1
|
Verkhratsky A, Zorec R. Neuroglia in cognitive reserve. Mol Psychiatry 2024; 29:3962-3967. [PMID: 38956370 PMCID: PMC11609093 DOI: 10.1038/s41380-024-02644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The concept of cognitive reserve was born to account for the disjunction between the objective extent of brain damage in pathology and its clinical and intellectual outcome. The cognitive reserve comprises structural (brain reserve) and functional (brain maintenance, resilience, compensation) aspects of the nervous tissue reflecting exposome-driven life-long plasticity, which defines the ability of the brain to withstand aging and pathology. The mechanistic background of this concept was primarily focused on adaptive changes in neurones and neuronal networks. We present arguments favoring the more inclusive view, positing that neuroglia are fundamental for defining the cognitive reserve through homeostatic, neuroprotective, and neurodegenerative mechanisms. Neuroglia are critical for the life-long shaping of synaptically connected neuronal circuits as well as the brain connectome thus defining cognitive reserve. Neuroglial homeostatic and protective physiological responses define brain maintenance and resilience, while neuroglia regenerative capabilities are critical for brain compensation in pathology. Targeting neuroglia may represent an untrodden path for prolonging cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Neurosciences, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain.
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia.
- Celica, BIOMEDICAL, Technology Park 24, 1000, Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia.
- Celica, BIOMEDICAL, Technology Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
da Silva VF, Gayger-Dias V, da Silva RS, Sobottka TM, Cigerce A, Lissner LJ, Wartchow KM, Rodrigues L, Zanotto C, Fróes FCTDS, Seady M, Quincozes-Santos A, Gonçalves CA. Calorie restriction protects against acute systemic LPS-induced inflammation. Nutr Neurosci 2024; 27:1237-1249. [PMID: 38386276 DOI: 10.1080/1028415x.2024.2316448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.
Collapse
Affiliation(s)
- Vanessa-Fernanda da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Vitor Gayger-Dias
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Rafaela Sampaio da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Thomas Michel Sobottka
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Anderson Cigerce
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, Rome
| | - Krista Minéia Wartchow
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Letícia Rodrigues
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Caroline Zanotto
- Biochemistry Laboratory, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | | | - Marina Seady
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| |
Collapse
|
3
|
Cho YS, Kim DH, Bae JY, Son JY, Kim JH, Afridi R, Suk K, Ahn DK, Bae YC. Structural reorganization of medullary dorsal horn astrocytes in a rat model of neuropathic pain. Brain Struct Funct 2024; 229:1757-1768. [PMID: 39052094 DOI: 10.1007/s00429-024-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.
Collapse
Affiliation(s)
- Yi Sul Cho
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Do Hyoung Kim
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Young Bae
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jo Young Son
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Kuk Ahn
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| | - Yong Chul Bae
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Fu Q, Li H, Zhu Z, Li W, Ruan Z, Chang R, Wei H, Xu X, Xu X, Wu Y. Dock4 contributes to neuropathic pain by regulating spinal synaptic plasticity in mice. Front Mol Neurosci 2024; 17:1417567. [PMID: 39282658 PMCID: PMC11392915 DOI: 10.3389/fnmol.2024.1417567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Neuropathic pain (NP) conditions arising from injuries to the nervous system due to trauma, disease, or neurotoxins are chronic, severe, debilitating, and exceedingly difficult to treat. However, the mechanisms of NP are not yet clear. Here we explored the role of Dock4, an atypical Rac1 GEF, in the development of NP. Methods Mechanical allodynia was assessed as paw withdrawal threshold by a dynamic plantar aesthesiometer. Immunofluorescence staining was conducted to investigate the expression and localization of Dock4, Rac1 and GluN2B. Quantitative analysis of Dock4, Rac1 and GluN2B were determined by qRT-PCR and Western blot assay. Spontaneous excitatory and inhibitory postsynaptic currents in spinal cord slices were examined using whole cell patch clam. Dendritic spine remodeling and synaptogenesis were detected in cultured dorsal spinal neurons. Results and discussion We found that SNL caused markedly mechanical allodynia accompanied by increase of Dock4, GTP-Rac1and GluN2B, which was prevented by knockdown of Dock4. Electrophysiological tests showed that SNL facilitated excitatory synaptic transmission, however, this was also inhibited by Dock RNAi-LV. Moreover, knockdown of Dock4 prevented dendritic growth and synaptogenesis. Conclusion In summary, our data indicated that Dock4 facilitated excitatory synaptic transmission by promoting the expression of GluN2B at the synaptic site and synaptogenesis, leading to the occurrence of NP.
Collapse
Affiliation(s)
- Qiaochu Fu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuanxu Zhu
- Department of Gynaecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Wencui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhihua Ruan
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ruijie Chang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Huixia Wei
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xunliang Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
He L, Ma S, Ding Z, Huang Z, Zhang Y, Xi C, Zou K, Deng Q, Huang WJM, Guo Q, Huang C. Inhibition of NFAT5-Dependent Astrocyte Swelling Alleviates Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302916. [PMID: 38195869 PMCID: PMC10953562 DOI: 10.1002/advs.202302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain. Despite the ubiquitous expression of NFAT5 protein in SDH cell types, it selectively induces swelling specifically in astrocytes, not in microglia. Mechanistically, NFAT5 directly controls the expression of the water channel aquaporin-4 (AQP4), a key regulator exclusive to astrocytes. Additionally, aurora kinase B (AURKB) orchestrates NFAT5 phosphorylation, enhancing its protein stability and nuclear translocation, thereby regulating AQP4 expression. The findings establish NFAT5 as a crucial regulator for neuropathic pain through the modulation of astrocyte swelling. The AURKB-NFAT5-AQP4 pathway in astrocytes emerges as a potential therapeutic target to combat neuropathic pain.
Collapse
Affiliation(s)
- Liqiong He
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Shengyun Ma
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Zijin Ding
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhifeng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Caiyun Xi
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Kailu Zou
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Qingwei Deng
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Qulian Guo
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Changsheng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
6
|
Popov A, Brazhe N, Morozova K, Yashin K, Bychkov M, Nosova O, Sutyagina O, Brazhe A, Parshina E, Li L, Medyanik I, Korzhevskii DE, Shenkarev Z, Lyukmanova E, Verkhratsky A, Semyanov A. Mitochondrial malfunction and atrophy of astrocytes in the aged human cerebral cortex. Nat Commun 2023; 14:8380. [PMID: 38104196 PMCID: PMC10725430 DOI: 10.1038/s41467-023-44192-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.
Collapse
Affiliation(s)
- Alexander Popov
- College of Medicine, Jiaxing University, 314001, Jiaxing, Zhejiang Pro, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Nadezda Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Kseniia Morozova
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Konstantin Yashin
- Department of Neurosurgery, Privolzhskiy Research Medical University, Nizhny, Novgorod, 603005, Russia
| | - Maxim Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Olga Nosova
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Oksana Sutyagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Evgenia Parshina
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Li Li
- College of Medicine, Jiaxing University, 314001, Jiaxing, Zhejiang Pro, China
| | - Igor Medyanik
- Department of Neurosurgery, Privolzhskiy Research Medical University, Nizhny, Novgorod, 603005, Russia
| | | | - Zakhar Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Ekaterina Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, 518172, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, 314001, Jiaxing, Zhejiang Pro, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia.
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
7
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Byvaltcev E, Behbood M, Schleimer JH, Gensch T, Semyanov A, Schreiber S, Strauss U. KCC2 reverse mode helps to clear postsynaptically released potassium at glutamatergic synapses. Cell Rep 2023; 42:112934. [PMID: 37537840 PMCID: PMC10480490 DOI: 10.1016/j.celrep.2023.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Extracellular potassium [K+]o elevation during synaptic activity retrogradely modifies presynaptic release and astrocytic uptake of glutamate. Hence, local K+ clearance and replenishment mechanisms are crucial regulators of glutamatergic transmission and plasticity. Based on recordings of astrocytic inward rectifier potassium current IKir and K+-sensitive electrodes as sensors of [K+]o as well as on in silico modeling, we demonstrate that the neuronal K+-Cl- co-transporter KCC2 clears local perisynaptic [K+]o during synaptic excitation by operating in an activity-dependent reversed mode. In reverse mode, KCC2 replenishes K+ in dendritic spines and complements clearance of [K+]o, therewith attenuating presynaptic glutamate release and shortening LTP. We thus demonstrate a physiological role of KCC2 in neuron-glial interactions and regulation of synaptic signaling and plasticity through the uptake of postsynaptically released K+.
Collapse
Affiliation(s)
- Egor Byvaltcev
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Mahraz Behbood
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1, Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhem-Jonen Straße, 52428 Jülich, Germany
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang Pro, Jiaxing 314033, China
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Sun N, Cui WQ, Min XM, Zhang GM, Liu JZ, Wu HY. A new perspective on hippocampal synaptic plasticity and post-stroke depression. Eur J Neurosci 2023; 58:2961-2984. [PMID: 37518943 DOI: 10.1111/ejn.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Collapse
Affiliation(s)
- Ning Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Man Min
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Zheng Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Lin SS, Zhou B, Chen BJ, Jiang RT, Li B, Illes P, Semyanov A, Tang Y, Verkhratsky A. Electroacupuncture prevents astrocyte atrophy to alleviate depression. Cell Death Dis 2023; 14:343. [PMID: 37248211 DOI: 10.1038/s41419-023-05839-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Astrocyte atrophy is the main histopathological hallmark of major depressive disorder (MDD) in humans and in animal models of depression. Here we show that electroacupuncture prevents astrocyte atrophy in the prefrontal cortex and alleviates depressive-like behaviour in mice subjected to chronic unpredictable mild stress (CUMS). Treatment of mice with CUMS induced depressive-like phenotypes as confirmed by sucrose preference test, tail suspension test, and forced swimming test. These behavioural changes were paralleled with morphological atrophy of astrocytes in the prefrontal cortex, revealed by analysis of 3D reconstructions of confocal Z-stack images of mCherry expressing astrocytes. This morphological atrophy was accompanied by a decrease in the expression of cytoskeletal linker Ezrin, associated with formation of astrocytic leaflets, which form astroglial synaptic cradle. Electroacupuncture at the acupoint ST36, as well as treatment with anti-depressant fluoxetine, prevented depressive-like behaviours, astrocytic atrophy, and down-regulation of astrocytic ezrin. In conclusion, our data further strengthen the notion of a primary role of astrocytic atrophy in depression and reveal astrocytes as cellular target for electroacupuncture in treatment of depressive disorders.
Collapse
Affiliation(s)
- Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bin Zhou
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Bin-Jie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Ruo-Tian Jiang
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
11
|
Madeira D, Lopes CR, Simões AP, Canas PM, Cunha RA, Agostinho P. Astrocytic A 2A receptors silencing negatively impacts hippocampal synaptic plasticity and memory of adult mice. Glia 2023. [PMID: 37183905 DOI: 10.1002/glia.24384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
Astrocytes are wired to bidirectionally communicate with neurons namely with synapses, thus shaping synaptic plasticity, which in the hippocampus is considered to underlie learning and memory. Adenosine A2A receptors (A2A R) are a potential candidate to modulate this bidirectional communication, since A2A R regulate synaptic plasticity and memory and also control key astrocytic functions. Nonetheless, little is known about the role of astrocytic A2A R in synaptic plasticity and hippocampal-dependent memory. Here, we investigated the impact of genetic silencing astrocytic A2A R on hippocampal synaptic plasticity and memory of adult mice. The genetic A2A R silencing in astrocytes was accomplished by a bilateral injection into the CA1 hippocampal area of a viral construct (AAV5-GFAP-GFP-Cre) that inactivate A2A R expression in astrocytes of male adult mice carrying "floxed" A2A R gene, as confirmed by A2A R binding assays. Astrocytic A2A R silencing alters astrocytic morphology, typified by an increment of astrocytic arbor complexity, and led to deficits in spatial reference memory and compromised hippocampal synaptic plasticity, typified by a reduction of LTP magnitude and a shift of synaptic long-term depression (LTD) toward LTP. These data indicate that astrocytic A2A R control astrocytic morphology and influence hippocampal synaptic plasticity and memory of adult mice in a manner different from neuronal A2A R.
Collapse
Affiliation(s)
- Daniela Madeira
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Cátia R Lopes
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Ana P Simões
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| | - Paula Agostinho
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology- University of Coimbra (CNC- UC), Coimbra, Portugal
| |
Collapse
|
12
|
de Paula Arrifano G, Crespo-Lopez ME, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, de Nazaré CGL, Freitas LGR, Augusto-Oliveira M. Neurotoxicity and the Global Worst Pollutants: Astroglial Involvement in Arsenic, Lead, and Mercury Intoxication. Neurochem Res 2023; 48:1047-1065. [PMID: 35997862 DOI: 10.1007/s11064-022-03725-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Environmental pollution is a global threat and represents a strong risk factor for human health. It is estimated that pollution causes about 9 million premature deaths every year. Pollutants that can cross the blood-brain barrier and reach the central nervous system are of special concern, because of their potential to cause neurological and development disorders. Arsenic, lead and mercury are usually ranked as the top three in priority lists of regulatory agencies. Against xenobiotics, astrocytes are recognised as the first line of defence in the CNS, being involved in virtually all brain functions, contributing to homeostasis maintenance. Here, we discuss the current knowledge on the astroglial involvement in the neurotoxicity induced by these pollutants. Beginning by the main toxicokinetic characteristics, this review also highlights the several astrocytic mechanisms affected by these pollutants, involving redox system, neurotransmitter and glucose metabolism, and cytokine production/release, among others. Understanding how these alterations lead to neurological disturbances (including impaired memory, deficits in executive functions, and motor and visual disfunctions), by revisiting the current knowledge is essential for future research and development of therapies and prevention strategies.
Collapse
Affiliation(s)
- Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Amanda Lopes-Araújo
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Letícia Santos-Sacramento
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Jean L Barthelemy
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Caio Gustavo Leal de Nazaré
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Luiz Gustavo R Freitas
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
13
|
Wadie CM, Ali RH, Mohamed AEHA, Labib JMW, Sabaa AR, Awad HEA, Abou-Bakr DA. A comparative study of acetyl-l-carnitine and caloric restriction impact on hippocampal autophagy, apoptosis, neurogenesis, and astroglial function in AlCl 3-induced Alzheimer's in rats. Can J Physiol Pharmacol 2023; 101:244-257. [PMID: 36988119 DOI: 10.1139/cjpp-2022-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a worldwide chronic progressive neurodegenerative disease. We aimed to investigate and compare the neuroprotective impact of acetyl-l-carnitine and caloric restriction (CR) on AlCl3-induced AD to explore the pathogenesis and therapeutic strategies of AD. Sixty-seven adult male Wistar rats were allocated into Control, AlCl3, AlCl3-acetyl-l-carnitine, and AlCl3-CR groups. Each of AlCl3 and acetyl-l-carnitine were given by gavage in a daily dose of 100 mg/kg and CR was conducted by giving 70% of the daily average caloric intake of the control group. Rats were subjected to behavioral assessment using open field test, Y maze, novel object recognition test and passive avoidance test, biochemical assay of serum phosphorylated tau (pTau), hippocampal homogenate phosphorylated adenosine monophosphate-activated protein kinase, Beclin-1, Bcl-2-associated X protein, and B cell lymphoma 2 (Bcl2) as well as hippocampal Ki-67 and glial fibrillary acidic protein immunohistochemistry. AlCl3-induced cognitive and behavioral deficits coincident with impaired autophagy and enhanced apoptosis associated with defective neurogenesis and defective astrocyte activation. Acetyl-l-carnitine and CR partially protect against AlCl3-induced behavioral, cognitive, biochemical, and histological changes, with more ameliorative effect of acetyl-l-carnitine on hippocampal apoptotic markers, and more obvious behavioral and histological improvement with CR.
Collapse
Affiliation(s)
- Christina Magdy Wadie
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Radwa Hassan Ali
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | - Jolly M W Labib
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Abdel Rhman Sabaa
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Hossam Eldin Ahmed Awad
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Doaa Ahmed Abou-Bakr
- Physiology Department, Faculty of Medicine, Ain Shams University (ASU) & Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
14
|
Domingos C, Müller FE, Passlick S, Wachten D, Ponimaskin E, Schwarz MK, Schoch S, Zeug A, Henneberger C. Induced Remodelling of Astrocytes In Vitro and In Vivo by Manipulation of Astrocytic RhoA Activity. Cells 2023; 12:331. [PMID: 36672265 PMCID: PMC9856770 DOI: 10.3390/cells12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Structural changes of astrocytes and their perisynaptic processes occur in response to various physiological and pathophysiological stimuli. They are thought to profoundly affect synaptic signalling and neuron-astrocyte communication. Understanding the causal relationship between astrocyte morphology changes and their functional consequences requires experimental tools to selectively manipulate astrocyte morphology. Previous studies indicate that RhoA-related signalling can play a major role in controlling astrocyte morphology, but the direct effect of increased RhoA activity has not been documented in vitro and in vivo. Therefore, we established a viral approach to manipulate astrocytic RhoA activity. We tested if and how overexpression of wild-type RhoA, of a constitutively active RhoA mutant (RhoA-CA), and of a dominant-negative RhoA variant changes the morphology of cultured astrocytes. We found that astrocytic expression of RhoA-CA induced robust cytoskeletal changes and a withdrawal of processes in cultured astrocytes. In contrast, overexpression of other RhoA variants led to more variable changes of astrocyte morphology. These induced morphology changes were reproduced in astrocytes of the hippocampus in vivo. Importantly, astrocytic overexpression of RhoA-CA did not alter the branching pattern of larger GFAP-positive processes of astrocytes. This indicates that a prolonged increase of astrocytic RhoA activity leads to a distinct morphological phenotype in vitro and in vivo, which is characterized by an isolated reduction of fine peripheral astrocyte processes in vivo. At the same time, we identified a promising experimental approach for investigating the functional consequences of astrocyte morphology changes.
Collapse
Affiliation(s)
- Cátia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | | | - Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Martin K. Schwarz
- Institute of Experimental Epileptology and Cognition Research (EECR), Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - André Zeug
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
15
|
Wu Q, Yu M, Wang Z, Ai X, Liu Z, Zeng J, Li C, Yuan L, He J, Lin X, Wan W. Alternate-day fasting for the protection of cognitive impairment in c57BL/6J mice following whole-brain radiotherapy. Neurochem Int 2023; 162:105463. [PMID: 36513311 DOI: 10.1016/j.neuint.2022.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
NLRP3 inflammasome activation is implicated in irradiation-induced cognitive dysfunction. Alternate-day fasting (ADF) has been demonstrated to improve neuroinflammation as a non-pharmacological intervention. However, the exact mechanism and the anti-inflammatory effect in irradiation-induced cognitive dysfunction still need further in-depth study. The present study examined the effects of eight-week ADF on the cognitive functions of mice as well as inflammasome-mediated hippocampal neuronal loss following irradiation in mouse models of irradiation-induced cognitive deficits using seven-week-old male C57BL/6J mice. The behavioral results of novel place recognition and object recognition tasks revealed that ADF ameliorated cognitive functions in irradiation-induced cognitive dysfunction mice. ADF inhibited the expression of components of the NLRP3 inflammasome (NLRP3, ASC, and Cl.caspase-1), the downstream inflammatory factor (IL-1β and IL-18), and apoptosis-related proteins (caspase-3) via western blotting. Furthermore, an increased number of neurons and activated astrocytes were observed in the hippocampus using immunohistochemistry and Sholl analysis, which was jointly confirmed by western blotting. According to our study, this is the first time we found that ADF improved cognitive dysfunction induced by irradiation, and the anti-inflammatory effect of ADF could be due to inhibition in NLRP3-mediated hippocampal neuronal loss by suppressing astrocyte activation.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Brain Science &Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 571199, China
| | - Min Yu
- Department of Pharmacy, Chenzhou First People's Hospital, Chenzhou, 423001, China
| | - Zhen Wang
- Key Laboratory of Brain Science &Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 571199, China; Department of Anatomy, Medical College of Hunan Vocational College of Environmental Biology, Hengyang, 421001, China
| | - Xiaohong Ai
- Department of Oncology and Radiotherapy, the First Affiliated Hospital of Nanhua University, Hengyang, 421001, China
| | - Zhenghai Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, China
| | - Jiayu Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, China
| | - Cai Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, China
| | - Lei Yuan
- Key Laboratory of Brain Science &Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 571199, China
| | - Jie He
- Department of Pathology, Hainan Medical University, Haikou, 571199, China.
| | - Xinping Lin
- Yueyang Maternal and Child Health-care Hospital, Yueyang, 414021, China.
| | - Wei Wan
- Key Laboratory of Brain Science &Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
16
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
17
|
Malfunction of astrocyte and cholinergic input is involved in postoperative impairment of hippocampal synaptic plasticity and cognitive function. Neuropharmacology 2022; 217:109191. [PMID: 35835213 DOI: 10.1016/j.neuropharm.2022.109191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022]
Abstract
Postoperative delirium (POD) occurs in a few days after major surgery under general anesthesia and may cause serious health problems. However, effective intervention and treatment remain unavailable because the underlying mechanisms have far been elucidated. In the present study, we explored the role of the malfunctioned astrocytes in POD. Our results showed that mice with tibia fracture displayed spatial and temporal memory impairments, reduced LTP, and activated astrocytes in the hippocampus in early postoperative stage. Using electrophysiological and Ca2+ imaging techniques in hippocampal slices, we demonstrated the malfunctions of astrocytes in surgery mice: depolarized resting membrane potential, higher membrane conductance and capacitance, and attenuated Ca2+ elevation in response to external stimulation. The degraded calcium signaling in hippocampal astrocytes in surgery mice was restored by correcting the diminution of acetylcholine release with galantamine. Furthermore, pharmacologically blocking astrocyte activation with fluorocitrate and enhancing cholinergic inputs with galantamine normalized hippocampal LTP in surgery mice. Finally, inhibition of astrocyte activation with fluorocitrate in the hippocampus improved cognitive function in surgery mice. Therefore, the prevention of astrocyte activation may be a valuable strategy for the intervention of cognitive dysfunction in POD, and acetylcholine receptors may be valid drug targets for this purpose.
Collapse
|
18
|
Popov A, Brazhe N, Fedotova A, Tiaglik A, Bychkov M, Morozova K, Brazhe A, Aronov D, Lyukmanova E, Lazareva N, Li L, Ponimaskin E, Verkhratsky A, Semyanov A. A high-fat diet changes astrocytic metabolism to promote synaptic plasticity and behavior. Acta Physiol (Oxf) 2022; 236:e13847. [PMID: 35653278 DOI: 10.1111/apha.13847] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022]
Abstract
AIM A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.
Collapse
Affiliation(s)
- Alexander Popov
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Nadezda Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Anna Fedotova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Alisa Tiaglik
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Maxim Bychkov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | | | - Alexey Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Dmitry Aronov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Ekaterina Lyukmanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
- Moscow Institute of Physics and Technology (State University) Dolgoprudny Russia
| | | | - Li Li
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- Achucarro Center for Neuroscience IKERBASQUE, Basque Foundation for Science Bilbao Spain
- Department of Neurosciences University of the Basque Country UPV/EHU and CIBERNED Leioa Spain
| | - Alexey Semyanov
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
- Sechenov First Moscow State Medical University Moscow Russia
| |
Collapse
|
19
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
20
|
de Oliveira TQ, de Moura AC, Feistauer V, Damiani R, Braga MF, Almeida S, Guedes RP, Giovenardi M. Caloric restriction in mice improves short-term recognition memory and modifies the neuroinflammatory response in the hippocampus of male adult offspring. Behav Brain Res 2022; 425:113838. [PMID: 35283195 DOI: 10.1016/j.bbr.2022.113838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Restrictive diets (RD) can influence the inflammatory phenotype of dams and their offspring. Thus, this study aimed to evaluate the effects of caloric restriction on the neuroinflammatory profile in the hippocampus and the short-term recognition memory of male offspring from RD-fed dams. Mice dams received standard diet ad libitum (CONT) or restrictive diet (RD; 30% reduction of CONT consumption) during pregnancy and lactation. Male pups were weaned at 21 days and randomly divided into two groups that received CONT or RD; groups were named according to maternal/offspring diets: CONT/CONT, CONT/RD, RD/CONT, and RD/RD. At 90 days old, short-term memory was assessed by the object recognition test (ORT); the inflammatory state of the hippocampus was analyzed by gene expression of sirtuin-1 (Sirt1) and inflammasome Nlrp3; and by protein expression of toll-like receptor-4 (TLR-4) and zonula occludens-1 (ZO-1). Our results showed an improvement in short-term memory in RD-fed offspring. The expression of Sirt1 was higher in RD/CONT compared to CONT/CONT and decreased in RD/RD compared to CONT/RD. Nlrp3 gene expression showed an offspring effect, being decreased in RD-fed mice. TLR-4 expression was higher in RD/CONT compared to CONT/CONT, similarly to ZO-1 expression. However, ZO-1 also showed a maternal diet effect and increased expression in the offspring of RD dams. Our findings demonstrate that caloric restriction improved short-term recognition memory. However, a restrictive diet should be applied with caution; depending on the offspring's diet, it may not benefit the neuroinflammatory phenotype or cognition.
Collapse
Affiliation(s)
- Tharcila Quadros de Oliveira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Vanessa Feistauer
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Roberto Damiani
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Matheus Filipe Braga
- Acadêmico do Curso de Biomedicina, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul CEP 90050-170, Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil.
| |
Collapse
|
21
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|
22
|
Lalo U, Pankratov Y. Astrocytes as Perspective Targets of Exercise- and Caloric Restriction-Mimetics. Neurochem Res 2021; 46:2746-2759. [PMID: 33677759 PMCID: PMC8437875 DOI: 10.1007/s11064-021-03277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Yuriy Pankratov
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
23
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
24
|
Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 2021; 44:781-792. [PMID: 34479758 DOI: 10.1016/j.tins.2021.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
We define a new concept of 'active milieu' that unifies all components of nervous tissue (neuronal and glial compartments, extracellular space, extracellular matrix, and vasculature) into a dynamic information processing system. Within this framework, we focus on the role of astrocytic processes, classified into organelle-containing branches and organelle-free leaflets. We argue that astrocytic branches with emanating leaflets are homologous to dendritic shafts with spines. Within the active milieu, astrocytic processes are engaged in reciprocal interactions with neuronal compartments and communication with other cellular and non-cellular elements of the nervous tissue.
Collapse
Affiliation(s)
- Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
25
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
26
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
27
|
Fedotova АА, Tiaglik АB, Semyanov АV. Effect of Diet as a Factor of Exposome
on Brain Function. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Denisov P, Popov A, Brazhe A, Lazareva N, Verkhratsky A, Semyanov A. Caloric restriction modifies spatiotemporal calcium dynamics in mouse hippocampal astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119034. [PMID: 33836176 DOI: 10.1016/j.bbamcr.2021.119034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
We analysed spatiotemporal properties of Ca2+ signals in protoplasmic astrocytes in the CA1 stratum radiatum of hippocampal slices from young (2-3 months old) mice housed in control conditions or exposed to a caloric restriction (CR) diet for one month. The astrocytic Ca2+ events became shorter in duration and smaller in size; they also demonstrated reduced velocity of expansion and shrinkage following CR. At the same time, Ca2+ signals in the astrocytes from the CR animals demonstrated higher amplitude and the faster rise and decay rates. These changes can be attributed to CR-induced morphological remodelling and uncoupling of astrocytes described in our previous study. CR-induced changes in the parameters of Ca2+ activity were partially reversed by inhibition of gap junctions/hemichannels with carbenoxolone (CBX). The effect of CBX on Ca2+ activity in CR-animals was unexpected because the diet already decreases gap junctional coupling in astrocytic syncytia. It may reflect the blockade of hemichannels also sensitive to this drug. Thus, CR-induced morphological remodelling of astrocytes is at least partly responsible for changes in the pattern of Ca2+ activity in the astrocytic network. How such changes in spatiotemporal Ca2+ landscape can translate into astrocytic physiology and neuron-glia interactions remains a matter for future studies.
Collapse
Affiliation(s)
- Pavel Denisov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia
| | | | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
29
|
Mehdi MM, Solanki P, Singh P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Arch Gerontol Geriatr 2021; 95:104413. [PMID: 33845417 DOI: 10.1016/j.archger.2021.104413] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Aging, in a large measure, has long been defined as the resultant of oxidative stress acting on the cells. The cellular machinery eventually malfunctions at the basic level by the damage from the processes of oxidation and the system starts slowing down because of intrinsic eroding. To understand the initial destruction at the cellular level spreading outward to affect tissues, organs and the organism, the relationship between molecular damage and oxidative stress is required to understand. Retarding the aging process is a matter of cumulatively decreasing the rate of oxidative damage to the cellular machinery. Along with the genetic reasons, the decrease of oxidative stress is somehow a matter of lifestyle and importantly of diet. In the current review, the theories of aging and the understanding of various levels of molecular damage by oxidative stress have been emphasized. A broader understanding of mechanisms of aging have been elaborated in terms of effects of oxidative at molecular, mitochondrial, cellular and organ levels. The antioxidants supplementation, hormesis and calorie restriction as the prominent anti-aging strategies have also been discussed. The relevance and the efficacy of the antiaging strategies at system level have also been presented.
Collapse
Affiliation(s)
- Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bio-engineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Preeti Solanki
- Multidisciplinary Research Unit, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, 124001, Haryana, India
| | - Prabhakar Singh
- Department of Biochemistry, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| |
Collapse
|
30
|
Popov A, Brazhe A, Denisov P, Sutyagina O, Li L, Lazareva N, Verkhratsky A, Semyanov A. Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity. Aging Cell 2021; 20:e13334. [PMID: 33675569 PMCID: PMC7963330 DOI: 10.1111/acel.13334] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Little is known about age-dependent changes in structure and function of astrocytes and of the impact of these on the cognitive decline in the senescent brain. The prevalent view on the age-dependent increase in reactive astrogliosis and astrocytic hypertrophy requires scrutiny and detailed analysis. Using two-photon microscopy in conjunction with 3D reconstruction, Sholl and volume fraction analysis, we demonstrate a significant reduction in the number and the length of astrocytic processes, in astrocytic territorial domains and in astrocyte-to-astrocyte coupling in the aged brain. Probing physiology of astrocytes with patch clamp, and Ca2+ imaging revealed deficits in K+ and glutamate clearance and spatiotemporal reorganisation of Ca2+ events in old astrocytes. These changes paralleled impaired synaptic long-term potentiation (LTP) in hippocampal CA1 in old mice. Our findings may explain the astroglial mechanisms of age-dependent decline in learning and memory.
Collapse
Affiliation(s)
- Alexander Popov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Institute of NeuroscienceNizhny Novgorod UniversityNizhny NovgorodRussia
| | - Alexey Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Faculty of BiologyMoscow State UniversityMoscowRussia
| | - Pavel Denisov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Institute of NeuroscienceNizhny Novgorod UniversityNizhny NovgorodRussia
| | - Oksana Sutyagina
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Institute of NeuroscienceNizhny Novgorod UniversityNizhny NovgorodRussia
| | - Li Li
- Department of PhysiologyJiaxing University College of MedicineZhejiang ProChina
| | | | - Alexei Verkhratsky
- Sechenov First Moscow State Medical UniversityMoscowRussia
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Achucarro Center for NeuroscienceIKERBASQUEBasque Foundation for ScienceBilbaoSpain
- Department of NeurosciencesUniversity of the Basque Country UPV/EHU and CIBERNEDLeioaSpain
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Faculty of BiologyMoscow State UniversityMoscowRussia
- Sechenov First Moscow State Medical UniversityMoscowRussia
- Department of PhysiologyJiaxing University College of MedicineZhejiang ProChina
| |
Collapse
|
31
|
Augusto-Oliveira M, Verkhratsky A. Mens sana in corpore sano: lifestyle changes modify astrocytes to contain Alzheimer's disease. Neural Regen Res 2021; 16:1548-1549. [PMID: 33433476 PMCID: PMC8323677 DOI: 10.4103/1673-5374.303023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110 Belém, Brasil
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| |
Collapse
|
32
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
33
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
34
|
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 2020; 473:753-774. [PMID: 32979108 DOI: 10.1007/s00424-020-02465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110, Brazil
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997. .,Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|