated with Hereditary Myopathy. Cells 2024; 13:1504. [PMID: 39273074 PMCID: PMC11394131 DOI: 10.3390/cells13171504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. METHODS We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. RESULTS The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. CONCLUSIONS Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giuseppe Pieraccini
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Francesca Boscaro
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Gianna Berti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giovanni Serni
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Nila Volpi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Denise Cassandrini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
5
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
6
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
7
|
Li Y, Tian M, Pires Sanches JG, Zhang Q, Hou L, Zhang J. Sorcin Inhibits Mitochondrial Apoptosis by Interacting with STAT3 via NF-κB Pathway. Int J Mol Sci 2024; 25:7206. [PMID: 39000312 PMCID: PMC11241191 DOI: 10.3390/ijms25137206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Our group has previously reported that sorcin (SRI) plays an important role in the progression and prognosis of HCC. This study aims to explore the mechanism of SRI inhibiting the mitochondrial apoptosis. Bioinformatics analysis, co-IP and immunofluorescence were used to analyze the relationship between SRI and STAT3. MMP and Hoechst staining were performed to detect the effect of SRI on cell apoptosis. The expression of apoptosis-related proteins and NF-κB signaling pathway were examined by Western blot and immunohistochemistry when SRI overexpression or underexpression in vivo and in vitro were found. Moreover, inhibitors were used to further explore the molecular mechanism. Overexpression of SRI inhibited cell apoptosis, which was attenuated by SRI knockdown in vitro and in vivo. Moreover, we identified that STAT3 is an SRI-interacting protein. Mechanistically, SRI interacts with STAT3 and then activates the NF-κB signaling pathway in vitro and in vivo. SRI interacting with STAT3 inhibits apoptosis by the NF-κB pathway and further contributes to the proliferation in HCC, which offers a novel clue and a new potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yizi Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Manlin Tian
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jaceline Gislaine Pires Sanches
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L, Poland CA, Duffin R, Fokkens PHB, Boere AJF, Leseman DLAC, Megson IL, Whitfield PD, Ziegler K, Tammireddy S, Hadjidemetriou M, Bussy C, Cassee FR, Newby DE, Kostarelos K, Miller MR. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. NATURE NANOTECHNOLOGY 2024; 19:705-714. [PMID: 38366225 PMCID: PMC11106005 DOI: 10.1038/s41565-023-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/09/2023] [Indexed: 02/18/2024]
Abstract
Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.
Collapse
Affiliation(s)
- Jack P M Andrews
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- The Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shruti S Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maaz B Syed
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Livia E Crica
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Emmanuel Okwelogu
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer B Raftis
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Paul H B Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A John F Boere
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daan L A C Leseman
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Phil D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Kerstin Ziegler
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Seshu Tammireddy
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
- Thomas Ashton Institute for Risk and Regulatory Research, The University of Manchester, Manchester, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain.
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Shaheen H, Melnik R, Singh S. Data-driven Stochastic Model for Quantifying the Interplay Between Amyloid-beta and Calcium Levels in Alzheimer's Disease. Stat Anal Data Min 2024; 17:e11679. [PMID: 38646460 PMCID: PMC11031189 DOI: 10.1002/sam.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
The abnormal aggregation of extracellular amyloid-β ( A β ) in senile plaques resulting in calcium C a + 2 dyshomeostasis is one of the primary symptoms of Alzheimer's disease (AD). Significant research efforts have been devoted in the past to better understand the underlying molecular mechanisms driving A β deposition and C a + 2 dysregulation. Importantly, synaptic impairments, neuronal loss, and cognitive failure in AD patients are all related to the buildup of intraneuronal A β accumulation. Moreover, increasing evidence show a feed-forward loop between A β and C a + 2 levels, i.e. A β disrupts neuronal C a + 2 levels, which in turn affects the formation of A β . To better understand this interaction, we report a novel stochastic model where we analyze the positive feedback loop between A β and C a + 2 using ADNI data. A good therapeutic treatment plan for AD requires precise predictions. Stochastic models offer an appropriate framework for modelling AD since AD studies are observational in nature and involve regular patient visits. The etiology of AD may be described as a multi-state disease process using the approximate Bayesian computation method. So, utilizing ADNI data from 2-year visits for AD patients, we employ this method to investigate the interplay between A β and C a + 2 levels at various disease development phases. Incorporating the ADNI data in our physics-based Bayesian model, we discovered that a sufficiently large disruption in either A β metabolism or intracellular C a + 2 homeostasis causes the relative growth rate in both C a + 2 and A β , which corresponds to the development of AD. The imbalance of C a + 2 ions causes A β disorders by directly or indirectly affecting a variety of cellular and subcellular processes, and the altered homeostasis may worsen the abnormalities of C a + 2 ion transportation and deposition. This suggests that altering the C a + 2 balance or the balance between A β and C a + 2 by chelating them may be able to reduce disorders associated with AD and open up new research possibilities for AD therapy.
Collapse
Affiliation(s)
- Hina Shaheen
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - The Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were generated by the Alzheimer’s Disease Metabolomics Consortium (ADMC). As such, the investigators within the ADMC provided data, but did not participate in the analysis or writing of this report. A complete listing of ADMC investigators can be found at: https://sites.duke.edu/adnimetab/team/
| |
Collapse
|
10
|
Li Z, Yang Z, Zhu Y, Fu C, Li N, Peng F. Sorcin regulate pyroptosis by interacting with NLRP3 inflammasomes to facilitate the progression of hepatocellular carcinoma. Cell Death Dis 2023; 14:678. [PMID: 37833249 PMCID: PMC10575890 DOI: 10.1038/s41419-023-06096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/15/2023]
Abstract
A high recurrence rate and easy metastasis are two prominent clinical features of hepatocellular carcinoma (HCC), which is also the most common cause of cancer-related death. However, the molecular pathogenesis of HCC remains unclear. Soluble resistance-related calcium-binding protein (Sorcin) is highly expressed in a variety of tumor cell lines and multidrug-resistant cell lines and participates in the malignant progression of tumors by regulating apoptosis. Pyroptosis is also a form of programmed cell death that plays a crucial role in exerting tumor suppression function and evoking anti-tumor immune responses. However, there is no consensus that Sorcin promotes HCC progression by regulating pyroptosis. Our study manifested that Sorcin was considerably upregulated, whereas pyroptosis-associated proteins were significantly decreased in HCC tissues and cells. Sorcin silencing attenuated the proliferation, migration, and invasion of HCC cells. Knockdown of Sorcin activates pyroptosis, and overexpression of Sorcin inhibits pyroptosis, yet has no significant effect on apoptosis, ferroptosis, and autophagy in HCC cells. Furthermore, coimmunoprecipitation and immunofluorescence assays revealed that Sorcin interacted with NLRP3 inflammasome to regulate pyroptosis in HCC cells. Then, the NLRP3 inhibitor MCC950 inhibited the activation of Sorcin knockdown-induced pyroptosis and reversed the effect of Sorcin silencing-induced weakening of malignant biological behavior in HCC. Similarly, suppression of Caspase-1 reversed the inhibitory effect of Sorcin knockdown on the malignant progression of HCC via knockdown of Caspase-1 or the inhibitor VX765. Consistent with the in vitro results, the nude mouse experiment showed that Sorcin knockdown inhibited the growth of HCC by activating pyroptosis, while Caspase-1 knockdown partially restored the growth inhibition caused by Sorcin knockdown. Collectively, high Sorcin expression in HCC negatively regulates pyroptosis by interacting with the NLRP3 inflammasome to promote HCC proliferation, migration, and invasion. The results of this study provide a scientific basis for Sorcin as a new biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhenfen Li
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyue Yang
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Health Commission (NHC) Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Peng
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Health Commission (NHC) Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Tunset ME, Haslene-Hox H, Van Den Bossche T, Maleki S, Vaaler A, Kondziella D. Blood-borne extracellular vesicles of bacteria and intestinal cells in patients with psychotic disorders. Nord J Psychiatry 2023; 77:686-695. [PMID: 37354486 DOI: 10.1080/08039488.2023.2223572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Human cells and bacteria secrete extracellular vesicles (EV) which play a role in intercellular communication. EV from the host intestinal epithelium are involved in the regulation of bacterial gene expression and growth. Bacterial EV (bactEV) produced in the intestine can pass to various tissues where they deliver biomolecules to many kinds of cells, including neurons. Emerging data indicate that gut microbiota is altered in patients with psychotic disorders. We hypothesized that the amount and content of blood-borne EV from intestinal cells and bactEV in psychotic patients would differ from healthy controls. METHODS We analyzed for human intestinal proteins by proteomics, for bactEV by metaproteomic analysis, and by measuring the level of lipopolysaccharide (LPS) in blood-borne EV from patients with psychotic disorders (n = 25), tested twice, in the acute phase of psychosis and after improvement, with age- and sex-matched healthy controls (n = 25). RESULTS Patients with psychotic disorders had lower LPS levels in their EV compared to healthy controls (p = .027). Metaproteome analyses confirmed LPS finding and identified Firmicutes and Bacteroidetes as dominating phyla. Total amounts of human intestine proteins in EV isolated from blood was lower in patients compared to controls (p = .02). CONCLUSIONS Our results suggest that bactEV and host intestinal EV are decreased in patients with psychosis and that this topic is worthy of further investigation given potential pathophysiological implications. Possible mechanisms involve dysregulation of the gut microbiota by host EV, altered translocation of bactEV to systemic circulation where bactEV can interact with both the brain and the immune system.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Susan Maleki
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Arne Vaaler
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Acute Psychiatry, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Tito C, Genovese I, Giamogante F, Benedetti A, Miglietta S, Barazzuol L, Cristiano L, Iaiza A, Carolini S, De Angelis L, Masciarelli S, Nottola SA, Familiari G, Petrozza V, Lauriola M, Tamagnone L, Ilari A, Calì T, Valdivia HH, Valdivia CR, Colotti G, Fazi F. Sorcin promotes migration in cancer and regulates the EGF-dependent EGFR signaling pathways. Cell Mol Life Sci 2023; 80:202. [PMID: 37442828 PMCID: PMC10345051 DOI: 10.1007/s00018-023-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.
Collapse
Affiliation(s)
- Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Ilaria Genovese
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Anna Benedetti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessia Iaiza
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Sabatino Carolini
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Tamagnone
- Department of Life Science and Public Health, Histology and Embryology Unit - Catholic University of the Sacred Hearth, Fondazione Policlinico Gemelli - IRCCS, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Hector H. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Carmen R. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| |
Collapse
|
13
|
da Silva BPM, Fanalli SL, Gomes JD, de Almeida VV, Fukumasu H, Freitas FAO, Moreira GCM, Silva-Vignato B, Reecy JM, Koltes JE, Koltes D, de Carvalho Balieiro JC, de Alencar SM, da Silva JPM, Coutinho LL, Afonso J, Regitano LCDA, Mourão GB, Luchiari Filho A, Cesar ASM. Brain fatty acid and transcriptome profiles of pig fed diets with different levels of soybean oil. BMC Genomics 2023; 24:91. [PMID: 36855067 PMCID: PMC9976441 DOI: 10.1186/s12864-023-09188-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.
Collapse
Affiliation(s)
- Bruna Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Simara Larissa Fanalli
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Julia Dezen Gomes
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Vivian Vezzoni de Almeida
- grid.411195.90000 0001 2192 5801College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, Goiás Brazil
| | - Heidge Fukumasu
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe André Oliveira Freitas
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Bárbara Silva-Vignato
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - James Mark Reecy
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - James Eugene Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Dawn Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Júlio Cesar de Carvalho Balieiro
- grid.11899.380000 0004 1937 0722School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Severino Matias de Alencar
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Julia Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Gerson Barreto Mourão
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Albino Luchiari Filho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
14
|
Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023:10.1007/s10571-023-01330-y. [PMID: 36847930 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
|
15
|
Tramonti A, Ghatge MS, Babor JT, Musayev FN, di Salvo ML, Barile A, Colotti G, Giorgi A, Paredes SD, Donkor AK, Al Mughram MH, de Crécy‐Lagard V, Safo MK, Contestabile R. Characterization of the Escherichia coli pyridoxal 5'-phosphate homeostasis protein (YggS): Role of lysine residues in PLP binding and protein stability. Protein Sci 2022; 31:e4471. [PMID: 36218140 PMCID: PMC9601805 DOI: 10.1002/pro.4471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
The pyridoxal 5'-phosphate (PLP) homeostasis protein (PLPHP) is a ubiquitous member of the COG0325 family with apparently no catalytic activity. Although the actual cellular role of this protein is unknown, it has been observed that mutations of the PLPHP encoding gene affect the activity of PLP-dependent enzymes, B6 vitamers and amino acid levels. Here we report a detailed characterization of the Escherichia coli ortholog of PLPHP (YggS) with respect to its PLP binding and transfer properties, stability, and structure. YggS binds PLP very tightly and is able to slowly transfer it to a model PLP-dependent enzyme, serine hydroxymethyltransferase. PLP binding to YggS elicits a conformational/flexibility change in the protein structure that is detectable in solution but not in crystals. We serendipitously discovered that the K36A variant of YggS, affecting the lysine residue that binds PLP at the active site, is able to bind PLP covalently. This observation led us to recognize that a number of lysine residues, located at the entrance of the active site, can replace Lys36 in its PLP binding role. These lysines form a cluster of charged residues that affect protein stability and conformation, playing an important role in PLP binding and possibly in YggS function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Mohini S. Ghatge
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jill T. Babor
- Department of Microbiology and Cell ScienceUniversity of FloridaGainsvilleFloridaUSA
| | - Faik N. Musayev
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Anna Barile
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Gianni Colotti
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Alessandra Giorgi
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Steven D. Paredes
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Akua K. Donkor
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mohammed H. Al Mughram
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Valérie de Crécy‐Lagard
- Department of Microbiology and Cell ScienceUniversity of FloridaGainsvilleFloridaUSA
- Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Martin K. Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Roberto Contestabile
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| |
Collapse
|
16
|
Di Risola D, Ricci D, Marrocco I, Giamogante F, Grieco M, Francioso A, Vasco‐Vidal A, Mancini P, Colotti G, Mosca L, Altieri F. ERp57 chaperon protein protects neuronal cells from Aβ-induced toxicity. J Neurochem 2022; 162:322-336. [PMID: 35699375 PMCID: PMC9543391 DOI: 10.1111/jnc.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder whose main pathological hallmark is the accumulation of Amyloid-β peptide (Aβ) in the form of senile plaques. Aβ can cause neurodegeneration and disrupt cognitive functions by several mechanisms, including oxidative stress. ERp57 is a protein disulfide isomerase involved in the cellular stress response and known to be present in the cerebrospinal fluid of normal individuals as a complex with Aβ peptides, suggesting that it may be a carrier protein which prevents aggregation of Aβ. Although several studies show ERp57 involvement in neurodegenerative diseases, no clear mechanism of action has been identified thus far. In this work, we gain insights into the interaction of Aβ with ERp57, with a special focus on the contribution of ERp57 to the defense system of the cell. Here, we show that recombinant ERp57 directly interacts with the Aβ25-35 fragment in vitro with high affinity via two in silico-predicted main sites of interaction. Furthermore, we used human neuroblastoma cells to show that short-term Aβ25-35 treatment induces ERp57 decrease in intracellular protein levels, different intracellular localization, and ERp57 secretion in the cultured medium. Finally, we demonstrate that recombinant ERp57 counteracts the toxic effects of Aβ25-35 and restores cellular viability, by preventing Aβ25-35 aggregation. Overall, the present study shows that extracellular ERp57 can exert a protective effect from Aβ toxicity and highlights it as a possible therapeutic tool in the treatment of AD.
Collapse
Affiliation(s)
- Daniel Di Risola
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | - Daniela Ricci
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
- Immunobiology of Infection Unit, Institut PasteurParisFrance
| | - Ilaria Marrocco
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Flavia Giamogante
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
- Institute of Oncology Research (IOR), BellinzonaSwitzerland
| | - Maddalena Grieco
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | - Antonio Francioso
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | | | - Patrizia Mancini
- Department of Experimental MedicineSapienza University of RomaRomeItaly
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology—Italian National Research CouncilRomeItaly
| | - Luciana Mosca
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| | - Fabio Altieri
- Department of Biochemical SciencesSapienza University of RomaRomeItaly
| |
Collapse
|
17
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Oncomodulin (OCM) uniquely regulates calcium signaling in neonatal cochlear outer hair cells. Cell Calcium 2022; 105:102613. [PMID: 35797824 PMCID: PMC9297295 DOI: 10.1016/j.ceca.2022.102613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
|
19
|
Peppercorn K, Kleffmann T, Jones O, Hughes S, Tate W. Secreted Amyloid Precursor Protein Alpha, a Neuroprotective Protein in the Brain Has Widespread Effects on the Transcriptome and Proteome of Human Inducible Pluripotent Stem Cell-Derived Glutamatergic Neurons Related to Memory Mechanisms. Front Neurosci 2022; 16:858524. [PMID: 35692428 PMCID: PMC9179159 DOI: 10.3389/fnins.2022.858524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Secreted amyloid precursor protein alpha (sAPPα) processed from a parent human brain protein, APP, can modulate learning and memory. It has potential for development as a therapy preventing, delaying, or even reversing Alzheimer’s disease. In this study a comprehensive analysis to understand how it affects the transcriptome and proteome of the human neuron was undertaken. Human inducible pluripotent stem cell (iPSC)-derived glutamatergic neurons in culture were exposed to 1 nM sAPPα over a time course and changes in the transcriptome and proteome were identified with RNA sequencing and Sequential Window Acquisition of All THeoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS), respectively. A large subset (∼30%) of differentially expressed transcripts and proteins were functionally involved with the molecular biology of learning and memory, consistent with reported links of sAPPα to memory enhancement, as well as neurogenic, neurotrophic, and neuroprotective phenotypes in previous studies. Differentially regulated proteins included those encoded in previously identified Alzheimer’s risk genes, APP processing related proteins, proteins involved in synaptogenesis, neurotransmitters, receptors, synaptic vesicle proteins, cytoskeletal proteins, proteins involved in protein and organelle trafficking, and proteins important for cell signalling, transcriptional splicing, and functions of the proteasome and lysosome. We have identified a complex set of genes affected by sAPPα, which may aid further investigation into the mechanism of how this neuroprotective protein affects memory formation and how it might be used as an Alzheimer’s disease therapy.
Collapse
Affiliation(s)
- Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Owen Jones
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Stephanie Hughes
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- *Correspondence: Warren Tate,
| |
Collapse
|
20
|
Scieszka D, Hunter R, Begay J, Bitsui M, Lin Y, Galewsky J, Morishita M, Klaver Z, Wagner J, Harkema JR, Herbert G, Lucas S, McVeigh C, Bolt A, Bleske B, Canal CG, Mostovenko E, Ottens AK, Gu H, Campen MJ, Noor S. Neuroinflammatory and Neurometabolomic Consequences From Inhaled Wildfire Smoke-Derived Particulate Matter in the Western United States. Toxicol Sci 2022; 186:149-162. [PMID: 34865172 PMCID: PMC8883349 DOI: 10.1093/toxsci/kfab147] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Utilizing a mobile laboratory located >300 km away from wildfire smoke (WFS) sources, this study examined the systemic immune response profile, with a focus on neuroinflammatory and neurometabolomic consequences, resulting from inhalation exposure to naturally occurring wildfires in California, Arizona, and Washington in 2020. After a 20-day (4 h/day) exposure period in a mobile laboratory stationed in New Mexico, WFS-derived particulate matter (WFPM) inhalation resulted in significant neuroinflammation while immune activity in the peripheral (lung, bone marrow) appeared to be resolved in C57BL/6 mice. Importantly, WFPM exposure increased cerebrovascular endothelial cell activation and expression of adhesion molecules (VCAM-1 and ICAM-1) in addition to increased glial activation and peripheral immune cell infiltration into the brain. Flow cytometry analysis revealed proinflammatory phenotypes of microglia and peripheral immune subsets in the brain of WFPM-exposed mice. Interestingly, endothelial cell neuroimmune activity was differentially associated with levels of PECAM-1 expression, suggesting that subsets of cerebrovascular endothelial cells were transitioning to resolution of inflammation following the 20-day exposure. Neurometabolites related to protection against aging, such as NAD+ and taurine, were decreased by WFPM exposure. Additionally, increased pathological amyloid-beta protein accumulation, a hallmark of neurodegeneration, was observed. Neuroinflammation, together with decreased levels of key neurometabolites, reflect a cluster of outcomes with important implications in priming inflammaging and aging-related neurodegenerative phenotypes.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Marsha Bitsui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Yan Lin
- Department of Geography and Environmental Studies, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Joseph Galewsky
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Masako Morishita
- Department of Family Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - Zachary Klaver
- Department of Family Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - James Wagner
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jack R Harkema
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Charlotte McVeigh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Christopher G Canal
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Haiwei Gu
- Arizona State University, Phoenix, Arizona, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
21
|
Zhang J, Chen J, Shan B, Lin L, Dong J, Sun Q, Zhou Q, Han X. Clinical Significance and Prognostic Value of Human Soluble Resistance-Related Calcium-Binding Protein: A Pan-Cancer Analysis. Front Med (Lausanne) 2021; 8:752619. [PMID: 34869449 PMCID: PMC8635117 DOI: 10.3389/fmed.2021.752619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The soluble resistance-related calcium-binding protein (sorcin, SRI) serves as the calcium-binding protein for the regulation of calcium homeostasis and multidrug resistance. Although the mounting evidence suggests a crucial role of SRI in the chemotherapeutic resistance of certain types of tumors, insights into pan-cancer analysis of SRI are unavailable. Therefore, this study aimed to probe the multifaceted properties of SRI across the 33 cancer types. The SRI expression was analyzed via The Cancer Genome Atlas (TCGA) and Genotype Tissue-Expression (GTEX) database. The SRI genomic alterations and drug sensitivity analysis were performed based on the cBioPortal and the CellMiner database. Furthermore, the correlations among the SRI expression and survival outcomes, clinical features, stemness, tumor mutation burden (TMB), microsatellite instability (MSI), and immune cells infiltration were analyzed using TCGA data. The differential analysis showed that SRI was upregulated in 25 tumor types compared with the normal tissues. Aberrant expression of SRI was able to predict survival in different cancers. Further, the most frequent alteration of SRI genomic was amplification. Moreover, the aberrant SRI expression was related to stemness score, epithelial-mesenchymal-transition (EMT)-related genes, MSI, TMB, and tumor immune microenvironment in various types of cancer. TIMER database mining further found that the SRI expression was significantly correlated with the infiltration levels of various immune cells in certain types of cancer. Intriguingly, the SRI expression was negatively correlated with drug sensitivity of fluorouracil, paclitaxel, docetaxel, and isotretinoin. Our findings highlight the predictive value of SRI in cancer and provide insights for illustrating the role of SRI in tumorigenesis and drug resistance.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jian Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Lin Lin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Zhou
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
22
|
Kovacs G, Reimer L, Jensen PH. Endoplasmic Reticulum-Based Calcium Dysfunctions in Synucleinopathies. Front Neurol 2021; 12:742625. [PMID: 34744980 PMCID: PMC8563702 DOI: 10.3389/fneur.2021.742625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuronal calcium dyshomeostasis has been associated to Parkinson's disease (PD) development based on epidemiological studies on users of calcium channel antagonists and clinical trials are currently conducted exploring the hypothesis of increased calcium influx into neuronal cytosol as basic premise. We reported in 2018 an opposite hypothesis based on the demonstration that α-synuclein aggregates stimulate the endoplasmic reticulum (ER) calcium pump SERCA and demonstrated in cell models the existence of an α-synuclein-aggregate dependent neuronal state wherein cytosolic calcium is decreased due to an increased pumping of calcium into the ER. Inhibiting the SERCA pump protected both neurons and an α-synuclein transgenic C. elegans model. This models two cellular states that could contribute to development of PD. First the prolonged state with reduced cytosolic calcium that could deregulate multiple signaling pathways. Second the disease ER state with increased calcium concentration. We will discuss our hypothesis in the light of recent papers. First, a mechanistic study describing how variation in the Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) may explain GWAS studies identifying the ITPKB gene as a protective factor toward PD. Here it was demonstrated that how increased ITPKB activity reduces influx of ER calcium to mitochondria via contact between IP3-receptors and the mitochondrial calcium uniporter complex in ER-mitochondria contact, known as mitochondria-associated membranes (MAMs). Secondly, it was demonstrated that astrocytes derived from PD patients contain α-synuclein accumulations. A recent study has demonstrated how human astrocytes derived from a few PD patients carrying the LRRK2-2019S mutation express more α-synuclein than control astrocytes, release more calcium from ER upon ryanodine receptor (RyR) stimulation, show changes in ER calcium channels and exhibit a decreased maximal and spare respiration indicating altered mitochondrial function in PD astrocytes. Here, we summarize the previous findings focusing the effect of α-synuclein to SERCA, RyR, IP3R, MCU subunits and other MAM-related channels. We also consider how the SOCE-related events could contribute to the development of PD.
Collapse
Affiliation(s)
- Gergo Kovacs
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Ling F, Zhang H, Sun Y, Meng J, Sanches JGP, Huang H, Zhang Q, Yu X, Wang B, Hou L, Zhang J. AnnexinA7 promotes epithelial-mesenchymal transition by interacting with Sorcin and contributes to aggressiveness in hepatocellular carcinoma. Cell Death Dis 2021; 12:1018. [PMID: 34716295 PMCID: PMC8556303 DOI: 10.1038/s41419-021-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/29/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and metastasis is the major cause of the high mortality of HCC. In this study, we identified that AnnexinA7 (ANXA7) and Sorcin (SRI) are overexpressed and interacting proteins in HCC tissues and cells. In vitro functional investigations revealed that the interaction between ANXA7 and SRI regulated epithelial-mesenchymal transition (EMT), and then affected migration, invasion, and proliferation in HCC cells. Furthermore overexpression/knockdown of ANXA7 was remarkably effective in promoting/inhibiting tumorigenicity and EMT in vivo. Altogether, our study unveiled a mechanism that ANXA7 promotes EMT by interacting with SRI and further contributes to the aggressiveness in HCC, which provides a novel potential therapeutic target for preventing recurrence and metastasis in HCC.
Collapse
Affiliation(s)
- Fei Ling
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Huan Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yunliang Sun
- Department of Pathology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, 116033, China
| | - Jinyi Meng
- Department of Pathology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, 116033, China
| | | | - He Huang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo Wang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Hou
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Jun Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
24
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
26
|
Wang Y, Zhu Y, Pu Z, Li Z, Deng Y, Li N, Peng F. Soluble resistance-related calcium-binding protein participates in multiple diseases via protein-protein interactions. Biochimie 2021; 189:76-86. [PMID: 34153376 DOI: 10.1016/j.biochi.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Soluble resistance-related calcium-binding protein (sorcin), a 22 kDa penta-EF-hand protein, has been intensively studied in cancers and multidrug resistance over a prolonged period. Sorcin is widely distributed in tissues and participates in the regulation of Ca2+ homeostasis and Ca2+-dependent signaling. Protein-protein interactions (PPIs) are essential for regulating protein functions in almost all biological processes. Sorcin interaction partners tend to vary in type, including Ca2+ receptors, Ca2+ transporters, endoplasmic reticulum stress markers, transcriptional regulatory elements, immunomodulation-related factors, and viral proteins. Recent studies have shown that sorcin is involved in a broad range of pathological conditions, such as cardiomyopathy, type 2 diabetes mellitus, neurodegenerative diseases, liver diseases, and viral infections. As a multifunctional cellular protein, in these diseases, sorcin has a role by interacting with or regulating the expression of other proteins, such as sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase, ryanodine receptors, presenilin 2, L-type Ca2+ channels, carbohydrate-responsive element-binding protein, tau, α-synuclein, signal transducer and activator of transcription 3, HCV nonstructural 5A protein, and viral capsid protein 1. This review summarizes the roles that sorcin plays in various diseases, mainly via different PPIs, and focuses principally on non-neoplastic diseases to help acquire a more comprehensive understanding of sorcin's multifunctional characteristics.
Collapse
Affiliation(s)
- Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhenfen Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Ying Deng
- People's Hospital of Ningxiang, Changsha, Hunan Province 410600, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China.
| |
Collapse
|
27
|
Berrocal M, Saez L, Mata AM. Sorcin Activates the Brain PMCA and Blocks the Inhibitory Effects of Molecular Markers of Alzheimer's Disease on the Pump Activity. Int J Mol Sci 2021; 22:ijms22116055. [PMID: 34205207 PMCID: PMC8200006 DOI: 10.3390/ijms22116055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Since dysregulation of intracellular calcium (Ca2+) levels is a common occurrence in neurodegenerative diseases, including Alzheimer’s disease (AD), the study of proteins that can correct neuronal Ca2+ dysregulation is of great interest. In previous work, we have shown that plasma membrane Ca2+-ATPase (PMCA), a high-affinity Ca2+ pump, is functionally impaired in AD and is inhibited by amyloid-β peptide (Aβ) and tau, two key components of pathological AD hallmarks. On the other hand, sorcin is a Ca2+-binding protein highly expressed in the brain, although its mechanism of action is far from being clear. Sorcin has been shown to interact with the intracellular sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and other modulators of intracellular Ca2+ signaling, such as the ryanodine receptor or presenilin 2, which is closely associated with AD. The present work focuses on sorcin in search of new regulators of PMCA and antagonists of Aβ and tau toxicity. Results show sorcin as an activator of PMCA, which also prevents the inhibitory effects of Aβ and tau on the pump, and counteracts the neurotoxicity of Aβ and tau by interacting with them.
Collapse
|
28
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
29
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
30
|
Battista T, Pascarella G, Staid DS, Colotti G, Rosati J, Fiorillo A, Casamassa A, Vescovi AL, Giabbai B, Semrau MS, Fanelli S, Storici P, Squitieri F, Morea V, Ilari A. Known Drugs Identified by Structure-Based Virtual Screening Are Able to Bind Sigma-1 Receptor and Increase Growth of Huntington Disease Patient-Derived Cells. Int J Mol Sci 2021; 22:1293. [PMID: 33525510 PMCID: PMC7865886 DOI: 10.3390/ijms22031293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.
Collapse
Affiliation(s)
- Theo Battista
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - Gianmarco Pascarella
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - David Sasah Staid
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.C.); (A.L.V.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University, 00185 Rome, Italy;
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.C.); (A.L.V.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Angelo Luigi Vescovi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.C.); (A.L.V.)
| | - Barbara Giabbai
- Protein Facility, Structural Biology Lab, Elettra Sincrotrone Trieste, 34149 Basovizza, Italy; (B.G.); (M.S.S.); (P.S.)
| | - Marta Stefania Semrau
- Protein Facility, Structural Biology Lab, Elettra Sincrotrone Trieste, 34149 Basovizza, Italy; (B.G.); (M.S.S.); (P.S.)
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sergio Fanelli
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (S.F.); (F.S.)
| | - Paola Storici
- Protein Facility, Structural Biology Lab, Elettra Sincrotrone Trieste, 34149 Basovizza, Italy; (B.G.); (M.S.S.); (P.S.)
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (S.F.); (F.S.)
| | - Veronica Morea
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185 Rome, Italy; (T.B.); (G.P.); (D.S.S.); (G.C.)
| |
Collapse
|