1
|
Hou J, Lu M, Guo J, Wu J, Wang C, Zhou PK, Ma T. DNA-PKcs, a player winding and dancing with RNA metabolism and diseases. Cell Mol Biol Lett 2025; 30:25. [PMID: 40038612 DOI: 10.1186/s11658-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key kinase in the DNA repair process that responds to DNA damage caused by various factors and maintains genomic stability. However, DNA-PKcs is overexpressed in some solid tumors and is frequently associated with poor prognosis. DNA-PKcs was initially identified as a part of the transcription complex. In recent years, many studies have focused on its nonclassical functions, including transcriptional regulation, metabolism, innate immunity, and inflammatory response. Given the pleiotropic roles of DNA-PKcs in tumors, pharmacological inhibition of DNA-PK can exert antitumor effects and may serve as a potential target for tumor therapy in the future. This review summarizes several aspects of DNA-PKcs regulation of RNA metabolism, including its impact on transcriptional machinery, alternative splicing, and interaction with noncoding RNAs, and provides insights into DNA-PKcs beyond its DNA damage repair function.
Collapse
Affiliation(s)
- Jiabao Hou
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jingwei Guo
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Chenyang Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
2
|
Shen R, Jiang Z, Wang H, Zheng Z, Jiang X. Molecular mechanisms of m6A modifications regulating tumor radioresistance. Mol Med 2025; 31:64. [PMID: 39972266 PMCID: PMC11837317 DOI: 10.1186/s10020-025-01121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Radiotherapy is one of the most effective treatments for malignant tumors. Radioresistance is a major factor that contributes to radiotherapy failure and poor prognosis. Recent studies have elucidated the pivotal role of aberrant N6-methyladenosine (m6A) modification, the predominant internal mRNA modification in eukaryotic cells, influences cancer progression by disrupting gene expression and other critical cellular processes. Furthermore, aberrant m6A methylation provides a substrate for tumor therapy; however, whether it regulates tumor radioresistance remains unclear. Methylated transferase (writer), demethylated transferase (eraser), and methylated recognition protein (reader) are the three essential proteins that regulate m6A modification via different mechanisms in different tumors. This review summarizes the latest research advances in m6A methylation and aims to provide novel perspectives on the advancement of regimens to overcome radioresistance and tumor invasion.
Collapse
Affiliation(s)
- Ruolin Shen
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhenyang Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Zhang R, Jiang Y, Gu J, Zhang X, Xie Y. Diagnostic role of circulating long non-coding RNA LINC00312 in patients with non-small cell lung cancer: a retrospective study. BMC Cancer 2025; 25:47. [PMID: 39789501 PMCID: PMC11721336 DOI: 10.1186/s12885-024-13393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND LINC00312 has shown to play a suppressive role in the development and progression of non-small cell lung cancer (NSCLC). However, the expression pattern and diagnostic role of circulating LINC00312 in NSCLC remain to be confused. METHODS A total of 319 patients diagnosed with NSCLC and 180 healthy volunteers were enrolled from the First Affiliated Hospital of Huzhou University between January, 2022 and December, 2023. The participates were randomly assigned into the training and validation groups with a ratio of 6:4, while the remaining was named as the exosomal group. Reverse transcription-quantitative PCR (RT-qPCR) was employed to investigate the expression pattern of LINC00312 in NSCLC tissues, serum samples and cell lines. Receiver operating characteristic (ROC) curve analysis was carried out for distinguishing NSCLC from healthy volunteers. RESULTS Here, we revealed that LINC00312 was lowly expressed in NSCLC and low LINC00312 expression manifested a poor prognosis. Additionally, compared with the healthy volunteer group, a reduction of circulating LINC00312 in patients with NSCLC was observed in both the training and validation groups. Further correlation analysis indicated that circulating LINC00312 expression was tightly associated with lymph node metastasis, cancer thrombus, spread through air space (STAS) status and pathological type. Moreover, circulating LINC00312 showed a good performance to distinguish NSCLC from healthy volunteers with a higher sensitivity and specificity values. Lastly, exosomal LINC00312 level was also decreased in NSCLC compared with in healthy volunteers. CONCLUSIONS Taken together, these data unveil that circulating LINC00312 was notably downregulated in NSCLC, offering a novel non-invasive marker for diagnosis of NSCLC.
Collapse
Affiliation(s)
- Ruoqian Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yan Jiang
- Department of Urology Surgery, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Jing Gu
- Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xilin Zhang
- Central Laboratory, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, 158 Guangchang Back Road, Huzhou, Zhejiang, 313000, P.R. China.
| | - Yanping Xie
- Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
5
|
Jalali-Zefrei F, Mousavi SM, Delpasand K, Shourmij M, Farzipour S. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells. Curr Gene Ther 2025; 25:113-135. [PMID: 38676526 DOI: 10.2174/0115665232301727240422092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical researches.
Collapse
Affiliation(s)
- Fatemeh Jalali-Zefrei
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mehdi Mousavi
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Delpasand
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Li X, You Q. Sanguinarine identified as a natural dual inhibitor of AURKA and CDK2 through network pharmacology and bioinformatics approaches. Sci Rep 2024; 14:29608. [PMID: 39609491 PMCID: PMC11605095 DOI: 10.1038/s41598-024-81063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Cervical cancer (CA) continues to be a female malignant tumor with limited therapeutic options, resulting in a high mortality rate. Sanguinarine (SANG), a naturally occurring alkaloid, has demonstrated notable efficacy in preclinical treatment of CA. However, the mechanism through which SANG acts against CA is not fully understood. To address this, utilizing nine drug target prediction databases, we have successfully identified 379 potential targets for SANG. Venn diagram analysis compared 2367 CA-related targets from the GeneCards disease database, 2618 CA-closely related targets derived from multiple datasets in GEO through WGCNA analysis, and the 379 potential targets of SANG, resulting in 35 shared targets. Subsequently, by employing PPI network analysis, the Cytohubba plugin, the Human Protein Atlas, TCGA database data, and ROC curve analysis, we have identified AURKA and CDK2 as key targets of SANG in combating CA. Single-gene GSEA results suggest that the overexpression of AURKA and CDK2 is closely correlated with DNA replication, cell cycle progression, and various DNA repair pathways in CA. Molecular docking and molecular simulation dynamics analyses have confirmed the stable binding of both AURKA and CDK2 to SANG. In summary, by integrating diverse methodological approaches, this study discovered that SANG potentially inhibits the malignant features of CA by targeting AURKA and CDK2, thereby regulating DNA replication, cell cycle progression, and multiple DNA repair pathways. This lays a solid foundation for further exploring the pharmacological role of SANG in CA therapy. However, further in-depth in vitro and in vivo experiments are required to corroborate our findings.
Collapse
Affiliation(s)
- Xiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Qi You
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
7
|
Mi L, Zhang H. Myriad factors and pathways influencing tumor radiotherapy resistance. Open Life Sci 2024; 19:20220992. [PMID: 39655194 PMCID: PMC11627069 DOI: 10.1515/biol-2022-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Radiotherapy is a cornerstone in the treatment of various tumors, yet radioresistance often leads to treatment failure and tumor recurrence. Several factors contribute to this resistance, including hypoxia, DNA repair mechanisms, and cancer stem cells. This review explores the diverse elements that drive tumor radiotherapy resistance. Historically, resistance has been attributed to cellular repair and tumor repopulation, but recent research has expanded this understanding. The tumor microenvironment - characterized by hypoxia, immune evasion, and stromal interactions - further complicates treatment. Additionally, molecular mechanisms such as aberrant signaling pathways, epigenetic modifications, and non-B-DNA structures play significant roles in mediating resistance. This review synthesizes current knowledge, highlighting the interplay of these factors and their clinical implications. Understanding these mechanisms is crucial for developing strategies to overcome resistance and improve therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Lanjuan Mi
- School of Life and Health Sciences, Huzhou College, Hu Zhou, China
| | - Hongquan Zhang
- The First Affiliated Hospital of Huzhou University, Hu Zhou, China
| |
Collapse
|
8
|
Yang H, Gong C, Wu Y, Xie X, Chen Y, Li Z, Shi Q, Liu J, Gao N, He B, Wang C, Liao Q, Bai J, Xiao Y. LncRNA SNHG1 facilitates colorectal cancer cells metastasis by recruiting HNRNPD protein to stabilize SERPINA3 mRNA. Cancer Lett 2024; 604:217217. [PMID: 39233042 DOI: 10.1016/j.canlet.2024.217217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Metastasis continues to negatively impact individuals diagnosed with colorectal cancer (CRC). Research has revealed the important role of long noncoding RNAs (lncRNAs) in CRC metastasis, but the underlying mechanisms remain unclear. Here, we revealed that the lncRNA small nucleolar RNA host gene 1 (SNHG1) is expressed at higher levels in metastatic CRC tissues than in primary CRC tissues, and that high lncRNA SNHG1 expression indicates poor patient outcomes. We found that lncRNA SNHG1 promotes the migration and invasion of tumor cells both in vivo and in vitro. Moreover, lncRNA SNHG1 increases serpin family A member 3 (SERPINA3) mRNA stability by interacting with the heterogeneous nuclear ribonucleoprotein D (HNRNPD) protein, and subsequently upregulates SERPINA3 expression. Moreover, HNRNPD and SERPINA3 reversed the effects of lncRNA SNHG1 knockdown on CRC cell metastasis. In conclusion, we report that the lncRNA SNHG1 recruits HNRNPD, in turn upregulating SERPINA3 expression and ultimately facilitating CRC cell migration and invasion. Targeting the lncRNA SNHG1/HNRNPD/SERPINA3 signaling pathway might be a therapeutic option for preventing CRC metastasis.
Collapse
Affiliation(s)
- Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiuyue Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, 530021, China
| | - Jiao Liu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Liaoning, 110003, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
9
|
Du J, Chen F, Chen Z, Zhao W, Wang J, Zhou M. LncRNA LINC01664 promotes cancer resistance through facilitating homologous recombination-mediated DNA repair. DNA Repair (Amst) 2024; 143:103770. [PMID: 39357141 DOI: 10.1016/j.dnarep.2024.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Jie Du
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China; Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihan Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenna Zhao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianyu Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Youssef A, Sahgal A, Das S. Radioresistance and brain metastases: a review of the literature and applied perspective. Front Oncol 2024; 14:1477448. [PMID: 39540151 PMCID: PMC11557554 DOI: 10.3389/fonc.2024.1477448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Intracranial metastatic disease is a serious complication of cancer, treated through surgery, radiation, and targeted therapies. The central role of radiation therapy makes understanding the radioresistance of metastases a priori a key interest for prognostication and therapeutic development. Although historically defined clinic-radiographically according to tumour response, developments in new techniques for delivering radiation treatment and understanding of radioprotective mechanisms led to a need to revisit the definition of radioresistance in the modern era. Factors influencing radioresistance include tumour-related factors (hypoxia, cancer stem cells, tumour kinetics, tumour microenvironment, metabolic alterations, tumour heterogeneity DNA damage repair, non-coding RNA, exosomes, methylomes, and autophagy), host-related factors (volume effect & dose-limiting non-cancerous tissue, pathophysiology, and exosomes), technical factors, and probabilistic factors (cell cycle and random gravity of DNA damage). Influences on radioresistance are introduced and discussed in the context of brain metastases.
Collapse
Affiliation(s)
- Andrew Youssef
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Guo Z, Guan K, Bao M, He B, Lu J. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function. Pathol Res Pract 2024; 260:155460. [PMID: 39032384 DOI: 10.1016/j.prp.2024.155460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND LINC-PINT was downregulated in nasopharyngeal carcinoma (NPC) and correlated with treatment efficiency of NPC. However, the underlying mechanism of LINC-PINT in NPC has not yet been fully explored. METHOD We used CellTiter luminescent assay, clone formation assay, Hoechst staining, and SYTO-9/PI staining to examine cell viability and cell apoptosis regulated by LINC-PINT in NPC cells. Xenograft tumor model, HE staining, Ki67 staining, and TUNEL assay were conducted to assess the role of LINC-PINT in vivo. Bioinformatics and RNA immunoprecipitation assay was performed to identify the binding protein of LINC-PINT. Fluorescence in situ hybridization and immunofluorescence were utilized to measure the colocalization of XRCC6 with LINC-PINT and DNA-PKcs. Mito-Tracker red CMXRos staining was used to label mitochondria in cells specifically. RESULT We found LINC-PINT was downregulated in many tumors (including NPC) and associated with poor prognosis. The cell viability was significantly inhibited and cell apoptosis was remarkably promoted in LINC-PINT overexpressed cells in contrast to control cells. The growth of tumor xenografts was significantly suppressed and the tumor weight was significantly decreased in LINC-PINT overexpression group compared to the control group. Correspondingly, the positive Ki67 foci was decreased while TUNEL foci was increased in LINC-PINT overexpression group. Mechanically, we verified XRCC6 as a new binding protein of LINC-PINT through RNA binding domains prediction, RIP and colocalization of LINC-PINT and XRCC6. By binding to XRCC6, LINC-PINT interfered the formation of DNA-PK complex, regulated mitochondria accumulation status and affected the modification of apoptosis proteins, leading to more cell apoptosis. CONCLUSION Our study provided the first evidence that LINC-PINT promotes cell apoptosis in NPC by binding to XRCC6 and affecting its function.
Collapse
Affiliation(s)
- Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; The First Clinical College, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - KeYan Guan
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China.
| | - MeiHua Bao
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - BinSheng He
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - JiaoYang Lu
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; School of Nursing, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
13
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
15
|
Zhou H, Lei Y, Luo J, Wang J, Peng L, Mou K, Xiang L, Luo Y. Comprehensive analysis revealed P4Hs as new biomarkers for prognosis and immunotherapy in head and neck cancer. Sci Rep 2024; 14:12234. [PMID: 38806556 PMCID: PMC11133445 DOI: 10.1038/s41598-024-62678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) are a family of key modifying enzymes in collagen synthesis. P4Hs have been confirmed to be closely associated with tumor occurrence and development. However, the expression of P4Hs in head and neck cancer (HNSC) as well as its relationship with prognosis and tumor immunity infiltration has not yet been analyzed. We investigated the transcriptional expression, survival data, and immune infiltration of P4Hs in patients with HNSC from multiple databases. P4H1-3 expression was significantly higher in HNSC tumor tissues than in normal tissues. Moreover, P4HA1 and P4HA2 were associated with tumor stage, patient prognosis, and immune cell infiltration. P4HA3 was related to patient prognosis and immune cell infiltration. Correlation experiments confirmed that P4HA1 may serve as a prognosis biomarker and plays a role in the progression of nasopharyngeal carcinoma. These findings suggest that P4HA1-3 may be a novel biomarker for the prognosis and treatment of HNSC, which is expected to support the development of new therapies for patients with head and neck tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Department of Oncology, The Affiliated Tianfu Hospital of Southwest Medical University, Meishan, China.
| |
Collapse
|
16
|
Qu H, Wang Y, Yan Q, Fan C, Zhang X, Wang D, Guo C, Chen P, Shi L, Liao Q, Zhou M, Wang F, Zeng Z, Xiang B, Xiong W. CircCDYL2 bolsters radiotherapy resistance in nasopharyngeal carcinoma by promoting RAD51 translation initiation for enhanced homologous recombination repair. J Exp Clin Cancer Res 2024; 43:122. [PMID: 38654320 PMCID: PMC11036759 DOI: 10.1186/s13046-024-03049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Xiangyan Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
17
|
Zhu S, Li R, Yin K, Wu L. CPNE1, A Potential Therapeutic Target in Nasopharyngeal Carcinoma, Affects Cell Growth and Radiation Resistance. Radiat Res 2024; 201:310-316. [PMID: 38355101 DOI: 10.1667/rade-23-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The increased expression of Copine 1 (CPNE1) has been observed in various cancers, which promotes cell proliferation, apoptosis, and radio resistance. However, the potential mechanism of CPNE1 in nasopharyngeal carcinoma (NPC) remains elusive. Consequently, our objective was to investigate the role of CPNE1 in regulating proliferation and radio resistance of NPC. CPNE1 expression in NPC and normal patients were obtained from Cancer Genome Atlas (TCGA) database. An elevated CPNE1 was observed in NPC patients and cells (C666-1, SUNE-1, and HNE-1). Then, C666-1 and SUNE-1 cells were subjected to si-CPNE1 under different radiations (0-8 Gy). Cell growth and proliferation were measured by CCK8 and EDU assays, which demonstrated si-CPNE1 suppressed proliferation. Colony formation was performed to detect cell viability under different radiation therapy and survival curve of cell was plotted, which indicated that CPNE1 knockdown improved cell radiosensitivity. Additionally, flow cytometry showed silence of CPNE1 enhanced apoptosis rate in radiated cells. To further investigate the mechanisms of CPNE1 regulating NPC, the expression of activated phosphate Akt (p-Akt) was assessed through western blotting. We observed elevated p-Akt in si-CPNE1 transfected C666-1 and SUNE-1 cells. In conclusion, these results demonstrated that CPNE1 expression is elevated in nasopharyngeal carcinoma cells, and its silencing could attenuate nasopharyngeal carcinoma advancement and improve radiosensitivity to radiation therapy by controlling Akt activation.
Collapse
Affiliation(s)
- Shujuan Zhu
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Kun Yin
- Department of Radiotherapy Oncology, Anhui Jimin Cancer Hospital, Hefei, Anhui, 230001, China
| | - Liming Wu
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| |
Collapse
|
18
|
Wei X, Yi J, Zhang C, Wang M, Wang R, Xu W, Zhao M, Zhao M, Yang T, Wei W, Jin S, Gao H. Enhancement of the Tumor Suppression Effect of High-dose Radiation by Low-dose Pre-radiation Through Inhibition of DNA Damage Repair and Increased Pyroptosis. Dose Response 2024; 22:15593258241245804. [PMID: 38617388 PMCID: PMC11010768 DOI: 10.1177/15593258241245804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.
Collapse
Affiliation(s)
- Xinfeng Wei
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Citong Zhang
- Department of Oral Comprehensive Therapy, School of Stomatology, Jilin University, Changchun, China
| | - Mingwei Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Mengdie Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Teng Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Hui Gao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Zhou H, Wang YX, Wu M, Lan X, Xiang D, Cai R, Ma Q, Miao J, Fang X, Wang J, Luo D, He Z, Cui Y, Liang P, Wang Y, Bian XW. FANCD2 deficiency sensitizes SHH medulloblastoma to radiotherapy via ferroptosis. J Pathol 2024; 262:427-440. [PMID: 38229567 DOI: 10.1002/path.6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Zhou
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Min Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Xuanyu Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Junjie Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dan Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| | - Xiu-Wu Bian
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| |
Collapse
|
20
|
Li J, Guo S, Li T, Hu S, Xu J, Xu X. Long non-coding RNA CCAT1 acts as an oncogene to promote radiation resistance in lung adenocarcinoma: an epigenomics-based investigation. Funct Integr Genomics 2024; 24:52. [PMID: 38448654 DOI: 10.1007/s10142-024-01330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Long non-coding RNAs (lncRNAs) appear to be the crucial modulators in various processes and critically influence the oncogenesis. As one of the LncRNAs, LncRNA CCAT1 has been reported to be closely associated with the progression multiple cancers, but its role in modulating the radioresistance of lung adenocarcinoma (LUAD) remains unclear. In our present study, we screened the potential radioresistance related LncRNAs in LUAD based on the data from The Cancer Genome Atlas (TCGA) database. Data suggested that CCAT1 was abundantly expressed in LUAD and CCAT1 was significantly associated with poor prognosis and radioresistance. Moreover, our in vitro experiments showed that radiation treatment could trigger elevated expression of CCAT1 in the human LUAD cell lines. Further loss/gain-of-function investigations indicated that CCAT1 knockdown significantly inhibited cell proliferation, migration and promoted cell apoptosis in NCI-H1299 cells under irradiation, whereas CCAT1 overexpression in A549 cells yield the opposite effects. In summary, we identified the promoting role of CCAT1 in radioresistance of LUAD, which may provide a theoretical basis for radiotherapy sensitization of LUAD.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Shengnan Guo
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Tianhao Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Songliu Hu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Jianyu Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Xiangying Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China.
- Department of Radiotherapy, The Third Affilliated Hospital of Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
21
|
Hsu HT, Lu YT, Chen YT, Hsing MT, Su CW, Su SC, Lin CW, Yang SF. Impact of LINC00312 gene polymorphism coupled with habitual risks on buccal mucosa cancer. J Cancer 2024; 15:2354-2360. [PMID: 38495489 PMCID: PMC10937282 DOI: 10.7150/jca.94187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent and lethal malignancy with a diverse etiology. LINC00312 is a long intergenic non-coding RNA that functions as a signal hub to regulate the progression and treatment of head and neck cancer. The aim of this study was to evaluate the effect of LINC00312 single nucleotide polymorphisms (SNPs) on the development of oral cancer. Two LINC00312 SNPs, namely rs12497104 and rs164966, were investigated among 469 male patients with cancer of buccal mucosa and 1194 gender- and age-matched controls. No significant correlation was observed between these two SNPs and the occurrence of OSCC in the case and control groups. While assessing the clinicopathological features, carriers of at least one minor allele of rs164966 (GA and GG) were less prone to develop lymph node metastasis (adjusted odds ratio [AOR], 0.666; 95% confidence interval [CI], 0.447-0.991; p=0.045) in comparison with homozygous carriers of the major allele (AA). Subsequent stratifying surveys revealed that this genetic association with nodal spread was seen only in cases who habitually chewed betel quid (AOR, 0.616; 95% CI, 0.386-0.985; p=0.042) or smoked cigarettes (AOR, 0.612; 95% CI, 0.393-0.953; p=0.029), but undetected in cases free of these main behavioral risks. Our results indicate an interactivity of LINC00312 rs164966 with lifestyle-related risks on modulating OSCC progression.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Ting Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Yi-Tzu Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Tai Hsing
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Yang Y, Yuan Q, Tang W, Ma Y, Duan J, Yang G, Fang Y. Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1346413. [PMID: 38487724 PMCID: PMC10937456 DOI: 10.3389/fonc.2024.1346413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC.
Collapse
Affiliation(s)
- Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - QuPing Yuan
- Puer People’s Hospital, Department of Critical Medicine, PuEr, Yunnan, China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Ya Ma
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - JingYan Duan
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - GuoNing Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - Yuan Fang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
23
|
Yu P, Ye J, Zhao S, Cai Y. lncRNAs are potential prognostic markers in patients with nasopharyngeal carcinoma in China: A systematic review and meta‑analysis. Mol Clin Oncol 2024; 20:11. [PMID: 38213659 PMCID: PMC10777463 DOI: 10.3892/mco.2023.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
The present study aimed to investigate the association between the expression profiles of long non-coding RNAs (lncRNAs) and the clinical characteristics or prognosis of patients with nasopharyngeal carcinoma (NPC). The findings presented in the present review may provide novel strategies for the prevention and treatment of NPC. For the analyses, medical databases, including PubMed, Web of Science and Cochrane library were searched using specific search terms, search strategies and screening strategies. Endnote X9 document management software was then employed to extract documents from January, 2010 to May, 2023. Data were extracted following the prescribed standards. Review Manager 5.4 and STATA 12.0 data analysis software were used for data analysis. A total of 490 publications were analyzed for inclusion. In total, 29 publications, composed of 24 studies with upregulated lncRNAs and 5 studies with downregulated lncRNAs, were included in the final analysis. The analysis revealed that the upregulation of lncRNAs was significantly associated with T stage, N stage and clinical stage, as well as with the overall survival (OS) and disease-free survival (DFS) of patients with NPC (P<0.05). However, there was no significant association between the upregulated lncRNAs and sex, M stage or relapse-free survival (RFS) (P>0.05). On the other hand, the suppression of lncRNA expression was significantly associated with N stage, M stage, clinical stage and the OS of patients with NPC (P<0.05), but not with T stage and RFS (P>0.05). Taken together, the present review demonstrates that the up- and downregulation of different lncRNAs was associated with an advanced clinical stage and a shorter OS of patients with NPC. Therefore, lncRNAs may serve as potential prognostic factors in NPC.
Collapse
Affiliation(s)
- Peng Yu
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jiemei Ye
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543002, P.R. China
| | - Shujian Zhao
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543002, P.R. China
| | - Yonglin Cai
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543002, P.R. China
- Department of Preventive Medicine, Wuzhou Cancer Center, Wuzhou, Guangxi Zhuang Autonomous Region 543002, P.R. China
| |
Collapse
|
24
|
Li F, Wang W, Lai G, Lan S, Lv L, Wang S, Liu X, Zheng J. Development and validation of a novel lysosome-related LncRNA signature for predicting prognosis and the immune landscape features in colon cancer. Sci Rep 2024; 14:622. [PMID: 38182713 PMCID: PMC10770065 DOI: 10.1038/s41598-023-51126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024] Open
Abstract
Lysosomes are essential components for managing tumor microenvironment and regulating tumor growth. Moreover, recent studies have also demonstrated that long non-coding RNAs could be used as a clinical biomarker for diagnosis and treatment of colorectal cancer. However, the influence of lysosome-related lncRNA (LRLs) on the progression of colon cancer is still unclear. This study aimed to identify a prognostic LRL signature in colon cancer and elucidated potential biological function. Herein, 10 differential expressed lysosome-related genes were obtained by the TCGA database and ultimately 4 prognostic LRLs for conducting a risk model were identified by the co-expression, univariate cox, least absolute shrinkage and selection operator analyses. Kaplan-Meier analysis, principal-component analysis, functional enrichment annotation, and nomogram were used to verify the risk model. Besides, the association between the prognostic model and immune infiltration, chemotherapeutic drugs sensitivity were also discussed in this study. This risk model based on the LRLs may be promising for potential clinical prognosis and immunotherapeutic responses related indicator in colon cancer patients.
Collapse
Affiliation(s)
- Fengming Li
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Wenyi Wang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen, China
| | - Guanbiao Lai
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shiqian Lan
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liyan Lv
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shengjie Wang
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, Fujian, China.
| | - Xinli Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Juqin Zheng
- Center of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.
| |
Collapse
|
25
|
Liao J, Qing X, Li X, Gan Y, Wang R, Han S, Li W, Song W. TRAF4 regulates ubiquitination-modulated survivin turnover and confers radioresistance. Int J Biol Sci 2024; 20:182-199. [PMID: 38164179 PMCID: PMC10750280 DOI: 10.7150/ijbs.87180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. Despite continuous improvement in treatment strategies, recurrence or persistence of cancer after radiotherapy is still inevitable, highlighting the need to identify therapeutic resistance factors and develop effective methods for NPC treatment. Herein, we found that TRAF4 is overexpressed in NPC cells and tissues. Knockdown TRAF4 significantly increased the radiosensitivity of NPC cells, possibly by inhibiting the Akt/Wee1/CDK1 axis, thereby suppressing survivin phosphorylation and promoting its degradation by FBXL7. TRAF4 is positively correlated with p-Akt and survivin in NPC tissues. High protein levels of TRAF4 were observed in acquired radioresistant NPC cells, and knockdown of TRAF4 overcomes radioresistant in vitro and the xenograft mouse model. Altogether, our study highlights the TRAF4-survivin axis as a potential therapeutic target for radiosensitization in NPC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wei Song
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| |
Collapse
|
26
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Xie W, Wang W, Meng S, Wu X, Liu X, Liu Y, Kang X, Su Y, Lv X, Guo L, Wang C. A novel hypoxia-stimulated lncRNA HIF1A-AS3 binds with YBX1 to promote ovarian cancer tumorigenesis by suppressing p21 and AJAP1 transcription. Mol Carcinog 2023; 62:1860-1876. [PMID: 37589417 DOI: 10.1002/mc.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Hypoxia is characteristic of the ovarian tumor (OC) microenvironment and profoundly affects tumorigenesis and therapeutic response. Long noncoding RNAs (lncRNAs) play various roles in tumor progression; however, the characteristics of lncRNAs in pathological responses of the OC microenvironment are not entirely understood. Through high-throughput sequencing, lncRNA expression in hypoxia (1% O2 ) and normoxia (21% O2 ) SKOV3 cells was explored and analyzed. The 5'- and 3'-rapid amplification of complementary DNA ends was used to detect the full length of the novel HIF1A-AS3 transcript. Real-time quantitative polymerase chain reaction was used to assess HIF1A-AS3 expression in OC cells and tissues. In vitro and in vivo evaluations of the biological functions of hypoxic HIF1A-AS3 were conducted. To clarify the underlying mechanisms of HIF1A-AS3 in hypoxic OC, a dual-luciferase assay, chromatin immunoprecipitation, RNA pull-down, RNA immunoprecipitation, and RNA-sequencing were used. We used high-throughput sequencing to investigate a novel lncRNA, HIF1A-AS3, as a hypoxic candidate significantly elevated in OC cells/tissues. HIF1A-AS3 was predominantly localized in the nucleus and promoted in vitro and in vivo OC growth and tumorigenesis. Hypoxia-inducible factor 1α bound to hypoxia response elements in the HIF1A-AS3 promoter region and stimulated its expression in hypoxia. Under hypoxia, HIF1A-AS3 directly integrated with Y-Box binding protein 1 and inhibited its ability to bind to the promoters of p21 and AJAP1 to repress their transcriptional activity, thereby promoting hypoxic OC progression. Our results revealed the crucial role and mechanism of the novel hypoxic HIF1A-AS3 in the oncogenesis of OC. The novel HIF1A-AS3 could be a crucial biomarker and therapeutic target for future OC treatments.
Collapse
Affiliation(s)
- Wan Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Silu Meng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhuan Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Yan J, Zhou Q. LncRNA FOXP4-AS1 silencing inhibits metastasis and epithelial-mesenchymal transition in nasopharyngeal carcinoma via miR-136-5p/MAPK1. Anticancer Drugs 2023; 34:1104-1111. [PMID: 36961080 PMCID: PMC10569675 DOI: 10.1097/cad.0000000000001510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor caused by nasopharyngeal epithelium. Long non-coding RNAs (lncRNAs) and microRNAs have been identified as vital regulators in many tumors, including NPC. This study aimed to explain the biological roles and relevant mechanisms of lncRNA FOXP4-AS1 (FOXP4-AS1) in NPC. The levels of lncRNA FOXP4-AS1, miR-136-5p and MAPK1 in C666-1 and NP69 cells were analyzed by quantitative reverse transcription PCR (qRT-PCR). C666-1 cells viability, migration and invasion were evaluated by MTT and Transwell assay, respectively. The target gene of miR-136-5p predicted by TargetScan was further verified using dual luciferase reporter assay. Moreover, qRT-PCR and Western blot were adopted to assess epithelial-mesenchymal transition (EMT)-related gene expression, including E-cadherin and N-cadherin. We found that lncRNA FOXP4-AS1 was upregulated, while miR-136-5p was low-expressed in C666-1 cells, as opposed to NP69. Knockdown of FOXP4-AS1 notably suppressed C666-1 cell growth, inhibited cell migration and invasion. We also observed that E-cadherin expression was fortified and N-cadherin level was decreased in C666-1 cells after FOXP4-AS1-siRNA transfection. However, all these findings were eliminated in C666-1 cells after miR-136-5p inhibitor treatment. We also found miR-136-5p directly targeted MAPK1 and correlated inversely with MAPK1 expression in C666-1 cells. Further investigation suggested that MAPK1-plasmid reversed the effects of miR-136-5p mimic on cells viability, migration, invasion and EMT. To conclude, our data revealed that lncRNA FOXP4-AS1 knockdown alleviated metastasis and EMT in NPC via miR-136-5p/MAPK1, indicating that lncRNA FOXP4-AS1 may be a valuable therapeutic target for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Jin Yan
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qi Zhou
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Wang Q, Li XF, Zhou YH, Qin XH, Wang LH, Xiao MQ, Cao K, Ma JK, Huang CH. Long noncoding RNA BBOX1-AS1 increased radiotherapy sensitivity in colorectal cancer by stabilizing and activating PFK1. Transl Oncol 2023; 36:101751. [PMID: 37544035 PMCID: PMC10423889 DOI: 10.1016/j.tranon.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
PURPOSE Our study explored the effect of long noncoding RNA BBOX1-AS1 on colorectal cancer (CRC) radiosensitivity in vivo and in vitro. METHODS Differentially expressed lncRNAs in CRC were screened using a bioinformatics database and an online prediction website. The expression of BBOX1-AS1 in tissue samples was analyzed via real-time quantitative PCR (RT-qPCR). Subcellular localization of BBOX1-AS1 in CRC cells was analyzed using fluorescence in situ hybridization (FISH). The correlation between BBOX1-AS1 and PFK1 expression levels in CRC tissues was analyzed via Pearson's correlation coefficient. The effect of BBOX1-AS1 on PFK1 stability was investigated using RNA and protein stability testing. RNA Binding Protein Immunoprecipitation (RIP) and RNA pull-down assays were used to confirm the binding of BBOX1-AS1 to PFK1. RESULTS BBOX1-AS1 was highly expressed in CRC and associated with poor prognosis. Similarly, it was highly expressed in CRC tissues and CRC cell lines. In addition, BBOX1-AS1 promoted the proliferation, invasion, migration, and glycolysis of CRC cells and inhibited apoptosis. RIP and RNA pull-down experiments confirmed that BBOX1-AS1 bound to PFK1. RNA stability and protein stability experiments showed that BBOX1-AS1 affected the stability of PFK1 mRNA and protein. Furthermore, we confirmed that BBOX1-AS1 increased radiation resistance through the regulation of PFK1 expression. CONCLUSIONS BBOX1-AS1 promoted the proliferation, invasion, migration, and glycolysis of CRC cells through stabilization of the expression of PFK1. BBOX1-AS1 also inhibited CRC cell apoptosis and increased radiotherapy resistance in CRC cells.
Collapse
Affiliation(s)
- Qi Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiao-Fei Li
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital) , Chengdu, 610051, Sichuan, China
| | - Ying-Hui Zhou
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiang-Hong Qin
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Li-Hui Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Meng-Qing Xiao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - John K Ma
- Cotton O'Neil Cancer Center, Stormont Vail Hospital, Topeka, KS, USA
| | - Cheng-Hui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
30
|
Gao L, Zhang X, Cui J, Liu L, Tai D, Wang S, Huang L. Transcription factor TP63 mediates LncRNA CNTFR-AS1 to promote DNA damage induced by neodymium oxide nanoparticles via homologous recombination repair. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122191. [PMID: 37451587 DOI: 10.1016/j.envpol.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of neodymium oxide nanoparticles (NPs-Nd2O3) has caused environmental pollution and human health problems, thus attracting significant attention. Understanding the mechanisms of NPs- Nd2O3-induced genetic damage is of great significance for identifying early markers for NPs- Nd2O3-induced lung injury. At present, the mechanisms underlying DNA damage induced by NPs- Nd2O3 remain unclear. In this study, we performed functional assays on human bronchial epithelial cells (16HBEs) exposed to various concentrations of NPs-Nd2O3 and SD rats administered with a single intratracheal instillation with NPs-Nd2O3. Exposure to NPs-Nd2O3 could lead to DNA damage in 16HBE cells and rat lung tissue cells. We found a novel long non-coding RNA, named CNTFR-AS1, which was highly expressed after exposure to NPs-Nd2O3. Our data verified that transcription factor TP63 mediates the high expression levels of CNTFR-AS1, which in turn regulates NPs-Nd2O3-induced DNA damage in cells by inhibiting HR repair. Moreover, the levels of CNTFR-AS1 were correlated with the number of years worked by occupational workers. Collectively, these results demonstrate that CNTFR-AS1 acts as a novel DNA damage regulator in bronchial epithelial cells exposed to NPs-Nd2O3. Hence, our data provide a basis for the identification of lncRNAs as early diagnostic markers for rare earth lung injury.
Collapse
Affiliation(s)
- Lei Gao
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Xia Zhang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Ling Liu
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Dapeng Tai
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, China.
| |
Collapse
|
31
|
Thapa R, Afzal O, Bhat AA, Goyal A, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Singh SK, Dua K, Thangavelu L, Gupta G. New horizons in lung cancer management through ATR/CHK1 pathway modulation. Future Med Chem 2023; 15:1807-1818. [PMID: 37877252 DOI: 10.4155/fmc-2023-0164] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Molecular profiling has contributed to a new classification of lung cancer, driving advancements in research and therapy. The ataxia telangiectasia and rad3/checkpoint kinase 1 (ATR/CHK1) pathway plays a crucial role in maintaining genomic stability, and its activation has been linked to the development of lung cancer, drug resistance and poor prognosis. Clinical and preclinical studies have demonstrated promising results in targeting this pathway. ATR and CHK1 are proteins that collaborate to repair DNA damage caused by radiation or chemotherapy. ATR/CHK1 inhibitors are currently under investigation in preclinical and clinical trials. This article explores the ATR/CHK1 pathway and its potential for treating lung cancer.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P., India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University Dehradun, 248007, India
| |
Collapse
|
32
|
Chen Y, Shen H, Liu T, Cao K, Wan Z, Du Z, Wang H, Yu Y, Ma S, Lu E, Zhang W, Cai J, Gao F, Yang Y. ATR-binding lncRNA ScaRNA2 promotes cancer resistance through facilitating efficient DNA end resection during homologous recombination repair. J Exp Clin Cancer Res 2023; 42:256. [PMID: 37775817 PMCID: PMC10542231 DOI: 10.1186/s13046-023-02829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Our previous study first showed that ATR-binding long noncoding RNA (lncRNA) is necessary for ATR function and promotes cancer resistance. However, the specific lncRNAs instrumental in ATR activation remain largely unclear, which limits our comprehensive understanding of this critical biological process. METHODS RNA immunoprecipitation (RIP) followed by RNA sequencing was employed to identify ATR-binding lncRNAs, which were further validated using RIP-qPCR assays. Immunofluorescence staining and Western blotting were applied to detect the activation of DNA damage repair factors. After the effect of scaRNA2 on cellular sensitivity to DNA-damaging reagents was determined, the effects of scaRNA2 on radiotherapy were investigated in patient-derived organoids and xenograft preclinical models. The clinical relevance of scaRNA2 was also validated in tissues isolated from rectal cancer patients. RESULTS ScaRNA2 was identified as the most enriched ATR-binding lncRNA and was found to be essential for homologous recombination (HR) mediated DNA damage repair. Furthermore, scaRNA2 knockdown abrogated the recruitment of ATR and its substrates in response to DNA damage. Mechanistically, scaRNA2 was observed to be necessary for Exo1-mediated DNA end resection and bridged the MRN complex to ATR activation. Knockdown of scaRNA2 effectively increased the sensitivity of cancer cells to multiple kinds of DNA damage-related chemoradiotherapy. Preclinically, knockdown of scaRNA2 improved the effects of radiotherapy on patient-derived organoids and xenograft models. Finally, an increase in scaRNA2 colocalized with ATR was also found in clinical patients who were resistant to radiotherapy. CONCLUSIONS ScaRNA2 was identified as the most abundant lncRNA bound to ATR and was demonstrated to bridge DNA end resection to ATR activation; thus, it could be applied as a potent target for combined cancer treatments with chemoradiotherapy.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Hui Shen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Zhipeng Du
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, China
| | - Hang Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Yue Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shengzhe Ma
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Edward Lu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
33
|
Miao J, Chen B, Xiao Y, Huang R, Xiao X, Lu S, Zhang L, Wang X, Ouyang Y, Chen X, Chen Q, Xiang Y, Guo X, Deng X, Wang L, Mai H, Zhao C. Long noncoding RNA LINC00173 induces radioresistance in nasopharyngeal carcinoma via inhibiting CHK2/P53 pathway. Cancer Gene Ther 2023; 30:1249-1259. [PMID: 37258811 DOI: 10.1038/s41417-023-00634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Radiotherapy is the backbone of nasopharyngeal carcinoma (NPC), nearly 11-17% NPC patients suffered local relapse and 18-37% suffered distant metastasis mainly due to radioresistance. Therefore, the key of improving patients' survivals is to investigate the mechanism of radioresistance. In this study, we revealed that the expression level of long intergenic nonprotein coding RNA 173 (LINC00173) was significantly increased in the radioresistant NPC patients' tumour tissues compared with the radiosensitive patients by RNA-sequencing, which also predict poor prognosis in NPC. Overexpression of LINC00173 induced radioresistance of NPC cells in vitro and in vivo. Mechanistically, LINC00173 bound with checkpoint kinase 2 (CHK2) in nucleus, and impaired the irradiation-induced CHK2 phosphorylation, then suppressed the activation of P53 signalling pathway, which eventually inhibiting apoptosis and leading to radioresistance in NPC cells. In summary, LINC00173 decreases the occurrence of apoptosis through inhibiting the CHK2/P53 pathway, leads to NPC radioresistance and could be considered as a novel predictor and therapeutic target in NPC.
Collapse
Affiliation(s)
- Jingjing Miao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Boyu Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Runda Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiao Xiao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Shunzhen Lu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Lu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xuguang Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Qiuyan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiaowu Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Chong Zhao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Zhao Z, Mak TK, Shi Y, Huang H, Huo M, Zhang C. The DNA damage repair-related lncRNAs signature predicts the prognosis and immunotherapy response in gastric cancer. Front Immunol 2023; 14:1117255. [PMID: 37457685 PMCID: PMC10339815 DOI: 10.3389/fimmu.2023.1117255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers, and it has unsatisfactory overall treatment outcomes. DNA damage repair (DDR) is a complicated process for signal transduction that causes cancer. lncRNAs can influence the formation and incidence of cancers by influencing DDR-related mRNAs/miRNAs. A DDR-related lncRNA prognostic model is urgently needed to improve treatment strategies. Methods The data of GC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. A total of 588 mRNAs involved in DDR were selected from MSigDB, 62 differentially expressed mRNAs from TCGA-STAD were obtained, and 137 lncRNAs were correlated with these mRNAs. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used to develop a DDR-related lncRNA prognostic model. Based on the risk model, the differentially expressed gene signature A/B in the low-risk and high-risk groups of TCGA-STAD was identified for further validation. Results The prognosis model of 5 genes (AC145285.6, MAGI2-AS3, AL590705.3, AC007405.3, and LINC00106) was constructed and classified into two risk groups. We found that GC patients with a low-risk score had a better OS than those with a high-risk score. We found that the high-risk group tended to have higher TME scores. We also found that patients in the high-risk group had a higher proportion of resting CD4 T cells, monocytes, M2 macrophages, resting dendritic cells, and resting mast cells, whereas the low-risk subgroup had a greater abundance of activated CD4 T cells, follicular helper T cells, M0 macrophages, and M1 macrophages. We observed significant differences in the T-cell exclusion score, T-cell dysfunction, MSI, and TMB between the two risk groups. In addition, we found that patients treated with immunotherapy in the low-RS score group had a longer survival and a better prognosis than those in the high-RS score group. Conclusion The prognostic model has a significant role in the TME, clinicopathological characteristics, prognosis, MSI, and drug sensitivity. We also discovered that patients treated with immunotherapy in the low-RS score group had a better prognosis. This work provides a foundation for improving the prognosis and response to immunotherapy among patients with GC.
Collapse
Affiliation(s)
- Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuntao Shi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
37
|
Tsai CW, Shih LC, Chang WS, Hsu CL, He JL, Hsia TC, Wang YC, Gu J, Bau DT. Non-Homologous End-Joining Pathway Genotypes Significantly Associated with Nasopharyngeal Carcinoma Susceptibility. Biomedicines 2023; 11:1648. [PMID: 37371742 DOI: 10.3390/biomedicines11061648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Defects in the non-homologous end-joining (NHEJ) DNA repair pathway lead to genomic instability and carcinogenesis. However, the roles of individual NHEJ genes in nasopharyngeal carcinoma (NPC) etiology are not well-understood. The aim of this study was to assess the contribution of NHEJ genotypes, including XRCC4 (rs6869366, rs3734091, rs28360071, rs28360317, rs1805377), XRCC5 (rs828907, rs11685387, rs9288518), XRCC6 (rs5751129, rs2267437, rs132770, rs132774), XRCC7 rs7003908, and Ligase4 rs1805388, to NPC risk, with 208 NPC patients and 416 controls. Genotype-phenotype correlations were also investigated by measuring mRNA and protein expression in adjacent normal tissues and assessing the NHEJ repair capacity in blood lymphocytes from 43 NPC patients. The results showed significant differences in the distributions of variant genotypes at XRCC4 rs3734091, rs28360071, and XRCC6 rs2267437 between the cases and controls. The variant genotypes of these three polymorphisms were associated with significantly increased NPC risks. NPC patients with the risk genotypes at XRCC6 rs2267437 had significantly reduced expression levels of both mRNA and protein, as well as a lower NHEJ repair capacity, than those with the wild-type genotype. In conclusion, XRCC4 rs3734091, rs28360071, and XRCC6 rs2267437 in the NHEJ pathway were associated with NPC susceptibility. XRCC6 rs2267437 can modulate mRNA and protein expression and the NHEJ repair capacity.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Liang-Chun Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Che-Lun Hsu
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jie-Long He
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413305, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
38
|
Ding Y, Xiu H, Zhang Y, Ke M, Lin L, Yan H, Hu P, Xiao M, He X, Zhang T. Learning and Investigation of the Role of Angiotensin-Converting Enzyme in Radiotherapy for Nasopharyngeal Carcinoma. Biomedicines 2023; 11:1581. [PMID: 37371679 DOI: 10.3390/biomedicines11061581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is an important treatment for nasopharyngeal carcinoma (NPC) that mainly kills tumor cells by producing large amounts of reactive oxygen species (ROS). Intracellular ROS levels affect the sensitivity of tumor cells to IR. Recently, angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-converting enzyme (ACE) have been found to affect the intracellular levels of ROS. Therefore, we performed a health informatics assessment of ACE in the TCGA database. We explored the effect of ACE in NPC cells. We found that either knockdown of ACE or inhibition of ACE by enalaprilat could decrease ROS levels in NPC cells. Furthermore, knockdown of ACE or inhibition of ACE by enalaprilat could reduce IR-induced ROS levels. ACE knockdown or inhibition reduced IR-induced DNA damage and apoptosis. ACE overexpression increased the level of ROS in NPC cells and further increased sensitivity to IR. These findings indicate that ACE influences the effect of IR by regulating the level of ROS in NPC cells.
Collapse
Affiliation(s)
- Yanan Ding
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Huanhuan Xiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510062, China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Letao Lin
- Minimally Invasive Interventional Division, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huzheng Yan
- Department of Interventional Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Pan Hu
- Minimally Invasive Interventional Division, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meigui Xiao
- Minimally Invasive Interventional Division, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xu He
- Interventional Medical Center, Zhuhai People's Hospital, Zhuhai 519050, China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
39
|
Xu Q, Zhang P, Han X, Ren H, Yu W, Hao W, Luo B, Khan MI, Ni C. Role of ionizing radiation activated NRF2 in lung cancer radioresistance. Int J Biol Macromol 2023; 241:124476. [PMID: 37076059 DOI: 10.1016/j.ijbiomac.2023.124476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Radiotherapies are commonly used to target remaining tumor niches after surgery of solid tumors but are restricted due to therapeutic resistance. Several pathways of radioresistance have been reported in various cancers. This study investigates the pivotal role of Nuclear factor-erythroid 2-related factor 2 (NRF2) in the activation of DNA damage repair in lung cancer cells after x-rays exposure. To explore the NRF2 activation after ionizing irradiations, this study uses a knockdown of NRF2, which shows potential DNA damage after x-rays irradiation in lung cancers. This work further shows that NRF2 knockdown disrupts damaged DNA repair by inhibiting DNA-dependent protein kinase catalytic subunit. At the same time, NRF2 knockdown by shRNA considerably disparate homologous recombination by interfering with Rad51 expression. Further investigation of the associated pathway reveals that NRF2 activation mediates DNA damage response via the mitogen-activated protein kinase (MAPK) pathway as the knockout of NRF2 directly enhances intracellular MAPK phosphorylation. Similarly, both NAC and constitutive knockout of NRF2 disrupt DNA-dependent protein kinase catalytic subunit, while NRF2 knockout failed to upregulate Rad51 expression after irradiation in-vivo. Taken together, these findings advocate NRF2 plays a critical role in the development of radioresistance by upregulating DNA damage response via the MAPK pathway, which can be of great significance.
Collapse
Affiliation(s)
- Qianqian Xu
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Peiyu Zhang
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaoyang Han
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Huwei Ren
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Weiyue Yu
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Wei Hao
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Bowen Luo
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230026, Anhui, PR China; School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, PR China; Department of Pathology, District Headquarters Hospital, Jhang 35200, Punjab province, Pakistan..
| | - Chen Ni
- Teaching and Research section of Nuclear Medicine, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
40
|
Duan L, Huang J, Zhang Y, Pi G, Ying X, Zeng F, Hu D, Ma J. FOXK1 regulates epithelial-mesenchymal transition and radiation sensitivity in nasopharyngeal carcinoma via the JAK/STAT3 signaling pathway. Genes Genomics 2023; 45:749-761. [PMID: 37043129 DOI: 10.1007/s13258-023-01380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is the most common head and neck tumor in China. Forkhead box (FOX) proteins have 19 subfamilies, which can maintain cell metabolism, regulate cell cycle and cell growth, etc. FOXK1 is a member of the FOX family, and studies have found that FOXK1 is closely related to tumors. OBJECTIVE This experiment aims to study the effects of FOXK1 interference on proliferation, apoptosis, invasion, epithelial-mesenchymal transition (EMT), and radiosensitivity, by regulating the Janus kinas/signal translator and activator of the transfer 3 (JAK/STAT3) pathway. METHODS The expression of FOXK1 was detected via immunohistochemistry using clinical nasopharyngeal carcinoma tissues and adjacent tissues. The relationship between FOXK1 expression and tumor stage was subsequently evaluated. The colony formation rate was calculated through the colony formation experiment. Cell apoptosis and cell cycle distribution were detected using flow cytometry, while cell invasion was detected using the Transwell method. The number of cells in the nucleus of each group after 30 min, 4 h, and 24 h of radiotherapy with the 2 Gy dose was counted using immunofluorescence under γ-H2AX focal points of a laser confocal microscope. RESULTS FOXK1 is clearly expressed in the patients' cancer tissues. The expression of FOXK1 was significantly correlated with the patient's sex. FOXK1 interference or Peficitinib can upregulate the apoptosis rate of 5-8 F and CNE-2 cells; increase the G2 phase of cells; and inhibit the invasion, migration, and EMT of cells. At the same time, FOXK1 interference can downregulate the protein expression of p-JAK1, p-JAK2, and p-STAT3 in cells. Interference from FOXK1 or Peficitinib alone can reduce the rate of cell colony formation under different radiation doses, and enhance the green fluorescence intensity of γ-H2AX in the nucleus after 4 and 24 h of the 2 Gy dose of radiotherapy. These results are optimal when FOXK1 interference and Peficitinib are used together. CONCLUSION FOXK1 interference in NPC cells can regulate EMT through the JAK/STAT3 signal pathway, enhance the radiosensitivity of cells, and thus inhibit tumor cell progression.
Collapse
Affiliation(s)
- Liqun Duan
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Huang
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Pi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Ying
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanyu Zeng
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Ma
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
41
|
Huang HH, You GR, Tang SJ, Chang JT, Cheng AJ. Molecular Signature of Long Non-Coding RNA Associated with Areca Nut-Induced Head and Neck Cancer. Cells 2023; 12:cells12060873. [PMID: 36980216 PMCID: PMC10047708 DOI: 10.3390/cells12060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The areca nut is a high-risk carcinogen for head and neck cancer (HNC) patients in Southeast Asia. The underlying molecular mechanism of areca nut-induced HNC remains unclear, especially regarding the role of long non-coding RNA (lncRNA). This study employed a systemic strategy to identify lncRNA signatures related to areca nut-induced HNC. In total, 84 cancer-related lncRNAs were identified. Using a PCR array method, 28 lncRNAs were identified as being dysregulated in HNC cells treated with areca nut (17 upregulated and 11 downregulated). Using bioinformatics analysis of The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) dataset, 45 lncRNAs were differentially expressed in tumor tissues from HNC patients (39 over- and 6 under-expressions). The integrated evaluation showed 10 lncRNAs dysregulated by the areca nut and altered expression in patients, suggesting that these panel molecules participate in areca nut-induced HNC. Five oncogenic (LUCAT1, MIR31HG, UCA1, HIF1A-AS2, and SUMO1P3) and tumor-suppressive (LINC00312) lncRNAs were independently validated, and three key molecules were further examined. Pathway prediction revealed that LUCAT1, UCA1, and MIR31HG modulate multiple oncogenic mechanisms, including stress response and cellular motility. Clinical assessment showed that these lncRNAs exhibited biomarker potentials in diagnosis (area under the curve = 0.815 for LUCAT1) and a worse prognosis (both p < 0.05, survival analysis). Cellular studies further demonstrated that MIR31HG facilitates areca nut-induced cancer progression, as silencing this molecule attenuated arecoline-induced invasion ability in HNC cells. This study identified lncRNA signatures that play a role in areca nut-induced HNC. These molecules may be further applied in risk assessment, diagnosis, prognosis, and therapeutics for areca nut-associated malignancies.
Collapse
Affiliation(s)
- Hung-Han Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (J.T.C.); (A.-J.C.); Tel.: +886-3-328-1200 (J.T.C.); +886-3-2118-800 (A.-J.C.)
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: (J.T.C.); (A.-J.C.); Tel.: +886-3-328-1200 (J.T.C.); +886-3-2118-800 (A.-J.C.)
| |
Collapse
|
42
|
Liu L, Cui J, Chen S, Zhang X, Wang S, Huang L. Circ_002363 is regulated by the RNA binding protein BCAS2 and inhibits neodymium oxide nanoparticle-induced DNA damage by non-homologous end-joining repair. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160819. [PMID: 36526188 DOI: 10.1016/j.scitotenv.2022.160819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Neodymium oxide nanoparticles (NPs-Nd2O3) are increasingly being used in industry and biomedicine, causing adverse health effects such as lung disease. However, the underlying molecular mechanisms controlling these adverse consequences are unknown at present. In this study, a human bronchial epithelial cell line (16HBE) was exposed to increasing concentrations of NPs-Nd2O3, and Sprague-Dawley rats were treated with NPs-Nd2O3 by intratracheal instillation. We found that NPs-Nd2O3 exposure induced DNA damage and down-regulated levels of circular RNA (circRNA) circ_002363 in 16HBE cells as well as in rat lung tissue. We also observed that circ_002363 levels in the serum of workers employed in the production of NPs-Nd2O3 diminished as the work time progressed, suggesting that circ_002363 may be a potential biomarker of lung injury. Functional experiments showed that circ_002363 significantly inhibited DNA damage induced by NPs-Nd2O3. RNA pull-down and western blot assays found that circ_002363 interacted with proteins PARP1/Ku70/Ku80/Rad50, which are critical participants in non-homologous end-joining (NHEJ) DNA repair. Moreover, we found that formation of circ_002363 was regulated by the RNA binding protein Breast Carcinoma Amplified Sequence 2 (BCAS2). The BCAS2 protein affected circ_002363 expression through interaction with Pre-DNA2, the host gene of circ_002363, in NPs-Nd2O3-exposed 16HBE cells. In conclusion, our findings show first that circ_002363, which is regulated by BCAS2, acts as regulator of DNA damage via the NHEJ pathway. These results enhance our understanding of the regulatory mechanisms controlling the actions of circular RNAs and highlight the relationship between genetics and epigenetics in the development of diseases following exposure to environmental chemicals.
Collapse
Affiliation(s)
- Ling Liu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Shijie Chen
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Xia Zhang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
43
|
Li Y, Huang HQ, Huang ZH, Yu ND, Ye XL, Jiang MC, Chen LM. SNHG15 enhances cisplatin resistance in lung adenocarcinoma by affecting the DNA repair capacity of cancer cells. Diagn Pathol 2023; 18:33. [PMID: 36864456 PMCID: PMC9979449 DOI: 10.1186/s13000-023-01291-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/12/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a prevalent malignancy. SNHG15 has been demonstrated to be oncogenic in many kinds of cancers, however the mechanism of SNHG15 in LUAD cisplatin (DDP) resistance remains unclear. In this study, we demonstrated the effect of SNHG15 on DDP resistance in LUAD and its related mechanism. METHODS Bioinformatics analysis was adopted to assess SNHG15 expression in LUAD tissues and predict the downstream genes of SNHG15. The binding relationship between SNHG15 and downstream regulatory genes was proved through RNA immunoprecipitation, chromatin immunoprecipitation and dual-luciferase reporter assays. Cell counting kit-8 assay was adopted to evaluate LUAD cell viability, and gene expression was determined by Western blot and quantitative real-time polymerase chain reaction. We then performed comet assay to assess DNA damage. Cell apoptosis was detected by Tunnel assay. Xenograft animal models were created to test the function of SNHG15 in vivo. RESULTS SNHG15 was up-regulated in LUAD cells. Moreover, SNHG15 was also highly expressed in drug-resistant LUAD cells. Down-regulated SNHG15 strengthened the sensitivity of LUAD cells to DDP and induced DNA damage. SNHG15 could elevate ECE2 expression through binding with E2F1, and it could induce DDP resistance by modulating the E2F1/ECE2 axis. In vivo experiments verified that the SNHG15 could enhance DDP resistance in LUAD tissue. CONCLUSION The results suggested that SNHG15 could up-regulate ECE2 expression by recruiting E2F1, thereby enhancing the DDP resistance of LUAD.
Collapse
Affiliation(s)
- Yong Li
- grid.411176.40000 0004 1758 0478Department of Respiration Medicine, Fujian Medical University Union Hospital, No.29 Xin Quan Road, Fuzhou, 350000 Fujian China
| | - Hui-Qin Huang
- grid.488150.0Fujian Provincial Key Laboratory of Medical Testing, Fujian Academy of Medical Sciences, Fuzhou, 350000 Fujian China
| | - Zheng-Hui Huang
- grid.411176.40000 0004 1758 0478Department of Respiration Medicine, Fujian Medical University Union Hospital, No.29 Xin Quan Road, Fuzhou, 350000 Fujian China
| | - Nan-Ding Yu
- grid.411176.40000 0004 1758 0478Department of Respiration Medicine, Fujian Medical University Union Hospital, No.29 Xin Quan Road, Fuzhou, 350000 Fujian China
| | - Xiang-Li Ye
- grid.411176.40000 0004 1758 0478Department of Respiration Medicine, Fujian Medical University Union Hospital, No.29 Xin Quan Road, Fuzhou, 350000 Fujian China
| | - Mei-Chen Jiang
- grid.411176.40000 0004 1758 0478Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350000 Fujian China
| | - Li-Min Chen
- Department of Respiration Medicine, Fujian Medical University Union Hospital, No.29 Xin Quan Road, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
44
|
He S, Liang Y, Zhang Y, Liu X, Gong S, Ye M, Huang S, Tan X, Zhou S, Zhao Y, Liu N, Li Y. LINC00173 facilitates tumor progression by stimulating RAB1B-mediated PA2G4 and SDF4 secretion in nasopharyngeal carcinoma. Mol Oncol 2023; 17:518-533. [PMID: 36606322 PMCID: PMC9980309 DOI: 10.1002/1878-0261.13375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
An increasing number of studies have found that long non-coding RNA (lncRNA) play important roles in driving the progression of nasopharyngeal carcinoma (NPC). Our microarray screening revealed that expression of the lncRNA long intergenic non-protein coding RNA 173 (LINC00173) was upregulated in NPC. However, its role and mechanism in NPC have not yet been elucidated. In this study, we demonstrate that high LINC00173 expression indicated a poor prognosis in NPC patients. Knockdown of LINC00173 significantly inhibited NPC cell proliferation, migration and invasion in vitro. Mechanistically, LINC00173 interacted and colocalized with Ras-related protein Rab-1B (RAB1B) in the cytoplasm, but the modulation of LINC00173 expression did not affect the expression of RAB1B at either the mRNA or protein levels. Instead, relying on the stimulation of RAB1B, LINC00173 could facilitate the extracellular secretion of proliferation-associated 2G4 (PA2G4) and stromal cell-derived factor 4 (SDF4; also known as 45-kDa calcium-binding protein) proteins, and knockdown of these proteins could reverse the NPC aggressive phenotype induced by LINC00173 overexpression. Moreover, in vivo LINC00173-knockdown models exhibited a marked slowdown in tumor growth and a significant reduction in lymph node and lung metastases. In summary, LINC00173 serves as a crucial driver for NPC progression, and the LINC00173-RAB1B-PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Shi‐Wei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ye‐Lin Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ming‐Liang Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sheng‐Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xi‐Rong Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shi‐Qing Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying‐Qing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
45
|
Zhang H, Zhang K, Qiu L, Yue J, Jiang H, Deng Q, Zhou R, Yin Z, Ma S, Ke Y. Cancer-associated fibroblasts facilitate DNA damage repair by promoting the glycolysis in non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166670. [PMID: 36822449 DOI: 10.1016/j.bbadis.2023.166670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Radiotherapy is an essential treatment modality for the management of non-small cell lung cancer (NSCLC) patients. Tumor radioresistance is the major factor limiting the efficacy of radiotherapy in NSCLC patients. Our study aimed to reveal whether cancer-associated fibroblasts (CAFs), one main component of the tumor microenvironment, regulated DNA damage response of NSCLC cells following irradiation and clarify the involved mechanisms. We found CAFs inhibited irradiation-induced DNA damage while promoted DNA repair of NSCLC cells and caused cell cycle arrest in the radioresistant S phase. CAFs have the ability of up-regulating and stabilizing c-Myc, leading to the transcription activation of HK2 kinase, a key rate-limiting enzyme in glycolysis by activating Wnt/β-catenin pathway. Attenuation of glycolysis significantly reversed the effect of CAFs on DNA damage response of NSCLC cells. By high-throughput screening of human cytokines/chemokines array, we found CAFs-secreted midkine led to the promotion of glycolysis by activating Wnt/β-catenin pathway in NSCLC cells. In vivo, CAFs caused the radioresistance of NSCLC cells also by promoting the glycolysis in a β-catenin signaling-dependent manner. These findings may provide novel strategies for reversing the radioresistance of NSCLC cells.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Hong Jiang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qinghua Deng
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Rongjing Zhou
- Department of Pathology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Zihao Yin
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yuehai Ke
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
46
|
Zhang X, Zhang Q, Li T, Liu L, Miao Y. LINC00312 Inhibits Lung Cancer Progression through the miR-3175/SEMA6A Axis. Crit Rev Eukaryot Gene Expr 2023; 33:41-53. [PMID: 36734856 DOI: 10.1615/critreveukaryotgeneexpr.2022044042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aims to clarify molecular mechanisms and tumor-associated functions of LINC00312 in lung cancer. GEO database was used to acquire lung cancer-related expression microarrays. Then, relevant databases were applied to predict the downstream miRNA for LINC00312 and the target mRNA for the potential miRNA, with their associations deeply confirmed through dual-luciferase and RIP assays. The expression levels of epithelial-mesenchymal transition -related proteins (N-cadherin, Vimentin, MMP-2, and MMP-9) were examined by Western blot. The proliferation, migration, and invasion were evaluated through in vitro experiments including CCK-8 and Transwell assays and further validated by nude mouse xenograft tumor experiment. LINC00312, serving as a tumor suppressor, was down-regulated in lung cancer cells. RIP assay proved that miR-3175 bound LINC00312 and SEMA6A. The dual-luciferase assay showed that miR-3175 specifically targeted SEMA6A, suppressing the expression of SEMA6A. Overexpressing LINC00312 remarkably inhibited the binding between miR-3175 and SEMA6A. Overexpressing miR-3175 or silencing SEMA6A could hamper the effects of LINC00312 on lung cancer cells. LINC00312 inhibits lung cancer occurrence and progression via the miR-3175/SEMA6A axis.
Collapse
Affiliation(s)
- Xiangli Zhang
- Department of Respiratory and Critical Care, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Qian Zhang
- Department of Pediatric Ward, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Ting Li
- Department of Traditional Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Lu Liu
- Department of Respiratory and Critical Care, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Yi Miao
- Department of Respiratory and Critical Care, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| |
Collapse
|
47
|
Liu H, Chen Q, Zheng W, Zhou Y, Bai Y, Pan Y, Zhang J, Shao C. LncRNA CASC19 Enhances the Radioresistance of Nasopharyngeal Carcinoma by Regulating the miR-340-3p/FKBP5 Axis. Int J Mol Sci 2023; 24:ijms24033047. [PMID: 36769373 PMCID: PMC9917593 DOI: 10.3390/ijms24033047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance remains a serious obstacle encountered in the radiotherapy of nasopharyngeal carcinoma (NPC). Both mRNAs and non-coding RNAs (ncRNAs), including long ncRNA (lncRNA) and microRNA (miRNA), play essential roles in radiosensitivity. However, the comprehensive expression profiles and competing endogenous RNA (ceRNA) regulatory networks among lncRNAs, miRNAs, and mRNAs in NPC radioresistance are still bewildering. In this study, we performed an RNA-sequencing (RNA-seq) assay in the radioresistant NPC cells CNE2R and its parental cells CNE2 to identify the differentially expressed lncRNAs, miRNAs, and mRNAs. The ceRNA networks containing lncRNAs, miRNAs, and mRNAs were predicted on the basis of the Pearson correlation coefficients and authoritative miRanda databases. In accordance with bioinformatic analysis of the data of the tandem mass tag (TMT) assay of CNE2R and CNE2 cells and the gene chip assay of radioresistant NPC samples in pre- and post-radiotherapy, the radioresistance-related signaling network of lncRNA CASC19, miR-340-3p, and FKBP5 was screened and further verified using an RT-qPCR assay. CASC19 was positively associated with FKBP5 expression while negatively correlated with miR-340-3p, and the target binding sites of CASC19/miR-340-3p and miR-340-3p/FKBP5 were confirmed using a dual-luciferase reporter assay. Moreover, using an mRFP-GFP-LC3 maker, it was found that autophagy contributed to the radioresistance of NPC. MiR-340-3p inhibition or FKBP5 overexpression could rescue the suppression of autophagy and radioresistance induced by CASC19 knockdown in CNE2R cells. In conclusion, the CASC19/miR-340-3p/FKBP5 network may be instrumental in regulating NPC radioresistance by enhancing autophagy, which provides potential new therapeutic targets for NPC.
Collapse
Affiliation(s)
- Hongxia Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- School of Stomatology, Henan University, Kaifeng 475001, China
| | - Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
48
|
Identification and Application of a Novel Immune-Related lncRNA Signature on the Prognosis and Immunotherapy for Lung Adenocarcinoma. Diagnostics (Basel) 2022; 12:diagnostics12112891. [PMID: 36428951 PMCID: PMC9689875 DOI: 10.3390/diagnostics12112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) participates in the immune regulation of lung cancer. However, limited studies showed the potential roles of immune-related lncRNAs (IRLs) in predicting survival and immunotherapy response of lung adenocarcinoma (LUAD). Methods: Based on The Cancer Genome Atlas (TCGA) and ImmLnc databases, IRLs were identified through weighted gene coexpression network analysis (WGCNA), Cox regression, and Lasso regression analyses. The predictive ability was validated by Kaplan−Meier (KM) and receiver operating characteristic (ROC) curves in the internal dataset, external dataset, and clinical study. The immunophenoscore (IPS)-PD1/PD-L1 blocker and IPS-CTLA4 blocker data of LUAD were obtained in TCIA to predict the response to immune checkpoint inhibitors (ICIs). The expression levels of immune checkpoint molecules and markers for hyperprogressive disease were analyzed. Results: A six-IRL signature was identified, and patients were stratified into high- and low-risk groups. The low-risk had improved survival outcome (p = 0.006 in the training dataset, p = 0.010 in the testing dataset, p < 0.001 in the entire dataset), a stronger response to ICI (p < 0.001 in response to anti-PD-1/PD-L1, p < 0.001 in response to anti-CTLA4), and higher expression levels of immune checkpoint molecules (p < 0.001 in PD-1, p < 0.001 in PD-L1, p < 0.001 in CTLA4) but expressed more biomarkers of hyperprogression in immunotherapy (p = 0.002 in MDM2, p < 0.001 in MDM4). Conclusion: The six-IRL signature exhibits a promising prediction value of clinical prognosis and ICI efficacy in LUAD. Patients with low risk might gain benefits from ICI, although some have a risk of hyperprogressive disease.
Collapse
|
49
|
LncRNAs as biomarkers for predicting radioresistance and survival in cancer: a meta-analysis. Sci Rep 2022; 12:18494. [PMID: 36323697 PMCID: PMC9630540 DOI: 10.1038/s41598-022-21785-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of long noncoding RNAs (lncRNAs) on the radiotherapy response has been gradually revealed. This systematic review and meta-analysis aimed to evaluate the association between the function and underlying mechanism of lncRNAs in regulating the radiosensitivity and radioresistance of different tumors. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were calculated to estimate the effect of lncRNAs on cancer patient prognosis, including overall survival (OS), recurrence-free survival (RFS), disease-free survival (DFS) and progression-free survival (PFS). Collectively, 23 lncRNAs in 11 cancer types were enrolled. Of them, 13 lncRNAs were downregulated and related to radiosensitivity, 11 lncRNAs were upregulated and related to radioresistance, and 3 lncRNAs were upregulated and related to radiosensitivity in cancers. Furthermore, 17 microRNAs and 20 pathways were targeted by different lncRNAs and contributed to the cancer radiotherapy response in this meta-analysis. The individual pooled HRs (95% CIs) of downregulated radiation-resistant and upregulated radiation-resistant lncRNAs for OS were 0.49 (0.40-0.60) and 1.88 (1.26-2.79), respectively. Our results showed that lncRNAs could modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways and serve as potential biomarkers to predict radiotherapy response.
Collapse
|
50
|
Abdi E, Latifi-Navid S. Emerging long noncoding RNA polymorphisms as novel predictors of survival in cancer. Pathol Res Pract 2022; 239:154165. [DOI: 10.1016/j.prp.2022.154165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
|