1
|
Li Q, Cheng J, Qin D, Xiao S, Yao C. Exosomal miR-92b-5p regulates N4BP1 to enhance PTEN mono-ubiquitination in doxorubicin-resistant AML. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:16. [PMID: 40201312 PMCID: PMC11977356 DOI: 10.20517/cdr.2024.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Aim: Doxorubicin, pivotal for acute myeloid leukemia (AML) treatment, often succumbs to resistance, impeding therapeutic success. Although exosomal transfer is linked to chemoresistance, the detailed role of exosomal miRNAs in doxorubicin resistance remains incompletely understood. Methods: We employed miRNA sequencing to delineate the profile of exosomal miRNAs in doxorubicin-resistant K562/DOX cells and AML patients. Subsequently, qPCR was utilized to scrutinize the expression of exosomal miR-92b-5p in these resistant cells and AML patients. A dual-luciferase reporter assay was conducted to elucidate the direct binding of miR-92b-5p to NEDD4 binding protein 1 (N4BP1). Furthermore, interactions between N4BP1 and NEDD4, as well as between NEDD4 and PTEN, were investigated by co-immunoprecipitation (Co-IP). Meanwhile, the ubiquitination of PTEN was also examined by Co-IP. Western blot analysis was applied to assess the expression levels of N4BP1, NEDD4, PTEN, RAD51, and proteins associated with the PI3K-AKT-mTOR pathway. Gain- and loss-of-function studies were conducted to ascertain the functional role of miR-92b-5p in doxorubicin resistance by using miR-92b-5p-mimic and miR-92b-5p-inhibitor transfections. Results: Our study found exosomal miR-92b-5p was upregulated both in doxorubicin-resistant cells and AML patients. Moreover, miR-92b-5p targets N4BP1, promoting NEDD4-mediated mono-ubiquitination of PTEN. This alters PTEN's subcellular localization, promoting nuclear PTEN and reducing cytoplasmic PTEN, which in turn leads to increased RAD51 for DNA repair and activation of the PI3K-AKT-mTOR pathway for cell proliferation, contributing to doxorubicin resistance. Conclusion: Our study reveals a novel mechanism of doxorubicin resistance mediated by exosomal miR-92b-5p and provides potential therapeutic targets for overcoming drug resistance in AML.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of General Medicine, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jie Cheng
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Danni Qin
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Sheng Xiao
- Department of Pathology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Chenjiao Yao
- Department of General Medicine, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570105, Hainan, China
| |
Collapse
|
2
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
3
|
Zhang Q, Yang G, Chang R, Wang F, Han T, Tian J, Wang W. Time series analysis combined with transcriptome sequencing to explore characteristic genes and potential molecular mechanisms associated with ultrasound-guided microwave ablation of glioma. Int J Hyperthermia 2024; 41:2406889. [PMID: 39317933 DOI: 10.1080/02656736.2024.2406889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE This study aimed to explore marker genes and their potential molecular mechanisms involved in US-guided MWA for glioma in mice. METHOD The differentially expressed genes (DEGs1 and DEGs2) and lncRNAs (DELs1 and DELs2) were obtained between Non (glioma tissues without MWA) and T0 groups (0h after MWA), as well as between Non and T24 groups (24h after MWA). The down-regulation cluster genes (CONDOWNDEGs) and upregulation cluster genes (CONUPDEGs) were identified by time series analysis. Candidate genes were obtained by overlapping CONDOWNDEGs with downregulation DEGs (DOWNDEGs)1 and DOWNDEGs2, as well as CONUPDEGs with up-regulation DEGs (UPDEGs)1 and UPDEGs2. The expressions of immune checkpoints and inflammatory factors, gene set enrichment analysis (GSEA), and protein subcellular localization were performed. The eXpression2Kinases (X2K), GeneMANIA, transcription factor (TF), and competing endogenous (ce) RNA regulatory networks were conducted. The expression of marker genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Five marker genes (IL32, VCAM1, IL34, NFKB1 and CXCL13) were identified, which were connected with immune-related functions. Two immune checkpoints (CD96 and TIGIT) and six inflammatory factors played key roles in US-guided MWA for glioma. ceRNA regulatory networks revealed that miR-625-5p, miR-625-3p, miR-31-5p and miR-671-5p were associated with target genes. qRT-PCR indicated both IL32, VCAM1, and NFKB1 were potential markers under US-guided MWA-related time series analysis. CONCLUSION The use of US-guided MWA might be a practical method for influencing the function of target genes, regulating time frames to decrease inflammation, and stimulating immune responses in glioma therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ruijiao Chang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fuxia Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| | - Tao Han
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jin Tian
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wen Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| |
Collapse
|
4
|
Li J, Kong Z, Qi Y, Wang W, Su Q, Huang W, Zhang Z, Li S, Du E. Single-cell and bulk RNA-sequence identified fibroblasts signature and CD8 + T-cell - fibroblast subtype predicting prognosis and immune therapeutic response of bladder cancer, based on machine learning: bioinformatics multi-omics study. Int J Surg 2024; 110:4911-4931. [PMID: 38759695 PMCID: PMC11325897 DOI: 10.1097/js9.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are found in primary and advanced tumours. They are primarily involved in tumour progression through complex mechanisms with other types of cells in the tumour microenvironment. However, essential fibroblasts-related genes (FRG) in bladder cancer still need to be explored, and there is a shortage of an ideal predictive model or molecular subtype for the progression and immune therapeutic assessment for bladder cancer, especially muscular-invasive bladder cancer based on the FRG. MATERIALS AND METHODS CAF-related genes of bladder cancer were identified by analysing single-cell RNA sequence datasets, and bulk transcriptome datasets and gene signatures were used to characterize them. Then, 10 types of machine learning algorithms were utilised to determine the hallmark FRG and construct the FRG index (FRGI) and subtypes. Further molecular subtypes combined with CD8+ T-cells were established to predict the prognosis and immune therapy response. RESULTS Fifty-four BLCA-related FRG were screened by large-scale scRNA-sequence datasets. The machine learning algorithm established a 3-genes FRGI. High FRGI represented a worse outcome. Then, FRGI combined clinical variables to construct a nomogram, which shows high predictive performance for the prognosis of bladder cancer. Furthermore, the BLCA datasets were separated into two subtypes - fibroblast hot and cold types. In five independent BLCA cohorts, the fibroblast hot type showed worse outcomes than the cold type. Multiple cancer-related hallmark pathways are distinctively enriched in these two types. In addition, high FRGI or fibroblast hot type shows a worse immune therapeutic response. Then, four subtypes called CD8-FRG subtypes were established under the combination of FRG signature and activity of CD8+ T-cells, which turned out to be effective in predicting the prognosis and immune therapeutic response of bladder cancer in multiple independent datasets. Pathway enrichment analysis, multiple gene signatures, and epigenetic alteration characterize the CD8-FRG subtypes and provide a potential combination strategy method against bladder cancer. CONCLUSIONS In summary, the authors established a novel FRGI and CD8-FRG subtype by large-scale datasets and organised analyses, which could accurately predict clinical outcomes and immune therapeutic response of BLCA after surgery.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zheng Kong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Qiang Su
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Huang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Shuai Li
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
5
|
Khameneh SC, Razi S, Lashanizadegan R, Akbari S, Sayaf M, Haghani K, Bakhtiyari S. MicroRNA-mediated metabolic regulation of immune cells in cancer: an updated review. Front Immunol 2024; 15:1424909. [PMID: 39007129 PMCID: PMC11239499 DOI: 10.3389/fimmu.2024.1424909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The study of immunometabolism, which examines how immune cells regulate their metabolism to maintain optimal performance, has become an important area of focus in cancer immunology. Recent advancements in this field have highlighted the intricate connection between metabolism and immune cell function, emphasizing the need for further research. MicroRNAs (miRNAs) have gained attention for their ability to post-transcriptionally regulate gene expression and impact various biological processes, including immune function and cancer progression. While the role of miRNAs in immunometabolism is still being explored, recent studies have demonstrated their significant influence on the metabolic activity of immune cells, such as macrophages, T cells, B cells, and dendritic cells, particularly in cancer contexts. Disrupted immune cell metabolism is a hallmark of cancer progression, and miRNAs have been linked to this process. Understanding the precise impact of miRNAs on immune cell metabolism in cancer is essential for the development of immunotherapeutic approaches. Targeting miRNAs may hold potential for creating groundbreaking cancer immunotherapies to reshape the tumor environment and improve treatment outcomes. In summary, the recognition of miRNAs as key regulators of immune cell metabolism across various cancers offers promising potential for refining cancer immunotherapies. Further investigation into how miRNAs affect immune cell metabolism could identify novel therapeutic targets and lead to the development of innovative cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sara Razi
- Vira Ideators of Modern Science, Tehran, Iran
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Masoud Sayaf
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Azad University Central Tehran Branch, Tehran, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592966. [PMID: 38766099 PMCID: PMC11100730 DOI: 10.1101/2024.05.07.592966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Christopher M. McNair
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Saswati N. Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K. Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J. Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Karen E. Knudsen
- The American Cancer Society, Philadelphia, Pennsylvania, 19103, USA
| | - Ayesha A. Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| |
Collapse
|
7
|
Long S, Long X, Guo J, Fu L, Huang X, Liu H. miR-940 modulates CD47 to suppress biological functions of lung adenocarcinoma cells. Am J Cancer Res 2024; 14:1157-1173. [PMID: 38590419 PMCID: PMC10998766 DOI: 10.62347/yyjn3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE mir-940 and CD47 play regulatory and immunoregulatory roles in lung cancer. While previous study found that the expression of mir-940 decreased, associated with the increasing of CD47 in lung adenocarcinoma. However, their inherent correlations remain elusive. Herein, this experiment intends to search for the relevant molecular mechanisms regulating the biological function of non-small cell lung cancer. METHODS The cancer and adjacent tissue samples were collected from 20 pairs of newly diagnosed non-small cell lung cancer patients without applying radiotherapy and chemotherapy. We performed immunohistochemistry containing 45 lung adenocarcinoma tissues to investigate the relationship between the clinicopathological features and CD47 expression. The expressions of mir-940 and CD47 were detected by real-time quantitative polymerase chain reaction (qRT-PCR). Lung epithelial and lung adenocarcinoma (A549, H1299, GLC-82, PC-9) cell lines were cultured to detect the expression of mir-940 and CD47 molecules in each cell line. According to the expression situation, 2 cell lines were selected for mimic and siRNA transfection, and the transfection efficiency was also verified by qRT-PCR and western blot. CCK-8, transwell migration, transwell invasion, and colony formation assays were used to detect the changes in biological functions of lung adenocarcinoma cells after transfection, such as enhanced proliferation, migration, invasion, and cloning. The changes of related protein molecules after transfection were detected by western blot. The dual-luciferase experiment verified the targeting regulation relationship between mir-940 and CD47. Finally, flow cytometry analysis of apoptosis and cell cycle were carried out to detect apoptosis cells and change phase of cell cycle distribution. RESULTS CD47 expression was not associated with clinicopathologic factors in lung adenocarcinoma. The proliferation, migration, invasion, and cloning abilities of lung adenocarcinoma cells were weakened after transfection with mir-940 mimic and siRNA-CD47. Overexpression of CD47 could promote proliferation, migration, invasion, cloning abilities, reduce apoptosis rate and attenuate the antitumor effect of mir-940 on lung adenocarcinoma. Dual luciferase experiments confirmed that mir-940 can target CD47 molecules. CONCLUSION mir-940 can inhibit the biological function of lung adenocarcinoma cells by targeting CD47.
Collapse
Affiliation(s)
- Shuzi Long
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing UniversityChongqing 404100, China
| | - Xizi Long
- Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South ChinaHengyang 421001, Hunan, China
| | - Jing Guo
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing UniversityChongqing 404100, China
| | - Liping Fu
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of MedicineShanghai 200120, China
| | - Xiaoping Huang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing UniversityChongqing 404100, China
| | - Huawen Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing UniversityChongqing 404100, China
| |
Collapse
|
8
|
Zhang C, Yu H, Bai X, Zhou X, Feng Z, Li Y, Peng X, Mei Y, Li L, Gou X, Deng Y, Chen G. MiR-15b-3p weakens bicalutamide sensitivity in prostate cancer via targeting KLF2 to suppress ferroptosis. J Cancer 2024; 15:2306-2317. [PMID: 38495481 PMCID: PMC10937263 DOI: 10.7150/jca.92379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/03/2024] [Indexed: 03/19/2024] Open
Abstract
Bicalutamide (BIC) resistance impedes the treatment of prostate cancer (PCa) and seems to involve ferroptosis; however, the underlying mechanism remains unclear. Our study aimed to explore how miR-15b-3p modulates ferroptosis in response to BIC resistance and determine whether the miRNA is suitable for early screening of PCa. Here, we found that PCa tissues had significantly higher miR-15b-3p expression than adjacent normal tissues. Analysis of blood samples in patients who underwent prostate-specific antigen (PSA) screening revealed that miR-15b-3p was a more accurate diagnostic than PSA (miR-15b-3p area under the curve [AUC] = 0.941, PSA AUC = 0.815). In vitro experiments then demonstrated that miR-15b-3p expression was markedly higher in LNCaP, PC-3, and DU145 cells than in RWPE-1 cells. Treatment with BIC decreased miR-15b-3p expression and progressive ferroptosis. Mechanistically, we identified KLF2 as the downstream target of miR-15b-3p. Overexpressing KLF2 facilitated ferroptosis via augmenting MDA and iron concentrations, in turn inhibiting the SLC7A11/GPX4 axis and decreasing GSH concentration. Through modulating ferroptosis, miR-15b-3p mimic and inhibitor weakened and enhanced BIC sensitivity, respectively. Furthermore, BIC treatment limited xenograft tumor volume in vivo, whereas agomir-15b-3p promoted tumor growth, indicating that miR-15b-3p attenuated the tumor-suppressive effects of BIC. Taken together, our results suggested that miR-15b-3p is crucial to BIC resistance, specifically via targeting KLF2 and thereby suppressing ferroptosis. High miR-15b-3p expression in early PCa screening should reflect a higher probability of cancer. In conclusion, miR-15b-3p has strong potential as a screening and diagnostic biomarker with reliable prospects for clinical application. Furthermore, because patients with high miR-15b-3p and low KLF2 expression have a greater risk of BIC resistance and malignant progression, targeting the miRNA and its downstream protein may be a new treatment strategy.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Yuhua Mei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Li Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanzhong Deng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| |
Collapse
|
9
|
Cai HB, Zhao MY, Li XH, Li YQ, Yu TH, Wang CZ, Wang LN, Xu WY, Liang B, Cai YP, Zhang F, Hong WM. Single cell sequencing revealed the mechanism of CRYAB in glioma and its diagnostic and prognostic value. Front Immunol 2024; 14:1336187. [PMID: 38274814 PMCID: PMC10808695 DOI: 10.3389/fimmu.2023.1336187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background We explored the characteristics of single-cell differentiation data in glioblastoma and established prognostic markers based on CRYAB to predict the prognosis of glioblastoma patients. Aberrant expression of CRYAB is associated with invasive behavior in various tumors, including glioblastoma. However, the specific role and mechanisms of CRYAB in glioblastoma are still unclear. Methods We assessed RNA-seq and microarray data from TCGA and GEO databases, combined with scRNA-seq data on glioma patients from GEO. Utilizing the Seurat R package, we identified distinct survival-related gene clusters in the scRNA-seq data. Prognostic pivotal genes were discovered through single-factor Cox analysis, and a prognostic model was established using LASSO and stepwise regression algorithms. Moreover, we investigated the predictive potential of these genes in the immune microenvironment and their applicability in immunotherapy. Finally, in vitro experiments confirmed the functional significance of the high-risk gene CRYAB. Results By analyzing the ScRNA-seq data, we identified 28 cell clusters representing seven cell types. After dimensionality reduction and clustering analysis, we obtained four subpopulations within the oligodendrocyte lineage based on their differentiation trajectory. Using CRYAB as a marker gene for the terminal-stage subpopulation, we found that its expression was associated with poor prognosis. In vitro experiments demonstrated that knocking out CRYAB in U87 and LN229 cells reduced cell viability, proliferation, and invasiveness. Conclusion The risk model based on CRYAB holds promise in accurately predicting glioblastoma. A comprehensive study of the specific mechanisms of CRYAB in glioblastoma would contribute to understanding its response to immunotherapy. Targeting the CRYAB gene may be beneficial for glioblastoma patients.
Collapse
Affiliation(s)
- Hua-Bao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin-Han Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qing Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun-Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Bo Liang
- Department of Dermatology and Venereology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Ping Cai
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Ji X, Liu X, Li X, Du X, Fan L. MircoRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis. Nefrologia 2023; 43 Suppl 2:8-20. [PMID: 37179213 DOI: 10.1016/j.nefroe.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Acute kidney injury (AKI) is a common devastating complication characterized by an abrupt loss of renal function. It is of great significance to explore promising biomarkers for AKI treatment. MATERIALS AND METHODS Here, we established LPS (lipopolysaccharide)-induced AKI mice models and LPS-induced AKI mouse renal tubular epithelial cell model. The severity of AKI was determined by the levels of BUN (blood urea nitrogen) and SCr (serum creatinine), the observation of pathological section as well as the renal tubular injury score. The apoptosis was determined by the measurement of Caspase-3 and Caspase-9 activities, and cell apoptosis assays. qRT-PCR (quantitative real-time PCR) and western blot revealed that miR-322-5p (microRNA-322-5p) was up-regulated in LPS -induced AKI models while Tbx21 (T-box transcription factor 21) was down-regulated in LPS-induced AKI models. Dual-luciferase reporter and RNA pulldown assays detected the interaction of Tbx21 with miR-322-5p. RESULTS We found that miR-322-5p was overtly over-expressed in the in vitro LPS-induced AKI model and promoted the apoptosis of AKI mouse renal tubular epithelial cells via inhibiting Tbx21, which suppressed the mitochondrial fission and cell apoptosis through MAPK/ERK (mitogen-activated protein kinase/extracellular signal-related kinase) pathway. CONCLUSIONS We demonstrated that miR-322-5p promotes LPS-induced mouse AKI by regulating Tbx21/MAPK/ERK axis, which might provide new sights for AKI research.
Collapse
Affiliation(s)
- Xiaobing Ji
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaodong Liu
- Department of Nephrology, The Second People's Hospital of Lianyungang,Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222023, Jiangsu, China
| | - Xiangxiang Li
- Department of Nephrology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing 210039, Jiangsu, China
| | - Xin Du
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
11
|
Li J, Han Y, Zhou M, Liu N, Li H, Huang G, Yu Z, Luo D, Zhang H, Zheng X, Liang F, Chen R. Electroacupuncture ameliorates AOM/DSS-induced mice colorectal cancer by inhibiting inflammation and promoting autophagy via the SIRT1/miR-215/Atg14 axis. Aging (Albany NY) 2023; 15:13194-13212. [PMID: 38006398 DOI: 10.18632/aging.205236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors of the digestive tract, with the third-highest incidence and the second-highest mortality rate among all malignant tumors worldwide. However, treatment options for CRC remain limited. As a complementary therapy, acupuncture or electro-acupuncture (EA) has been widely applied in the treatment of various inflammation-related diseases, such as obesity, ulcerative colitis and tumors. Although numerous pre-clinical and clinical studies have investigated the beneficial effects of acupuncture on CRC, the mechanism underlying the therapeutic action of EA is largely unknown. Evidence from previous studies has revealed that SIRT1 participates in CRC progression by activating autophagy-related miRNAs. Using azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colorectal cancer model in mice, we explored whether EA treatment can inhibit inflammation and promote autophagy via the SIRT1/miR-215/Atg14 axis. Our results showed that EA notably alleviated the CRC in mice, by decreasing the tumor number and DAI scores, inflammation, and increasing body weight of mice. Besides, EA increased the expression of SIRT1 and autophagy. Further experiments showed that SIRT1 overexpression downregulated miR-215, and promoted the expression of Atg14, whereas SIRT1 knockdown induced opposite results. In conclusion, EA can ameliorate AOM/DSS-induced CRC through regulating the SIRT1-mediated miR-215/Atg14 axis by suppressing inflammation and promoting autophagy in mice. These findings reveal a potential molecular mechanism underlying the anti-CRC effect of EA indicating that EA is a promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Han
- Hong Kong Baptist University, Hong Kong, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guichen Huang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430071, China
| | - Dan Luo
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Zhang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiangyi Zheng
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Fengxia Liang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
12
|
Ding B, Lou W, Fan W, Pan J. Exosomal miR-374c-5p derived from mesenchymal stem cells suppresses epithelial-mesenchymal transition of hepatocellular carcinoma via the LIMK1-Wnt/β-catenin axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1038-1052. [PMID: 36722453 DOI: 10.1002/tox.23746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metastasis is a leading cause to treatment failure in hepatocellular carcinoma (HCC) patients. Exosomes act as pivotal mediators in communication between different cells and exert effects on recipient cells by delivering bioactive cargoes, such as microRNAs (miRNAs). MiRNAs function in multiple steps of HCC development, including metastasis. MiR-374c-5p was previously identified as a tumor suppressor in some malignancies, while the current knowledge of its role in HCC metastasis is still limited. Herein, miR-374c-5p was found to be downregulated in HCC cell lines and clinical samples, and positively related with favorable prognosis in HCC patients. MiR-374c-5p transferred by exosomes derived from bone marrow mesenchymal stem cell (BMSC) suppressed migration, invasion and proliferation of HCC cells. LIMK1 was verified as downstream target gene of miR-374c-5p. Knockdown of LIMK1 reduced invasion, migration and proliferation of HCC cells, whereas overexpression functioned oppositely. The miR-374c-5p/LIMK1 axis suppressed epithelial-mesenchymal transition (EMT) by inactivating Wnt/β-catenin pathway. In addition, miR-374c-5p was downregulated and LIMK1 upregulated in TGF-β1 induced EMT. This EMT model could be reversed by LIMK1 silencing or miR-374c-5p overexpression. These results suggest that exo-miR-374c-5p suppresses EMT via targeting LIMK1-Wnt/β-catenin axis and the axis is involved in TGF-β1 induced metastasis of HCC, thereby identifying miR-374c-5p as a potential target for HCC treatment.
Collapse
Affiliation(s)
- Bisha Ding
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Weimin Fan
- College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Pan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Guo K, Shi J, Tang Z, Lai C, Liu C, Li K, Li Z, Xu K. Circular RNA circARHGEF28 inhibited the progression of prostate cancer via the miR-671-5p/LGALS3BP/NF-κB axis. Cancer Sci 2023. [PMID: 37186007 DOI: 10.1111/cas.15820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Circular RNAs (circRNAs) play crucial roles in various biological processes, including prostate cancer (PCa). However, the precise roles and mechanism of circRNAs are complicated. Hence, we studied the function of a circRNA that might be involved in the progression of PCa. In this study, we found that circARHGEF28 was frequently downregulated in PCa tissues and cell lines. Furthermore, gain- and loss-of function experiments in vitro showed that circARHGEF28 inhibited proliferation, migration, and invasion of PCa. Additionally, circARHGEF28 suppressed PCa progression in vivo. Bioinformatics analysis and RNA pull-down and capture assay found that circARHGEF28 sponged miR-671-5p in PCa cells. Importantly, qRT-PCR and dual luciferase assays found that Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) was downstream of miR-671-5p, and western blot analysis further confirmed that LGALS3BP negatively regulated the nuclear factor kappa-B (NF-κB) pathway. These results demonstrated that circARHGEF28 abolished the degradation of LGALS3BP by sponging miR-671-5p, thus blocking the activation of the NF-κB pathway. Our findings revealed that circARHGEF28/miR-671-5p/LGALS3BP/NF-κB may be an important axis that regulates PCa progression.
Collapse
Affiliation(s)
- Kaixuan Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Juanyi Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuang Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cheng Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| |
Collapse
|
14
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Al-Marzook FA, Hassan DM, Alghazal MW, Kadheem RAA, Jalil AT, Saleh MM. MicroRNA-32 Suppression: its Effects on Prostate Cancer Cells' Capability to Proliferate and Migrate. Drug Res (Stuttg) 2023; 73:170-174. [PMID: 36626918 DOI: 10.1055/a-1977-8848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION This paper sought to scrutinize the role of microRNA-32 (miR-32) on the growth and migration as well as on the expression of metastatic genes in PC3 cells of prostate cancer in vitro. METHODS Subsequent transfection of cells with miR-32 mimics, miR-32 inhibitor, negative control (NC), cell proliferation using MTT, and apoptosis by ELISA were performed. Furthermore, qRT-PCR was directed to measure the expression levels of matrix metalloproteinase 2 (MMP2) and vascular endothelial growth factors (VEGF) as metastatic and angiogenesis genes in the progression of PC3. RESULTS miR-32 was overexpressed in PC3 cells compared to normal cells (P<0.001). Down-regulation of miR-32 obstructs in vitro proliferation and migration while intensifying the apoptosis rate in PC3 cells. Also, we found that miR-32 negatively modulates the expression of VEGF and MMP2 in PC3 cells. CONCLUSION These results indicate that the suppression of miR-32 might offer an auxiliary treatment procedure for addressing the invasion, progression, and metastasis in PCa patients by improving cell apoptosis.
Collapse
Affiliation(s)
- Farah A Al-Marzook
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, Iraq
| | - Duha Maithem Hassan
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, Iraq
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq.,Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
16
|
Lepcha TT, Kumar M, Sharma AK, Mal S, Majumder D, Jana K, Basu J, Kundu M. Uncovering the role of microRNA671-5p/CDCA7L/monoamine oxidase-A signaling in Helicobacter pylori mediated apoptosis in gastric epithelial cells. Pathog Dis 2023; 81:7143101. [PMID: 37140023 DOI: 10.1093/femspd/ftad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.
Collapse
Affiliation(s)
- Thurbu Tshering Lepcha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Debayan Majumder
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN80 Sector V, Salt Lake City, Kolkata 700091, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| |
Collapse
|
17
|
Wang S, Hu M, Song D, Tang L, Jiang H. Research progress on the role and mechanism of miR-671 in bone metabolism and bone-related diseases. Front Oncol 2023; 12:1018308. [PMID: 36713572 PMCID: PMC9876598 DOI: 10.3389/fonc.2022.1018308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Bone metabolism consists of bone formation and resorption and maintains a dynamic balance in vivo. When bone homeostasis is broken, it can manifest as osteoarthritis (OA), rheumatoid arthritis (RA), osteosarcoma (OS), etc. MiR-671, an important class of non-coding nucleotide sequences in vivo, is regulated by lncRNA and regulates bone metabolism balance by regulating downstream target proteins and activating various signaling pathways. Based on the structure and primary function of miR-671, this paper summarizes the effect and mechanism of miR-671 in bone-related inflammation and cancer diseases, and prospects the application possibility of miR-671, providing reference information for targeted therapy of bone-related disorders.
Collapse
Affiliation(s)
- Shaotai Wang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China,*Correspondence: Min Hu, ; Huan Jiang,
| | - Dongsheng Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Linjun Tang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China,*Correspondence: Min Hu, ; Huan Jiang,
| |
Collapse
|
18
|
Downregulation of miR-671-5p promotes IL-10 mRNA increase in porcine moDCs stimulated with the probiotic BB12. Mol Biol Rep 2023; 50:919-925. [PMID: 36334231 DOI: 10.1007/s11033-022-08040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous work showed that the microRNA (miRNA) miR-671-5p was upregulated in monocyte-derived dendritic cells (moDCs) stimulated with Bifidobacterium animalis subsp. lactis BB12 (BB12) with no increase in IL-10 after six hours of stimulation. In this work, we performed an in silico prediction of genes targeted by miR-671-5p and which are the terms and pathways involved with it. Also, miR-671-5p was transiently downregulated to assess its effect on IL-10 regulation. METHODS AND RESULTS First, we performed a Gene Ontology enrichment analysis to predict immune response terms and pathways involved with miR-671-5p. Some of the terms and pathways found were related to the immune response promoted by the probiotic, as the terms "negative regulation of the inflammatory response to an antigenic stimulus" and "cancer" were highlighted. Then, to assess the role of miR-671-5p in IL-10 regulation, moDCs were derived from porcine peripheral blood and later transfected with miR-671-5p antisense oligonucleotide (ASO). Flow cytometry was employed to evaluate the transfection efficiency. Then, the moDCs were stimulated with BB12, and the expression of IL-10 was assessed by RT-qPCR and ELISA. An increase in IL-10 transcript in miR-671-5p-ASO-transfected moDCs stimulated with BB12 was observed compared with moDCs stimulated with BB12 but not transfected. These results suggest the participation of miR-671-5p as a negative regulator of IL-10. CONCLUSION These findings suggest that miR-671-5p participates in the downregulation of IL-10, as previously predicted in silico by our work group. miR-671-5p could play an essential role in the immunomodulation promoted by the probiotic BB12.
Collapse
|
19
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Hatamian S, Taheri M, Kiani A. A review on the role of miR-671 in human disorders. Front Mol Biosci 2022; 9:1077968. [PMID: 36545507 PMCID: PMC9760869 DOI: 10.3389/fmolb.2022.1077968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
miR-671 is encoded by a gene on 7q36.1 and contributes to the pathogenesis of a variety of disorders, including diverse types of cancers, atherosclerosis, ischemic stroke, liver fibrosis, osteoarthritis, Parkinson's disease, rheumatoid arthritis, acute myocardial infarction and Crohn's disease. In the context of cancer, different studies have revealed opposite roles for this miRNA. In brief, it has been shown to be down-regulated in pancreatic ductal carcinoma, ovarian cancer, gastric cancer, osteosarcoma, esophageal squamous cell carcinoma and myelodysplastic syndromes. Yet, miR-671 has been up-regulated in glioma, colorectal cancer, prostate cancer and hepatocellular carcinoma. Studies in breast, lung and renal cell carcinoma have reported inconsistent results. The current review aims at summarization of the role of miR-671 in these disorders focusing on its target mRNA in each context and dysregulated signaling pathways. We also provide a summary of the role of this miRNA as a prognostic factor in malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq,Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Sevak Hatamian
- Department of Anesthesia, Shahid Madani Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| |
Collapse
|
20
|
The Potential of MicroRNAs as Non-Invasive Prostate Cancer Biomarkers: A Systematic Literature Review Based on a Machine Learning Approach. Cancers (Basel) 2022; 14:cancers14215418. [PMID: 36358836 PMCID: PMC9657574 DOI: 10.3390/cancers14215418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the most common cancer in men worldwide. Screening and diagnosis are based on prostate-specific antigen (PSA) blood testing and digital rectal examination. Nevertheless, these methods are not specific and have a high risk of mistaken results. This has led to overtreatment and unnecessary radical therapy; thus, better prognostic tools are urgently needed. In this view, microRNAs (miRs) appear as potential non-invasive biomarkers for PCa diagnosis, prognosis, and therapy. As the scientific literature available in this field is huge and very often controversial, we identified and discussed three topics that characterize the investigated research area by combining the big data from the literature together with a novel machine learning approach. By analyzing the papers clustered into these topics we have offered a deeper understanding of the current research, which helps to contribute to the advancement of this research field. Abstract Background: Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men. Although the prostate-specific antigen (PSA) test is used in clinical practice for screening and/or early detection of PCa, it is not specific, thus resulting in high false-positive rates. MicroRNAs (miRs) provide an opportunity as biomarkers for diagnosis, prognosis, and recurrence of PCa. Because the size of the literature on it is increasing and often controversial, this study aims to consolidate the state-of-art of relevant published research. Methods: A Systematic Literature Review (SLR) approach was applied to analyze a set of 213 scientific publications through a text mining method that makes use of the Latent Dirichlet Allocation (LDA) algorithm. Results and Conclusions: The result of this activity, performed through the MySLR digital platform, allowed us to identify a set of three relevant topics characterizing the investigated research area. We analyzed and discussed all the papers clustered into them. We highlighted that several miRs are associated with PCa progression, and that their detection in patients’ urine seems to be the more reliable and promising non-invasive tool for PCa diagnosis. Finally, we proposed some future research directions to help future scientists advance the field further.
Collapse
|
21
|
Zhang X, Luan N, Shi J. A novel LINC00943/miR-671-5p/ELAVL1 ceRNA crosstalk regulates MPP + toxicity in SK-N-SH cells. Metab Brain Dis 2022; 37:2349-2362. [PMID: 35779150 DOI: 10.1007/s11011-022-01034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
The competing endogenous RNA (ceRNA) activity of long non-coding RNAs (lncRNAs) has profound effects in pathological disorders, including Parkinson's disease. Here, we focused on the LINC00943-mediated ceRNA network for the regulation of LINC00943 in MPP+ toxicity in SK-N-SH cells. SK-N-SH cells were exposed to 1-methyl-4-phenylpyridinium (MPP+). LINC00943, miR-671-5p and ELAV like RNA binding protein 1 (ELAVL1) were quantified by real-time quantitative PCR (RT-qPCR) or western blot. Cell viability and apoptosis were gauged by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Direct relationship between miR-671-5p and LINC00943 or ELAVL1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data validated that LINC00943 regulated MPP+-evoked injury in SK-N-SH cells. LINC00943 regulated miR-671-5p expression by binding to miR-671-5p. Moreover, miR-671-5p was identified as a molecular mediator of LINC00943 in regulating SK-N-SH cell injury induced by MPP+. MiR-671-5p targeted and inhibited ELAVL1, and miR-671-5p-mediated inhibition of ELAVL1 impacted MPP+-evoked SK-N-SH cell injury. Furthermore, LINC00943 involved the post-transcriptional regulation of ELAVL1 through miR-671-5p competition. Our present study has established a novel mechanism, the LINC00943/miR-671-5p/ELAVL1 ceRNA crosstalk, for the regulation of LINC00943 on MPP+ toxicity in SK-N-SH cells.
Collapse
Affiliation(s)
- Xuejie Zhang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ning Luan
- Department of Otolaryngology, Beijing Yanqing District Hospital, Beijing, China
| | - Jian Shi
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jian Shi, No.49, Section 2, Shanghai Road, Guta District, Jinzhou City, 121001, China.
| |
Collapse
|
22
|
Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu C, Wan X, Xu B, Ben-David Y, Luo H. A Novel L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. Int J Mol Sci 2022; 23:ijms231810916. [PMID: 36142828 PMCID: PMC9504056 DOI: 10.3390/ijms231810916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a common malignant cancer of the urinary system. Drug therapy, chemotherapy, and radical prostatectomy are the primary treatment methods, but drug resistance and postoperative recurrence often occur. Therefore, seeking novel anti-tumor compounds with high efficiency and low toxicity from natural products can produce a new tumor treatment method. Matijin-Su [N-(N-benzoyl-L-phenylalanyl)-O-acetyl-L-phenylalanol, MTS] is a phenylalanine dipeptide monomer compound that is isolated from the Chinese ethnic medicine Matijin (Dichondra repens Forst.). Its derivatives exhibit various pharmacological activities, especially anti-tumor. Among them, the novel MTS derivative HXL131 has a significant inhibitory effect against prostate tumor growth and metastasis. This study is designed to investigate the effects of HXL131 on the growth and metastasis of human PCa cell lines PC3 and its molecular mechanism through in vitro experiments combined with proteomics, molecular docking, and gene silencing. The in vitro results showed that HXL131 concentration dependently inhibited PC3 cell proliferation, induced apoptosis, arrested cell cycle at the G2/M phase, and inhibited cell migration capacity. A proteomic analysis and a Western blot showed that HXL131 up-regulated the expression of proliferation, apoptosis, cell cycle, and migration-related proteins CYR61, TIMP1, SOD2, IL6, SERPINE2, DUSP1, TNFSF9, OSMR, TNFRSF10D, and TNFRSF12A. Molecular docking, a cellular thermal shift assay (CETSA), and gene silencing showed that HXL131 had a strong binding affinity with DUSP1 and TNFSF9, which are important target genes for inhibiting the growth and metastasis of PC3 cells. This study demonstrates that HXL131 exhibited excellent anti-prostate cancer activity and inhibited the growth and metastasis of prostate cancer cells by regulating the expression of DUSP1 and TNFSF9.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingfei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Mashaal Ahmad
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Caihong Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xinwei Wan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Bixue Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| |
Collapse
|
23
|
Xu DM, Li M, Lin SB, Yang ZL, Xu TY, Yang JH, Yin J. Comprehensive Analysis of Transcriptional Expression of hsa-mir-21 Predicted Target Genes and Immune Characteristics in Kidney Renal Clear Cell Carcinoma. Int J Med Sci 2022; 19:1482-1501. [PMID: 36035369 PMCID: PMC9413563 DOI: 10.7150/ijms.73404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Background: To uncover advanced prognosis biomarkers in patient with kidney renal clear cell carcinoma (KIRC), our study was the first to make a comprehensive analysis of hsa-mir-21 predicted target genes and explore the immune characteristics in KIRC. Methods: In this study, the comprehensive analysis of hsa-mir-21 predicted target genes and immune characteristics in KIRC were analyzed via TIMER2.0, UALCAN, Metascape, Kaplan-Meier plotter, Human Protein Atlas, CancerSEA, JASPAR, GEPIA, R package: GSVA package (version 1.34.0) & immune infiltration algorithm (ssGSEA) and R package: RMS package (version 6.2-0) & SURVIVAL package (version 3.2-10). Results: Up-transcriptional expressions of RP2, NFIA, SPRY1 were significantly associated with favorable prognosis in KIRC, whereas that of TGFBI was markedly significantly to unfavorable prognosis. Additionally, RP2, NFIA, SPRY1 and TGFBI were significantly relevant to the immune infiltration in KIRC. Finally, ZNF263 was a common predicted transcription factor of RP2, NFIA, SPRY1 and TGFBI, which can as an independent indicator for prognosis in KIRC patients. Conclusions: Hsa-mir-21 predicted target genes (RP2, NFIA, SPRY1 and TGFBI) and the common transcription factor ZNF263 could be the advanced prognosis biomarkers in KIRC patients.
Collapse
Affiliation(s)
- Da-Ming Xu
- Department of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ming Li
- Department of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shu-Bin Lin
- Department of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zheng-Liang Yang
- Department of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Teng-Yu Xu
- Department of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin-Huan Yang
- Department of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Yin
- Department of Hematology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
24
|
Li L, Yu J, Cheng S, Peng Z, Ben-David Y, Luo H. Transcription factor Fli-1 as a new target for antitumor drug development. Int J Biol Macromol 2022; 209:1155-1168. [PMID: 35447268 DOI: 10.1016/j.ijbiomac.2022.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The transcription factor Friend leukemia virus integration 1 (Fli-1) belonging to the E26 Transformation-Specific (ETS) transcription factor family is not only expressed in normal cells such as hematopoietic stem cells and vascular endothelial cells, but also abnormally expressed in various malignant tumors including Ewing sarcoma, Merkel cell sarcoma, small cell lung carcinoma, benign or malignant hemangioma, squamous cell carcinoma, adenocarcinoma, bladder cancer, leukemia, and lymphoma. Fli-1 binds to the promoter or enhancer of the target genes and participates in a variety of physiological and pathological processes of tumor cells, including cell growth, proliferation, differentiation, and apoptosis. The expression of Fli-1 gene is related to the specific biological functions and characteristics of the tissue in which it is located. In tumor research, Fli-1 gene is used as a specific marker for the occurrence, metastasis, efficacy, and prognosis of tumors, thus, a potential new target for tumor diagnosis and treatment. These studies indicated that Fli-1 may be a specific candidate for antitumor drug development. Recent studies identified small molecules regulating Fli-1 thanks to our screened strategy of natural products and their derivatives. Therefore, in this review, the advanced research on Fli-1 as a target for antitumor drug development is analyzed in different cancers. The inhibitors and agonists of Fli-1 that regulate its expression are introduced and their clinical applications in the treatment of cancer, thus providing new therapeutic strategies.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; College of Pharmacy, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Zhilin Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China.
| |
Collapse
|
25
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
26
|
Ren J, Pan G, Yang J, Xu N, Zhang Q, Li W. Circ_0000620 acts as an oncogenic factor in gastric cancer through regulating MMP2 expression via sponging miR-671-5p. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:23. [PMID: 34972532 PMCID: PMC8720221 DOI: 10.1186/s40709-021-00154-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/10/2021] [Indexed: 04/14/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers in the digestive system. Circular RNAs (circRNAs) have been found to function as important regulators in the pathogenesis of GC. This study focused on the biological role and molecular mechanism of circ_0000620 in GC progression. METHODS The expression levels of circ_0000620, microRNA-671-5p (miR-671-5p) and Matrix MetalloProteinase 2 (MMP2) were measured by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) assay or western blot. The stability of circ_0000620 was confirmed by Ribonuclease R (RNase R) assay. The protein levels were determined by western blot assay. Cell viability, colony formation, cell migratory ability, cell invasive ability and tube formation capacity were respectively examined by CCK-8 assay, colony formation assay, wound healing assay, transwell invasion assay and tube formation assay. The interaction between miR-671-5p and circ_0000620 or MMP2 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The role of circ_0000620 in GC undefined was explored by xenograft tumor assay. RESULTS Circ_0000620 was conspicuously upregulated in GC tissues and cells. Circ_0000620 knockdown reduced cell viability, colony formation, migration, invasion and tube formation capacity of GC cells in vitro. Furthermore, MMP2 was upregulated in GC and MMP2 overexpression reversed the anti-tumor response of circ_0000620 knockdown in GC progression. Moreover, circ_0000620 directly interacted with miR-671-5p and circ_0000620 downregulation regulated malignant behaviors of GC cells by upregulating miR-671-5p. In addition, silencing of circ_0000620 inhibited tumor growth in vivo. CONCLUSIONS Circ_0000620 knockdown inhibited the malignant development of GC partly through modulating the miR-671-5p/MMP2 axis.
Collapse
Affiliation(s)
- Junyu Ren
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China
| | - Guoqing Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China
| | - Ning Xu
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China
| | - Qiong Zhang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenliang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, 650032, Kunming, China.
| |
Collapse
|
27
|
Niu L, Gao C, Li Y. Identification of potential core genes in colorectal carcinoma and key genes in colorectal cancer liver metastasis using bioinformatics analysis. Sci Rep 2021; 11:23938. [PMID: 34907282 PMCID: PMC8671463 DOI: 10.1038/s41598-021-03395-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most prevalent malignant tumors worldwide. Meanwhile, the majority of CRC related deaths results from liver metastasis. Gene expression profile of CRC patients with liver Metastasis was identified using 4 datasets. The data was analyzed using GEO2R tool. GO and KEGG pathway analysis were performed. PPI network of the DEGs between 1 and 2 gene sets was also constructed. The set 1 is named between primary CRC tissues and metastatic CRC tissues. The set 2 is named between primary CRC tissues and normal tissues. Finally, the prognostic value of hub genes was also analyzed. 35 DEGs (set 1) and 142 DEGs (set 2) were identified between CRC liver metastatic cancer patients. The PPI network was constructed using the top 10 set 1 hub genes which included AHSG, SERPINC1, FGA, F2, CP, ITIH2, APOA2, HPX, PLG, HRG and set 2 hub genes which included TIMP1, CXCL1, COL1A2, MMP1, AURKA, UBE2C, CXCL12, TOP2A, ALDH1A1 and PRKACB. Therefore, ITIH2 might represent the potential core gene for colon cancer liver metastasis. COL1A2 behaves as a key gene in colorectal carcinoma.
Collapse
Affiliation(s)
- Lipeng Niu
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ce Gao
- Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China
| | - Yang Li
- Shihua Residential District Community Health Service Center, 12th Xiangzhou Road, Jinshan District, Shanghai, 201500, Shanghai, China.
| |
Collapse
|
28
|
Liu Y, Zhao S, Wang J, Zhu Z, Luo L, Xiang Q, Zhou M, Ma Y, Wang Z, Zhao Z. MiR-629-5p Promotes Prostate Cancer Development and Metastasis by Targeting AKAP13. Front Oncol 2021; 11:754353. [PMID: 34722307 PMCID: PMC8554144 DOI: 10.3389/fonc.2021.754353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PCa) has become the most frequently occurring cancer among western men according to the latest report, and patients’ prognosis is often poor in the event of tumor progression, therefore, many researches are devoted to exploring the molecular mechanism of PCa metastasis. MicroRNAs (miRNA) have proved to play an important role in this process. In present study, by combining clinical samples with public databases, we found that miR-629-5p increased to varying degrees in primary localized PCa tissues and metastatic PCa tissues compared with adjacent normal tissues, and bioinformatics analysis suggested that high level of miR-629-5p was related to poor prognosis. Functionally, miR-629-5p drove PCa cell proliferation, migration and invasion in vitro, and promoted growth of PCa cells in vivo. Moreover, A-kinase Anchor Protein 13 (AKAP13) was screened as a direct target of miR-629-5p, that expression was negatively correlated with the malignant phenotype of tumor cells. In the end, through verification in clinical specimens, we found that AKAP13 could be independently used as a clinical prognostic indicator. Overall, the present study indicates that miR-629-5p plays an oncogenic role in PCa by targeting AKAP13, which provides a new idea for clinical diagnosis and treatment of complex refractory PCa.
Collapse
Affiliation(s)
- Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Qian Xiang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Mingda Zhou
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Yuxiang Ma
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zuomin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Xie H, Xiao R, He Y, He L, Xie C, Chen J, Hong Y. MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett 2021; 22:816. [PMID: 34671430 PMCID: PMC8503813 DOI: 10.3892/ol.2021.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are highly conserved single-stranded small non-coding RNAs, which are involved in the physiological and pathological processes of breast cancer, and affect the prognosis of patients with breast cancer. The present study used the Gene Expression Omnibus (GEO)2R tool to detect miR-100 expression in breast cancer tissues obtained from GEO breast cancer-related datasets. Bioinformatics analysis revealed that miR-100 expression was downregulated in different stages, grades and lymph node metastasis stages of breast cancer, and patients with high miR-100 expression had a more favorable prognosis. Based on these analyses, Cell Counting Kit-8, wound healing and Transwell assays were performed, and the results demonstrated that overexpression of miR-100 inhibited the proliferation, migration and invasion of breast cancer cells. To verify the tumor-suppressive effect of miR-100 in breast cancer, the LinkedOmics and PITA databases were used to assess the association between miR-100 and forkhead box A1 (FOXA1). The results demonstrated that miR-100 had binding sites within the FOXA1 gene, and FOXA1 expression was negatively associated with miR-100 expression in breast cancer tissues. Similarly, a negative association was observed between miR-100 and FOXA1 expression, using the StarBase V3.0 database. The association between miR-100 and FOXA1 was further verified via reverse transcription-quantitative PCR and western blot analyses, and the dual-luciferase reporter assay. The results demonstrated that miR-100 targeted the 3′-untranslated region of FOXA1 in breast cancer cells. Furthermore, rescue experiments were performed to confirm whether miR-100 exerts its antitumor effects by regulating FOXA1. The results demonstrated that overexpression of FOXA1 promoted the proliferation, migration and invasion of breast cancer cells; thus, the antitumor effects of miR-100 in breast cancer were reversed following overexpression of FOXA1. Taken together, the results of the present study suggest that miR-100 inhibits the proliferation, migration and invasion of breast cancer cells by targeting FOXA1 expression. These results may provide a novel insight and an experimental basis for identifying effective therapeutic targets of high specificity for breast cancer.
Collapse
Affiliation(s)
- Haihui Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Ruobing Xiao
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yaolin He
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingzhi He
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Changjun Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Chen
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Hong
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
30
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
31
|
Luan JC, Zeng TY, Zhang QJ, Xia DR, Cong R, Yao LY, Song LB, Zhou X, Zhou X, Chen X, Xia JD, Song NH. A novel signature constructed by ferroptosis-associated genes (FAGs) for the prediction of prognosis in bladder urothelial carcinoma (BLCA) and associated with immune infiltration. Cancer Cell Int 2021; 21:414. [PMID: 34362387 PMCID: PMC8349026 DOI: 10.1186/s12935-021-02096-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Ferroptosis, a novel form of regulated cell death, has been implicated in the pathogenesis of cancers. Nevertheless, the potential function and prognostic values of ferroptosis in bladder urothelial carcinoma (BLCA) are complex and remain to be clarified. Therefore, we proposed to systematically examine the roles of ferroptosis-associated genes (FAGs) in BLCA. Methods According to The Cancer Genome Atlas (TCGA) database, differently expressed FAGs (DEFAGs) and differently expressed transcription factors (DETFs) were identified in BLCA. Next, the network between DEFAGs and DETFs, GO annotations and KEGG pathway analyses were performed. Then, through univariate, LASSO and multivariate regression analyses, a novel signature based on FAGs was constructed. Moreover, survival analysis, PCA analysis, t-SNE analysis, ROC analysis, independent prognostic analysis, clinicopathological and immune correlation analysis, and experimental validation were utilized to evaluate the signature. Results Twenty-eight DEFAGs were identified, and four FAGs (CRYAB, TFRC, SQLE and G6PD) were finally utilized to establish the FAGs based signature in the TCGA cohort, which was subsequently validated in the GEO database. Moreover, we found that immune cell infiltration, immunotherapy-related biomarkers and immune-related pathways were significantly different between two risk groups. Besides, nine molecule drugs with the potential to treat bladder cancer were identified by the connectivity map database analysis. Finally, the expression levels of crucial FAGs were verified by the experiment, which were consistent with our bioinformatics analysis, and knockdown of TFRC could inhibit cell proliferation and colony formation in BLCA cell lines in vitro. Conclusions Our study identified prognostic ferroptosis-associated genes and established a novel FAGs signature, which could accurately predict prognosis in BLCA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02096-3.
Collapse
Affiliation(s)
- Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Teng-Yue Zeng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - De-Run Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Liang-Yu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China. .,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang, China.
| |
Collapse
|
32
|
Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W. Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in moyamoya disease. CNS Neurosci Ther 2021; 27:908-918. [PMID: 33942536 PMCID: PMC8265944 DOI: 10.1111/cns.13646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION AND AIMS At present, the treatment for moyamoya disease (MMD) primarily consists of combined direct and indirect bypass surgery. Nevertheless, more than half of indirect bypass surgeries fail to develop good collaterals from the dura and temporal muscle. This study aimed to investigate whether microRNAs (miRNAs) in cerebrospinal fluid (CSF) could serve as biomarkers for the prediction of postoperative collateral formation. METHODS Moyamoya disease patients with indirect bypass surgery were divided into angiogenesis and non-angiogenesis groups, CSF was obtained, and miRNA sequencing was performed using the CSF. Candidate miRNAs were filtered and subsequently verified through qRT-PCR. The diagnostic utility of these differential miRNAs was investigated by using receiver operating characteristic (ROC) curve analysis. Finally, the potential biological processes and signaling pathways associated with candidate miRNAs were analyzed using R software. RESULTS The expression levels of four miRNAs (miR-92a-3p, miR-486-3p, miR-25-3p, and miR-155-5p) were significantly increased in the angiogenesis group. By combining these four miRNAs (area under the curve [AUC] =0.970), we established an accurate predictive model of collateral circulation after indirect bypass surgery in MMD patients. GO and KEGG analyses demonstrated a high correlation with biological processes and signaling pathways related to angiogenesis. CONCLUSION The 4-miRNA signature is a good model to predict angiogenesis after indirect bypass surgery and help the surgeon to select a appreciate bypass strategy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Zeng H, Wei Y, Wei X, Feng R. LINC00908 Promotes Diffuse Large B-Cell Lymphoma Development by Down-Regulating miR-671-5p. Cancer Manag Res 2021; 13:3589-3599. [PMID: 33958893 PMCID: PMC8096343 DOI: 10.2147/cmar.s299715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Emerging evidence has revealed that long noncoding RNA (lncRNA) play important role in almost all kinds of human cancers. LINC00908 has been reported to be involved in the development of prostate cancer, colorectal cancer and gastric cancer which was functioned as an oncogene. However, the potential biology role and molecular mechanism of LINC00908 in diffuse large B-cell lymphoma are still unclear. Methods LINC00908 and miR-671-5p expression were evaluated in DLBCL tissues and cell lines using RT-qPCR. CCK-8 and transwell assay were used to analyze the in vitro role of LINC00908 in DLBCL progression. The xenograft model was used to explore the in vivo role of LINC00908 in DLBCL growth. The physical interaction between LINC00908 and miR-671-5p was confirmed using bioinformatics analysis and a dual luciferase assay, RIP and RNA pull down. Results The expression of LINC00908 was markedly up-regulated in diffuse large B-cell lymphoma tissues and cell lines, and the decreased expression of LINC00908 significantly inhibited diffuse large B-cell lymphoma cell proliferation and invasion. Then, we revealed that LINC00908 directly interacted with miR-671-5p, which was down-regulated in diffuse large B-cell lymphoma cells and highly expressed with LINC00908 knockdown. Moreover, luciferase reporter assays and RNA immunoprecipitation (RIP) assay further proved that miR-671-5p is a direct target of LINC00908 in diffuse large B-cell lymphoma cells. Rescue experiments were also performed, and we confirmed that LINC00908 acts as an oncogene role in diffuse large B-cell lymphoma through miR-671-5p. Finally, the influence of LINC00908 silence significantly inhibited diffuse large B-cell lymphoma growth in vivo. Conclusion LINC00908 promotes malignancy of diffuse large B-cell lymphoma through regulating miR-671-5p.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
34
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
35
|
Shen Q, Zheng G, Zhou Y, Tong J, Xu S, Gao H, Zhang X, Fu Q. CircRNA circ_0092314 Induces Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Elevating the Expression of S100P by Sponging miR-671. Front Oncol 2021; 11:675442. [PMID: 33842379 PMCID: PMC8027261 DOI: 10.3389/fonc.2021.675442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Circular RNAs (circRNAs) is a novel class of non-coding RNAs that regulate gene expression during cancer progression. Circ_0092314 is a newly discovered circRNA that was upregulated in pancreatic cancer (PAAD) tissues. However, the detailed functions and underlying mechanisms of circ_0092314 in PAAD cells remain unclear. Methods We first determined the expression of circ_0092314 in PAAD and normal tissues and further investigated the functional roles of circ_0092314 in regulating epithelial-mesenchymal transition (EMT) of PAAD cells. We also assessed the regulatory action of circ_0092314 on the microRNA-671 (miR-671) and its target S100P. Results Circ_0092314 was markedly upregulated in PAAD tissues and cells, and its overexpression was closely correlated with worse prognosis of PAAD patients. Functionally, circ_0092314 promotes proliferation, invasion and EMT in vitro and tumor growth in vivo. Mechanistically, we demonstrated that circ_0092314 directly binds to miR-671 and relieve its suppression of the downstream target S100P, which induces EMT and activates the AKT signaling pathway. The tumor-promoting effects caused by overexpression of circ_0092314 could be revered by re-expression of miR-671 in PAAD cells. Conclusions Overall, our study demonstrates that circ_0092314 exerts critical roles in promoting the EMT features of PAAD cells, and provides insight into how elevated expression of circ_0092314 might influence PAAD progression.
Collapse
Affiliation(s)
- Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zheng
- Department of General Surgery, The Fifth Hospital of Wuhan, Wuhan, China
| | - Yi Zhou
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Tong
- Department of PICC, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Sun XB, Chen YW, Yao QS, Chen XH, He M, Chen CB, Yang Y, Gong XX, Huang L. MicroRNA-144 Suppresses Prostate Cancer Growth and Metastasis by Targeting EZH2. Technol Cancer Res Treat 2021; 20:1533033821989817. [PMID: 33550923 PMCID: PMC7876575 DOI: 10.1177/1533033821989817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.
Collapse
Affiliation(s)
- Xin-Bo Sun
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yong-Wei Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Qi-Sheng Yao
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xu-Hua Chen
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Min He
- Department of Gynaecology and Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Cong-Bo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yong Yang
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xiao-Xin Gong
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Li Huang
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| |
Collapse
|