1
|
Xie S, Yin M, Xiang M, Shao L, Zhang N, Shi L, Zhang J, Yu G. Lead (Pb) Induces Osteotoxicity Through the Activation of Mutually Reinforced ER Stress and ROS in MC3T3-E1 Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04427-7. [PMID: 39643796 DOI: 10.1007/s12011-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/17/2024] [Indexed: 12/09/2024]
Abstract
Lead (Pb) is the most common contaminant of heavy metals and is widely present in the environment. Destruction of bone structure, malformation of bone development, and loss of bone mass are important pathological features of lead-exposed individuals. However, the exact molecular mechanisms associated with lead exposure and osteogenic injury are still not fully understood. MC3T3-E1 mouse embryonic osteoblast is a cell line widely used in osteoblast cytology. It can differentiate into mature osteoblasts and express bone-specific genes in cell culture. The doses of 1, 2, and 4 mM Pb were adopted to study the toxicity of Pb on MC3T3-E1 proliferation and differentiation. In this study, the results show that Pb increases the expression of apoptosis-related proteins, including PARP1, cleaved caspase-3, Bax, and cleaved caspase-9. More importantly, Pb activated endoplasmic reticulum stress and oxidative stress, as evident by elevated PERK/ATF4/CHOP and ROS/NRF2 signaling pathway. Pb induced ROS production in MC3T3-E1 cells through endoplasmic reticulum stress and produced a lethal effect. NAC mitigated these effects. Endoplasmic reticulum stress inhibitor 4-PBA can block the ER stress pathway, reduce ROS production, and enhance cell viability. In addition, studies have shown that ERO1 activation in the ER stress pathway is responsible for inducing ROS production. ROS produced by the mitochondrial pathway also aggravates ER stress. This study suggests that Pb induces MC3T3-E1 cell apoptosis by inducing PERK-mediated ER stress and NRF2-mediated oxidative stress via mutual enhancement, which may be an important mechanism leading to skeletal toxicity.
Collapse
Affiliation(s)
- Siwen Xie
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengting Xiang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Litao Shao
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nan Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Gao T, Gu R, Wang H, Li L, Zhang B, Hu J, Tian Q, Chang R, Zhang R, Zheng G, Dong H. The Protective Role of Intermedin in Contrast-Induced Acute Kidney Injury: Enhancing Peritubular Capillary Endothelial Cell Adhesion and Integrity Through the cAMP/Rac1 Pathway. Int J Mol Sci 2024; 25:11110. [PMID: 39456892 PMCID: PMC11508126 DOI: 10.3390/ijms252011110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Contrast-induced acute kidney injury (CIAKI) is a common complication with limited treatments. Intermedin (IMD), a peptide belonging to the calcitonin gene-related peptide family, promotes vasodilation and endothelial stability, but its role in mitigating CIAKI remains unexplored. This study investigates the protective effects of IMD in CIAKI, focusing on its mechanisms, particularly the cAMP/Rac1 signaling pathway. Human umbilical vein endothelial cells (HUVECs) were treated with iohexol to simulate kidney injury in vitro. The protective effects of IMD were assessed using CCK8 assay, flow cytometry, ELISA, and Western blotting. A CIAKI rat model was utilized to evaluate renal peritubular capillary endothelial cell injury and renal function through histopathology, immunohistochemistry, immunofluorescence, Western blotting, and transmission electron microscopy. In vitro, IMD significantly enhanced HUVEC viability and mitigated iohexol-induced toxicity by preserving intercellular adhesion junctions and activating the cAMP/Rac1 pathway, with Rac1 inhibition attenuating these protective effects. In vivo, CIAKI caused severe damage to peritubular capillary endothelial cell junctions, impairing renal function. IMD treatment markedly improved renal function, an effect negated by Rac1 inhibition. IMD protects against renal injury in CIAKI by activating the cAMP/Rac1 pathway, preserving peritubular capillary endothelial integrity and alleviating acute renal injury from contrast media. These findings suggest that IMD has therapeutic potential in CIAKI and highlight the cAMP/Rac1 pathway as a promising target for preventing contrast-induced acute kidney injury in at-risk patients, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Tingting Gao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Ruiyuan Gu
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Heng Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 201101, Australia
| | - Lizheng Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Bojin Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China;
| | - Jie Hu
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Qinqin Tian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Runze Chang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Ruijing Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 201101, Australia
| | - Honglin Dong
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; (T.G.); (R.G.); (H.W.); (L.L.); (J.H.); (Q.T.); (R.C.); (R.Z.)
| |
Collapse
|
3
|
Zhao J, Han L, Zhang YR, Liu SM, Ji DR, Wang R, Yu YR, Jia MZ, Chai SB, Tang HF, Huang W, Qi YF. Intermedin Alleviates Diabetic Cardiomyopathy by Up-Regulating CPT-1β through Activation of the Phosphatidyl Inositol 3 Kinase/Protein Kinase B Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1204. [PMID: 39338366 PMCID: PMC11435185 DOI: 10.3390/ph17091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1β. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 μM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1β enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1β levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1β blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17-47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1β and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1β via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Ling Han
- Department of Cardiology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Wang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yan-Rong Yu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Mo-Zhi Jia
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing 102206, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Wei Huang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
4
|
He W, Tu S, Han J, Cui H, Lai L, Ye Y, Dai T, Yuan Y, Ji L, Luo J, Ren W, Wu A. Mild phototherapy mediated by IR780-Gd-OPN nanomicelles suppresses atherosclerotic plaque progression through the activation of the HSP27-regulated NF-κB pathway. Acta Biomater 2024; 182:199-212. [PMID: 38734283 DOI: 10.1016/j.actbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Reducing plaque lipid content and enhancing plaque stability without causing extensive apoptosis of foam cells are ideal requirements for developing a safe and effective treatment of atherosclerosis. In this study, we synthesized IR780-Gd-OPN nanomicelles by conjugating osteopontin (OPN) and loading a gadolinium-macrocyclic ligand (Gd-DOTA) onto near-infrared dye IR780-polyethylene glycol polymer. The nanomicelles were employed for mild phototherapy of atherosclerotic plaques and dual-mode imaging with near-infrared fluorescence and magnetic resonance. In vitro results reveal that the mild phototherapy mediated by IR780-Gd-OPN nanomicelles not only activates heat shock protein (HSP) 27 to protect foam cells against apoptosis but also inhibits the nuclear factor kappa-B (NF-κB) pathway to regulate lipid metabolism and macrophage polarization, thereby diminishing the inflammatory response. In vivo results further validate that mild phototherapy effectively reduces plaque lipid content and size while simultaneously enhancing plaque stability by regulating the ratio of M1 and M2-type macrophages. In summary, this study presents a promising approach for developing a safe and highly efficient method for the precise therapeutic visualization of atherosclerosis. STATEMENT OF SIGNIFICANCE: The rupture of unstable atherosclerotic plaques is a major cause of high mortality rates in cardiovascular diseases. Therefore, the ideal outcome of atherosclerosis treatment is to reduce plaque size while enhancing plaque stability. To address this challenge, we designed IR780-Gd-OPN nanomicelles for mild phototherapy of atherosclerosis. This treatment can effectively reduce plaque size while significantly improving plaque stability by increasing collagen fiber content and elevating the ratio of M2/M1 macrophages, which is mainly attributed to the inhibition of the NF-κB signaling pathway by mild phototherapy-activated HSP27. In summary, our proposed mild phototherapy strategy provides a promising approach for safe and effective treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Shuangshuang Tu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jinru Han
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haijing Cui
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Liangxue Lai
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yonglong Ye
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Ting Dai
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Yannan Yuan
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Lili Ji
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Jiayong Luo
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province 315010, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
5
|
Teng L, Qin Q, Zhou ZY, Zhou F, Cao CY, He C, Ding JW, Yang J. Role of C/EBP Homologous Protein in Vascular Stenosis After Carotid Artery Injury. Biochem Genet 2024:10.1007/s10528-024-10713-9. [PMID: 38526708 DOI: 10.1007/s10528-024-10713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
The study aims to explore the fluctuating expression of C/EBP Homologous Protein (CHOP) following rat carotid artery injury and its central role in vascular stenosis. Using in vivo rat carotid artery injury models and in vitro ischemia and hypoxia cell models employing human aortic endothelial cells (HAECs) and vascular smooth muscle cells (T/G HA-VSMCs), a comprehensive investigative framework was established. Histological analysis confirmed intimal hyperplasia in rat models. CHOP expression in vascular tissues was assessed using Western blot and immunohistochemical staining, and its presence in HAECs and T/G HA-VSMCs was determined through RT-PCR and Western blot. The study evaluated HAEC apoptosis, inflammatory cytokine secretion, cell proliferation, and T/G HA-VSMCs migration through Western blot, ELISA, CCK8, and Transwell migration assays. The rat carotid artery injury model revealed substantial fibrous plaque formation and vascular stenosis, resulting in an increased intimal area and plaque-to-lumen area ratio. Notably, CHOP is markedly elevated in vessels of the carotid artery injury model compared to normal vessels. Atorvastatin effectively mitigated vascular stenosis and suppresses CHOP protein expression. In HAECs, ischemia and hypoxia-induced CHOP upregulation, along with heightened TNFα, IL-6, caspase3, and caspase8 levels, while reducing cell proliferation. Atorvastatin demonstrated a dose-dependent suppression of CHOP expression in HAECs. Downregulation of CHOP or atorvastatin treatment led to reduced IL-6 and TNFα secretion, coupled with augmented cell proliferation. Similarly, ischemia and hypoxia conditions increased CHOP expression in T/G HA-VSMCs, which was concentration-dependently inhibited by atorvastatin. Furthermore, significantly increased MMP-9 and MMP-2 concentrations in the cell culture supernatant correlated with enhanced T/G HA-VSMCs migration. However, interventions targeting CHOP downregulation and atorvastatin usage curtailed MMP-9 and MMP-2 secretion and suppressed cell migration. In conclusion, CHOP plays a crucial role in endothelial injury, proliferation, and VSMCs migration during carotid artery injury, serving as a pivotal regulator in post-injury fibrous plaque formation and vascular remodeling. Statins emerge as protectors of endothelial cells, restraining VSMCs migration by modulating CHOP expression.
Collapse
Affiliation(s)
- Lin Teng
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, SE5 9NU, UK
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
| | - Cun-Yu Cao
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
- Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Chao He
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
| | - Jia-Wang Ding
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
| | - Jian Yang
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Yu J, Zhao C, Zhao P, Mu M, Li X, Zheng J, Sun X. FXR controls duodenogastric reflux-induced gastric inflammation through negatively regulating ER stress-associated TNXIP/NLPR3 inflammasome. iScience 2024; 27:109118. [PMID: 38439955 PMCID: PMC10909759 DOI: 10.1016/j.isci.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Duodenogastric reflux (DGR) is closely associated with gastric inflammation and tumorigenesis; however, the precise mechanism is unclear. Hence, we aim to clarify this molecular mechanism and design an effective therapeutic strategy based on it. The present study found that DGR induced TXNIP/NLRP3 inflammasome activation and triggered pyroptosis in gastric mucosa in vitro and in vivo, in which endoplasmic reticulum (ER) stress via PERK/eIF2α/CHOP signaling was involved. Mechanistically, farnesoid X receptor (FXR) antagonized the DGR-induced PERK/eIF2α/CHOP pathway and reduced TXNIP and NLRP3 expression. Moreover, FXR suppressed NLRP3 inflammasome activation by physically interacting with NLRP3 and caspase-1. Administration of the FXR agonist OCA protected the gastric mucosa from DGR-induced barrier disruption and mucosal inflammation. In conclusion, our study demonstrates the involvement of TXNIP/NLRP3 inflammasome-mediated pyroptosis in DGR-induced gastric inflammation. FXR antagonizes gastric barrier disruption and mucosal inflammation induced by DGR. Restoration of FXR activity may be a therapeutic strategy for DGR-associated gastric tumorigenesis.
Collapse
Affiliation(s)
- Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Chenye Zhao
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Pengwei Zhao
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Mingchao Mu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaopeng Li
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
7
|
Ji J, Jing A, Ding Y, Ma X, Qian Q, Geng T, Cheng W, Zhang M, Sun Q, Ma S, Wang X, Yuan Q, Xu M, Qin J, Ma L, Yang J, He J, Du Q, Xia M, Xu Y, Chen Z, Zhu L, Liu W, Liu S, Liu B. FBXO5-mediated RNF183 degradation prevents endoplasmic reticulum stress-induced apoptosis and promotes colon cancer progression. Cell Death Dis 2024; 15:33. [PMID: 38212299 PMCID: PMC10784456 DOI: 10.1038/s41419-024-06421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ting Geng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qian Sun
- The First People's Hospital of Lianyungang, the First Affiliated Hospital of Kangda College of Nanjing Medical University. 7 Zhenhua Road, Haizhou, Lianyungang, 222061, Jiangsu, PR China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qing Yuan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Menghan Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qianming Du
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P.R. China
| | - Mengbei Xia
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuting Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ziyun Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Guo J, Ning Y, Pan D, Wu S, Gao X, Wang C, Guo L, Gu Y. Identification of potential hub genes and regulatory networks of smoking-related endothelial dysfunction in atherosclerosis using bioinformatics analysis. Technol Health Care 2024; 32:1781-1794. [PMID: 38073349 DOI: 10.3233/thc-230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Endothelial dysfunction, the earliest stage of atherosclerosis, can be caused by smoking, but its molecular mechanism requires further investigation. OBJECTIVE This study aimed to use bioinformatics analysis to identify potential mechanisms involved in smoking-related atherosclerotic endothelial dysfunction. METHODS The transcriptome data used for this bioinformatics analysis were obtained from the Gene Expression Omnibus (GEO) database. The GSE137578 and GSE141136 datasets were used to identify common differentially expressed genes (co-DEGs) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) and tobacco. The co-DEGs were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) databases. Additionally, a protein-protein interaction (PPI) network was constructed to visualize their interactions and screen for hub genes. GSE120521 dataset was used to verify the expression of hub genes in unstable plaques. The miRNA expression profile GSE137580 and online databases (starBase 2.0, TargetScan 8.0 and DGIdb v4.2.0) were used to predict the related non-coding RNAs and drugs. RESULTS A total of 232 co-DEGs were identified, including 113 up-regulated genes and 119 down-regulated genes. These DEGs were primarily enriched in detrimental autophagy, cell death, transcription factors, and cytokines, and were implicated in ferroptosis, abnormal lipid metabolism, inflammation, and oxidative stress pathways. Ten hub genes were screened from the constructed PPI network, including up-regulated genes such as FOS, HMOX1, SQSTM1, PTGS2, ATF3, DDIT3, and down-regulated genes MCM4, KIF15, UHRF1, and CCL2. Importantly, HMOX1 was further up-regulated in unstable plaques (p= 0.034). Finally, a regulatory network involving lncRNA/circRNA-miRNA-hub genes and drug-hub genes was established. CONCLUSION Atherosclerotic endothelial dysfunction is associated with smoking-induced injury. Through bioinformatics analysis, we identified potential mechanisms and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Julong Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yachan Ning
- Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xixiang Gao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wang Y, Li M, Chen J, Yu Y, Yu Y, Shi H, Liu X, Chen Z, Chen R, Ge J. Macrophage CAPN4 regulates CVB3-induced cardiac inflammation and injury by promoting NLRP3 inflammasome activation and phenotypic transformation to the inflammatory subtype. Free Radic Biol Med 2023; 208:430-444. [PMID: 37660839 DOI: 10.1016/j.freeradbiomed.2023.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Exploring the immune mechanism of coxsackievirus B3 (CVB3)-induced myocarditis may provide a promising therapeutic strategy. Here, we investigated the regulatory role of macrophage CAPN4 in the phenotypic transformation of macrophages and NOD-like receptor protein 3 (NLRP3) inflammasome activation. We found that CAPN4 was the most upregulated subtype of the calpain family in CVB3-infected bone marrow-derived macrophages (BMDMs) and Raw 264.7 cells after CVB3 infection and was upregulated in cardiac macrophages from CVB3-infected mice. Conditional knockout of CAPN4 (CAPN4flox/flox; LYZ2-Cre, CAPN4-cKO mice) ameliorated inflammation and myocardial injury and improved cardiac function and survival after CVB3 infection. Enrichment analysis revealed that macrophage differentiation and the interleukin signaling pathway were the most predominant biological processes in macrophages after CVB3 infection. We further found that CVB3 infection and the overexpression of CAPN4 promoted macrophage M1 polarization and NLRP3 inflammasome activation, while CAPN4 knockdown reversed these changes. Correspondingly, CAPN4-cKO alleviated CVB3-induced M1 macrophage transformation and NLRP3 expression and moderately increased M2 transformation in vivo. The culture supernatant of CAPN4-overexpressing or CVB3-infected macrophages impaired cardiac fibroblast function and viability. Moreover, macrophage CAPN4 could upregulate C/EBP-homologous protein (chop) expression, which increased proinflammatory cytokine release by activating the phosphorylation of transducer of activator of transcription 1 (STAT1) and 3 (STAT3). Overall, these results suggest that CAPN4 increases M1-type and inhibits M2-type macrophage polarization through the chop-STAT1/STAT3 signaling pathway to mediate CVB3-induced myocardial inflammation and injury. CAPN4 may be a novel target for viral myocarditis treatment.
Collapse
Affiliation(s)
- Yucheng Wang
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Minghui Li
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Jun Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Yong Yu
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Hui Shi
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Xiaoxiao Liu
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Zhiwei Chen
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Ruizhen Chen
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China.
| | - Junbo Ge
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| |
Collapse
|
10
|
Zhang YR, Liu SM, Chen Y, Zhang LS, Ji DR, Zhao J, Yu YR, Jia MZ, Tang CS, Huang W, Zhou YB, Chai SB, Qi YF. Intermedin alleviates diabetic vascular calcification by inhibiting GLUT1 through activation of the cAMP/PKA signaling pathway. Atherosclerosis 2023; 385:117342. [PMID: 37879153 DOI: 10.1016/j.atherosclerosis.2023.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND AIMS Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.
Collapse
Affiliation(s)
- Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Chao-Shu Tang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Wei Huang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, 102206, China.
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China.
| |
Collapse
|
11
|
Abe JI, Imanishi M, Li S, Zhang A, Ae Ko K, Samanthapudi VSK, Lee LL, Bojorges AP, Gi YJ, Hobbs BP, Deswal A, Herrmann J, Lin SH, Chini EN, Shen YH, Schadler KL, Nguyen THM, Gupte AA, Reyes-Gibby C, Yeung SCJ, Abe RJ, Olmsted-Davis EA, Krishnan S, Dantzer R, Palaskas NL, Cooke JP, Pownall HJ, Yoshimoto M, Fujiwara K, Hamilton DJ, Burks JK, Wang G, Le NT, Kotla S. An ERK5-NRF2 Axis Mediates Senescence-Associated Stemness and Atherosclerosis. Circ Res 2023; 133:25-44. [PMID: 37264926 PMCID: PMC10357365 DOI: 10.1161/circresaha.122.322017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.
Collapse
Affiliation(s)
- Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work and were designated as co-first authors
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work and were designated as co-first authors
| | - Shengyu Li
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- These authors contributed equally to this work and were designated as co-first authors
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian P. Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Keri L. Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thi-Hong-Minh Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rei J. Abe
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Henry J. Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Texas, and Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, Texas, USA
- These authors contributed equally to this work
| | - Jared K. Burks
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors contributed equally to this work
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- These authors were equivalent co-senior authors
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- These authors were equivalent co-senior authors
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- These authors were equivalent co-senior authors
| |
Collapse
|
12
|
Qin L, Vetreno RP, Crews FT. NADPH oxidase and endoplasmic reticulum stress is associated with neuronal degeneration in orbitofrontal cortex of individuals with alcohol use disorder. Addict Biol 2023; 28:e13262. [PMID: 36577732 PMCID: PMC9811516 DOI: 10.1111/adb.13262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Many disorders of the central nervous system (CNS), including alcohol use disorder (AUD), are associated with induction of proinflammatory neuroimmune signalling and neurodegeneration. In previous studies, we found increased expression of Toll-like receptors (TLRs), activated NF-κB p65 (RELA), and other proinflammatory signalling molecules. Proinflammatory NADPH oxidases generate reactive oxygen species, which are linked to neurodegeneration. We tested the hypothesis that AUD increased RELA activation increases NADPH oxidase-oxidative stress and endoplasmic reticulum (ER) stress cell death cascades in association with neuronal cell death in the human orbitofrontal cortex (OFC). In the AUD OFC, we report mRNA induction of several NADPH oxidases, the dual oxidase DUOX2, and the oxidative stress lipid peroxidation marker 4-HNE and the DNA oxidation marker 8-OHdG that correlate with RELA, a marker of proinflammatory NF-κB activation. This was accompanied by increased expression of the ER stress-associated regulator protein glucose-regulated protein 78 (GRP78), transmembrane sensors activating transcription factor 6 (ATF6), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and inositol-requiring kinase/endonuclease 1 (pIRE1), and the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Expression of NADPH oxidase-oxidative stress markers correlate with ER stress-associated molecules. Induction of oxidative stress and ER stress signalling pathways correlate with expression of cell death-associated caspases and neuronal cell loss. These data support the hypothesis that proinflammatory RELA-mediated induction of NADPH oxidase-oxidative stress and ER stress-associated signalling cascades is associated with neuronal cell death in the post-mortem human OFC of individuals with AUD.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Psychiatry, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Psychiatry, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
13
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
14
|
Li B, Wang C, Lu P, Ji Y, Wang X, Liu C, Lu X, Xu X, Wang X. IDH1 Promotes Foam Cell Formation by Aggravating Macrophage Ferroptosis. BIOLOGY 2022; 11:biology11101392. [PMID: 36290297 PMCID: PMC9598283 DOI: 10.3390/biology11101392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In our study, the involvement of IDH1 in atherosclerotic foam cells was explored. Inhibiting macrophage ferroptosis and foam cell formation by knocking down IDH1 is a promising study direction for better understanding the occurrence and progression of atherosclerosis, as well as the treatment targets for atherosclerosis. Abstract A distinctive feature of ferroptosis is intracellular iron accumulation and the impairment of antioxidant capacity, resulting in a lethal accumulation of lipid peroxides leading to cell death. This study was conducted to determine whether inhibiting isocitrate dehydrogenase 1 (IDH1) may help to prevent foam cell formation by reducing oxidized low-density lipoprotein (ox-LDL)-induced ferroptosis in macrophages and activating nuclear factor erythroid 2-related factor 2 (NRF2). Gene expression profiling (GSE70126 and GSE70619) revealed 21 significantly different genes, and subsequent bioinformatics research revealed that ferroptosis and IDH1 play essential roles in foam cell production. We also confirmed that ox-LDL elevates macrophage ferroptosis and IDH1 protein levels considerably as compared with controls. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, reduced ox-LDL-induced elevated Fe2+ levels, lipid peroxidation (LPO) buildup, lactate dehydrogenase (LDH) buildup, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4), ferritin heavy polypeptide 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11) protein downregulation. More crucially, inhibiting IDH1 reduced Fe2+ overload, lipid peroxidation, LDH, and glutathione depletion, and elevated GPX4, FTH1, and SLC7A11 protein expression, resulting in a reduction in ox-LDL-induced macrophage ferroptosis. IDH1 inhibition suppressed ox-LDL-induced macrophage damage and apoptosis while raising NRF2 protein levels. We have demonstrated that inhibiting IDH1 reduces ox-LDL-induced ferroptosis and foam cell formation in macrophages, implying that IDH1 may be an important molecule regulating foam cell formation and may be a promising molecular target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Chufan Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Peng Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Yumeng Ji
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Chaoyang Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaohu Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaohan Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili, Jiangsu Joint Institute of Health, Yining 835000, China
- Correspondence: (X.X.); (X.W.)
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
- Correspondence: (X.X.); (X.W.)
| |
Collapse
|
15
|
Rao Z, Zheng Y, Xu L, Wang Z, Zhou Y, Chen M, Dong N, Cai Z, Li F. Endoplasmic Reticulum Stress and Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2022; 9:918056. [PMID: 35783850 PMCID: PMC9243238 DOI: 10.3389/fcvm.2022.918056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular calcification (VC) is characterized by calcium phosphate deposition in blood vessel walls and is associated with many diseases, as well as increased cardiovascular morbidity and mortality. However, the molecular mechanisms underlying of VC development and pathogenesis are not fully understood, thus impeding the design of molecular-targeted therapy for VC. Recently, several studies have shown that endoplasmic reticulum (ER) stress can exacerbate VC. The ER is an intracellular membranous organelle involved in the synthesis, folding, maturation, and post-translational modification of secretory and transmembrane proteins. ER stress (ERS) occurs when unfolded/misfolded proteins accumulate after a disturbance in the ER environment. Therefore, downregulation of pathological ERS may attenuate VC. This review summarizes the relationship between ERS and VC, focusing on how ERS regulates the development of VC by promoting osteogenic transformation, inflammation, autophagy, and apoptosis, with particular interest in the molecular mechanisms occurring in various vascular cells. We also discuss, the therapeutic effects of ERS inhibition on the progress of diseases associated with VC are detailed.
Collapse
Affiliation(s)
- Zhenqi Rao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Fan S, He J, Yang Y, Wang D. Intermedin Reduces Oxidative Stress and Apoptosis in Ventilator-Induced Lung Injury via JAK2/STAT3. Front Pharmacol 2022; 12:817874. [PMID: 35140609 PMCID: PMC8819149 DOI: 10.3389/fphar.2021.817874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Mechanical ventilation is an effective treatment for acute respiratory distress syndrome (ARDS), which can improve the prognosis of ARDS to a certain extent. However, it may further aggravate lung tissue injury, which is defined as ventilator-induced lung injury (VILI). Intermedin (IMD) belongs to the calcitonin gene-related peptide (CPRP) superfamily. Our previous studies have found that IMD reduces the expression proinflammatory cytokines, down-regulates nuclear translocation and improves the integrity of endothelial barrier in ARDS. However, the effect of IMD on VILI has not been clarified. Oxidative stress imbalance and apoptosis are the main pathophysiological characteristics of VILI. In the current study, we used C57B6/J mice and human pulmonary microvascular endothelial cells (HPMECs) to establish a VILI model to analyze the effects of IMD on VILI and explore its potential mechanism. We found that IMD alleviated lung injury and inflammatory response in VILI, mainly in reducing ROS levels, upregulating SOD content, downregulating MDA content, reducing the expression of Bax and caspase-3, and increasing the expression of Bcl-2. In addition, we also found that IMD played its anti-oxidative stress and anti-apoptotic effects via JAK2/STAT3 signaling. Our study may provide some help for the prevention and treatment of VILI.
Collapse
Affiliation(s)
| | | | - Yanli Yang
- *Correspondence: Yanli Yang, ; Daoxin Wang,
| | | |
Collapse
|
17
|
Liu K, Shi R, Wang S, Liu Q, Zhang H, Chen X. Intermedin Inhibits the Ox-LDL-Induced Inflammation in RAW264.7 Cells by Affecting Fatty Acid-Binding Protein 4 Through the PKA Pathway. Front Pharmacol 2021; 12:724777. [PMID: 34925001 PMCID: PMC8671820 DOI: 10.3389/fphar.2021.724777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) play an important role in the occurrence and progression of atherosclerosis. Fatty acid-binding protein 4 (FABP4), mainly existing in macrophages and adipocytes, can influence lipid metabolism and inflammation regulated by macrophages. Herein, we first established the connection between intermedin (IMD: a new peptide that has versatile biological activities in the cardiovascular system) and FABP4 and then investigated the influence of IMD on ox-LDL-induced changes in RAW264.7 macrophages line. Methods: The bioinformatics analysis, such as gene ontology enrichment and protein-protein interactions, was performed. For ox-LDL-stimulated assays, RAW264.7 was first pretreated with IMD and then exposed to ox-LDL. To explore the cell signaling pathways of IMD on inflammatory inhibition, main signaling molecules were tested and then cells were co-incubated with relevant inhibitors, and then exposed/not exposed to IMD. Finally, cells were treated with ox-LDL. The protein and gene expression of FABP4, IL-6, and TNF-α were quantified by WB/ELISA and RT-qPCR. Results: In the ox-LDL-stimulated assays, exposure of the RAW264.7 macrophages line to ox-LDL reduced cell viability and increased the expression of FABP4, as well as induced the release of IL-6 and TNF-α (all p < 0.05). On the other hand, IMD prevented ox-LDL-induced cell toxicity, FABP4 expression, and the inflammatory level in RAW264.7 (all p < 0.05) in a dose-dependent manner. The inhibition of FABP4 and the anti-inflammatory effect of IMD were partially suppressed by the protein kinase A (PKA) inhibitor H-89. Conclusion: IMD can prevent ox-LDL-induced macrophage inflammation by inhibiting FABP4, whose signaling might partially occur via the PKA pathway.
Collapse
Affiliation(s)
- Kai Liu
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Rufeng Shi
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, The Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Si Wang
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Liu
- State Key Laboratory of Biotherapy, The Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyu Zhang
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoping Chen
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|