1
|
Eder L, Caucheteux SM, Afiuni-Zadeh S, Croitoru D, Krizova A, Limacher JJ, Ritchlin C, Jackson H, Piguet V. Imaging Mass Cytometry in Psoriatic Disease reveals immune profile heterogeneity in skin and synovial tissue. J Invest Dermatol 2024:S0022-202X(24)02180-8. [PMID: 39393504 DOI: 10.1016/j.jid.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Imaging Mass Cytometry (IMC) is a technology that enables comprehensive analysis of cellular phenotypes at the tissue level. We performed a multi-parameter characterization of structural and immune cell populations in psoriatic skin and synovial tissue samples aimed at characterizing immune cell differences in patients with psoriasis, psoriatic arthritis (PsA). A panel of 33 antibodies was used to stain selected immune and structural cell populations. IMC data were segmented into single cells based on combinations of antibody stains. Single cells were then clustered into cell categories based on pre-specified markers. The spatial relationships of different cell populations were assessed using neighborhood analysis. Among all cell types in the skin and synovium, lymphoid cells accounted for the most prevalent cell type. T cells and macrophages were the most prevalent immune cell type in the synovium and B cells and NK cells were also identified. Neighborhood analysis showed high correlation between synovial T cells, B cells, macrophages, dendritic cells and neutrophils suggesting spatial organization. Innate and adaptive immune cells can be reliably identified using IMC in skin and synovium. Inter-patient heterogeneity exists in tissue cell populations. IMC provides opportunities for exploring in depth underlying immunological mechanisms driving psoriasis and PsA.
Collapse
Affiliation(s)
- Lihi Eder
- Women's College Hospital, Toronto, ON, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON.
| | - Stephan M Caucheteux
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | | | - David Croitoru
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | - Adriana Krizova
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON; St. Michael's Hospital, Toronto, ON, Canada
| | - James J Limacher
- Women's College Hospital, Toronto, ON, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | | | - Hartland Jackson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health, Toronto, ON, Canada; Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Vincent Piguet
- Women's College Hospital, Toronto, ON, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON.
| |
Collapse
|
2
|
Sol S, Boncimino F, Todorova K, Mandinova A. Unraveling the Functional Heterogeneity of Human Skin at Single-Cell Resolution. Hematol Oncol Clin North Am 2024; 38:921-938. [PMID: 38839486 DOI: 10.1016/j.hoc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The skin consists of several cell populations, including epithelial, immune, and stromal cells. Recently, there has been a significant increase in single-cell RNA-sequencing studies, contributing to the development of a consensus Human Skin Cell Atlas. The aim is to understand skin biology better and identify potential therapeutic targets. The present review utilized previously published single-cell RNA-sequencing datasets to explore human skin's cellular and functional heterogeneity. Additionally, it summarizes the functional significance of newly identified cell subpopulations in processes such as wound healing and aging.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 7 Cambridge Center, MA 02142, USA; Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
4
|
Schepps S, Xu J, Yang H, Mandel J, Mehta J, Tolotta J, Baker N, Tekmen V, Nikbakht N, Fortina P, Fuentes I, LaFleur B, Cho RJ, South AP. Skin in the game: a review of single-cell and spatial transcriptomics in dermatological research. Clin Chem Lab Med 2024; 62:1880-1891. [PMID: 38656304 DOI: 10.1515/cclm-2023-1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) are two emerging research technologies that uniquely characterize gene expression microenvironments on a cellular or subcellular level. The skin, a clinically accessible tissue composed of diverse, essential cell populations, serves as an ideal target for these high-resolution investigative approaches. Using these tools, researchers are assembling a compendium of data and discoveries in healthy skin as well as a range of dermatologic pathophysiologies, including atopic dermatitis, psoriasis, and cutaneous malignancies. The ongoing advancement of single-cell approaches, coupled with anticipated decreases in cost with increased adoption, will reshape dermatologic research, profoundly influencing disease characterization, prognosis, and ultimately clinical practice.
Collapse
Affiliation(s)
- Samuel Schepps
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jonathan Xu
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Henry Yang
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jenna Mandel
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jaanvi Mehta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Julianna Tolotta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Nicole Baker
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Volkan Tekmen
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| | - Ignacia Fuentes
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Directora de Investigación Fundación DEBRA Chile, Santiago, Chile
| | - Bonnie LaFleur
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- R. Ken Coit College of Pharmacy, University of Arizona, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond J Cho
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Department of Dermatology, University of San Francisco, San Francisco, CA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| |
Collapse
|
5
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2024:S0091-6749(24)00942-4. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
6
|
Hollstein MM, Traidl S, Heetfeld A, Forkel S, Leha A, Alkon N, Ruwisch J, Lenz C, Schön MP, Schmelz M, Brunner P, Steinhoff M, Buhl T. Skin microdialysis detects distinct immunologic patterns in chronic inflammatory skin diseases. J Allergy Clin Immunol 2024:S0091-6749(24)00782-6. [PMID: 39142443 DOI: 10.1016/j.jaci.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Insight into the pathophysiology of inflammatory skin diseases, especially at the proteomic level, is severely hampered by the lack of adequate in situ data. OBJECTIVE We characterized lesional and nonlesional skin of inflammatory skin diseases using skin microdialysis. METHODS Skin microdialysis samples from patients with atopic dermatitis (AD, n = 6), psoriasis vulgaris (PSO, n = 7), or prurigo nodularis (PN, n = 6), as well as healthy controls (n = 7), were subjected to proteomic and multiplex cytokine analysis. Single-cell RNA sequencing of skin biopsy specimens was used to identify the cellular origin of cytokines. RESULTS Among the top 20 enriched Gene Ontology (GO; geneontology.org) annotations, nicotinamide adenine dinucleotide metabolic process, regulation of secretion by cell, and pyruvate metabolic process were elevated in microdialysates from lesional AD skin compared with both nonlesional skin and controls. The top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG; genome.jp/kegg) pathways in these 3 groups overlapped almost completely. In contrast, nonlesional skin from patients with PSO or PN and control skin showed no overlap with lesional skin in this KEGG pathway analysis. Lesional skin from patients with PSO, but not AD or PN, showed significantly elevated protein levels of MCP-1 compared with nonlesional skin. IL-8 was elevated in lesional versus nonlesional AD and PSO skin, whereas IL-12p40 and IL-22 were higher only in lesional PSO skin. Integrated single-cell RNA sequencing data revealed identical cellular sources of these cytokines in AD, PSO, and PN. CONCLUSION On the basis of microdialysates, the proteomic data of lesional PSO and PN skin, but not lesional AD skin, differed significantly from those of nonlesional skin. IL-8, IL-22, MCP-1, and IL-12p40 might be suitable markers for minimally invasive molecular profiling.
Collapse
Affiliation(s)
- Moritz Maximilian Hollstein
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen (UMG), Göttingen, Germany.
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Anne Heetfeld
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen (UMG), Göttingen, Germany
| | - Susann Forkel
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen (UMG), Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, UMG, Göttingen, Germany
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jannik Ruwisch
- Clinic for Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, UMG, Göttingen, Germany; Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Peter Schön
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen (UMG), Göttingen, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patrick Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
7
|
Soul J, Carlsson E, Hofmann SR, Russ S, Hawkes J, Schulze F, Sergon M, Pablik J, Abraham S, Hedrich CM. Tissue gene expression profiles and communication networks inform candidate blood biomarker identification in psoriasis and atopic dermatitis. Clin Immunol 2024; 265:110283. [PMID: 38880200 DOI: 10.1016/j.clim.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Overlapping clinical and pathomechanistic features can complicate the diagnosis and treatment of inflammatory skin diseases, including psoriasis and atopic dermatitis (AD). Spatial transcriptomics allows the identification of disease- and cell-specific molecular signatures that may advance biomarker development and future treatments. This study identified transcriptional signatures in keratinocytes and sub-basal CD4+ and CD8+ T lymphocytes from patients with psoriasis and AD. In silico prediction of ligand:receptor interactions delivered key signalling pathways (interferon, effector T cells, stroma cell and matrix biology, neuronal development, etc.). Targeted validation of selected transcripts, including CCL22, RELB, and JUND, in peripheral blood T cells suggests the chosen approach as a promising tool also in other inflammatory diseases. Psoriasis and AD are characterized by transcriptional dysregulation in T cells and keratinocytes that may be targeted therapeutically. Spatial transcriptomics is a valuable tool in the search for molecular signatures that can be used as biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- J Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - E Carlsson
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S R Hofmann
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Russ
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - J Hawkes
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - F Schulze
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - M Sergon
- Institut of Pathology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - J Pablik
- Institut of Pathology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Abraham
- Department of Dermatology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
8
|
Jiang J, Shao X, Liu W, Wang M, Li Q, Wang M, Xiao Y, Li K, Liang H, Wang N, Xu X, Wu Y, Gao X, Xie Q, Xiang X, Liu W, Wu W, Yang L, Gu ZZ, Chen J, Lei M. The mechano-chemical circuit in fibroblasts and dendritic cells drives basal cell proliferation in psoriasis. Cell Rep 2024; 43:114513. [PMID: 39003736 DOI: 10.1016/j.celrep.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/13/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Co., Ltd, Shenzhen 518000, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Cui N, Xu X, Zhou F. Single-cell technologies in psoriasis. Clin Immunol 2024; 264:110242. [PMID: 38750947 DOI: 10.1016/j.clim.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disorder. The primary manifestation of psoriasis arises from disturbances in the cutaneous immune microenvironment, but the specific functions of the cellular components within this microenvironment remain unknown. Recent advancements in single-cell technologies have enabled the detection of multi-omics at the level of individual cells, including single-cell transcriptome, proteome, and metabolome, which have been successfully applied in studying autoimmune diseases, and other pathologies. These techniques allow the identification of heterogeneous cell clusters and their varying contributions to disease development. Considering the immunological traits of psoriasis, an in-depth exploration of immune cells and their interactions with cutaneous parenchymal cells can markedly advance our comprehension of the mechanisms underlying the onset and recurrence of psoriasis. In this comprehensive review, we present an overview of recent applications of single-cell technologies in psoriasis, aiming to improve our understanding of the underlying mechanisms of this disorder.
Collapse
Affiliation(s)
- Niannian Cui
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China.
| |
Collapse
|
10
|
Nakamizo S, Doi H, Kabashima K. Metabolic dynamics in psoriatic epidermis: Enhanced glucose and lactate uptake, glycolytic pathway and TCA cycle dynamics. Exp Dermatol 2024; 33:e15127. [PMID: 38973262 DOI: 10.1111/exd.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromi Doi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- A*STAR Skin Research Labs (A*SRL) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| |
Collapse
|
11
|
Patel JR, Joel MZ, Lee KK, Kambala A, Cornman H, Oladipo O, Taylor M, Imo BU, Ma EZ, Manjunath J, Kollhoff AL, Deng J, Parthasarathy V, Cravero K, Marani M, Szeto M, Zhao R, Sankararaman S, Li R, Henry S, Pritchard T, Rebecca V, Kwatra MM, Ho WJ, Dong X, Kang S, Kwatra SG. Single-Cell RNA Sequencing Reveals Dysregulated POSTN+WNT5A+ Fibroblast Subclusters in Prurigo Nodularis. J Invest Dermatol 2024; 144:1568-1578.e5. [PMID: 38246584 DOI: 10.1016/j.jid.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Prurigo nodularis (PN) is an intensely pruritic, inflammatory skin disease with a poorly understood pathogenesis. We performed single-cell transcriptomic profiling of 28,695 lesional and nonlesional PN cells. Lesional PN has increased dysregulated fibroblasts (FBs) and myofibroblasts. FBs in lesional PN were shifted toward a cancer-associated FB-like phenotype, with POSTN+WNT5A+ cancer-associated FBs increased in PN and similarly so in squamous cell carcinoma. A multicenter cohort study revealed an increased risk of squamous cell carcinoma and cancer-associated FB-associated malignancies (breast and colorectal) in patients with PN. Systemic fibroproliferative diseases (renal sclerosis and idiopathic pulmonary fibrosis) were upregulated in patients with PN. Ligand-receptor analyses demonstrated an FB neuronal axis with FB-derived WNT5A and periostin interactions with neuronal receptors melanoma cell adhesion molecule and ITGAV. These findings identify a pathogenic and targetable POSTN+WNT5A+ FB subpopulation that may predispose cancer-associated FB-associated malignancies in patients with PN.
Collapse
Affiliation(s)
- Jay R Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Z Joel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brenda Umenita Imo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaya Manjunath
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander L Kollhoff
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - June Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Cravero
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mindy Szeto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan Zhao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sreenidhi Sankararaman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruixiang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanae Henry
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vito Rebecca
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Won Jin Ho
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
13
|
Lin Y, Li X, Fang J, Zeng Q, Cheng D, Wang G, Shi R, Luo Y, Ma Y, Li M, Tang X, Wang X, Tian R. Single-cell transcriptome profiling reveals cell type-specific variation and development in HLA expression of human skin. Int Immunopharmacol 2024; 133:112070. [PMID: 38640716 DOI: 10.1016/j.intimp.2024.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Skin, the largest organ of body, is a highly immunogenic tissue with a diverse collection of immune cells. Highly polymorphic human leukocyte antigen (HLA) molecules have a central role in coordinating immune responses as recognition molecules. Nevertheless, HLA gene expression patterns among diverse cell types within a specific organ, like the skin, have yet to be thoroughly investigated, with stromal cells attracting much less attention than immune cells. To illustrate HLA expression profiles across different cell types in the skin, we performed single-cell RNA sequencing (scRNA-seq) analyses on skin datasets, covering adult and fetal skin, and hair follicles as the skin appendages. We revealed the variation in HLA expression between different skin populations by examining normal adult skin datasets. Moreover, we evaluated the potential immunogenicity of multiple skin populations based on the expression of classical HLA class I genes, which were well represented in all cell types. Furthermore, we generated scRNA-seq data of developing skin from fetuses of 15 post conception weeks (PCW), 17 PCW, and 22 PCW, delineating the dynamic expression of HLA genes with cell type-dependent variation among various cell types during development. Notably, the pseudotime trajectory analysis unraveled the significant variance in HLA genes during the evolution of vascular endothelial cells. Moreover, we uncovered the immune-privileged properties of hair follicles at single-cell resolution. Our study presents a comprehensive single-cell transcriptomic landscape of HLA genes in the skin, which provides new insights into variation in HLA molecules and offers a clue for allogeneic skin transplantation.
Collapse
Affiliation(s)
- Yumiao Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qinglan Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Danling Cheng
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China
| | - Gaofeng Wang
- Department of Pastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Runlu Shi
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yilin Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yihe Ma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Miaomiao Li
- Department of Hemangioma and Vascular Malformation Surgery, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiang Tang
- Department of Minimal Invasive Gynecology, Guangzhou Women and Children's Hospital, Guangzhou Medical University, Guangzhou 510000, China.
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Ruiyun Tian
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; GuangDong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China.
| |
Collapse
|
14
|
Liu W, Jiang J, Li Z, Xiao Y, Zhou S, Wang D, Zou Y, Liu T, Li K, Liang H, Wang N, Xiang X, Xie Q, Zhan R, Zhang J, Zhou X, Yang L, Chuong CM, Lei M. Energy competition remodels the metabolic glucose landscape of psoriatic epidermal cells. Theranostics 2024; 14:3339-3357. [PMID: 38855186 PMCID: PMC11155411 DOI: 10.7150/thno.93764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Rationale: Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown. Here, we explored the role of metabolic competition in epidermal cell proliferation and differentiation in psoriatic skin. Methods: Bulk- and single-cell RNA-sequencing, spatial transcriptomics, and glucose uptake experiments were used to analyze the metabolic differences in epidermal cells in psoriasis. Functional validation in vivo and in vitro was done using imiquimod-like mouse models and inflammatory organoid models. Results: We observed the highly proliferative basal cells in psoriasis act as the winners of the metabolic competition to uptake glucose from suprabasal cells. Using single-cell metabolic analysis, we found that the "winner cells" promote OXPHOS pathway upregulation by COX7B and lead to increased ROS through glucose metabolism, thereby promoting the hyperproliferation of basal cells in psoriasis. Also, to prevent toxic damage from ROS, basal cells activate the glutathione metabolic pathway to increase their antioxidant capacity to assist in psoriasis progression. We further found that COX7B promotes psoriasis development by modulating the activity of the PPAR signaling pathway by bulk RNA-seq analysis. We also observed glucose starvation and high expression of SLC7A11 that causes suprabasal cell disulfide stress and affects the actin cytoskeleton, leading to immature differentiation of suprabasal cells in psoriatic skin. Conclusion: Our study demonstrates the essential role of cellular metabolic competition for skin tissue homeostasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zeming Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Dehuan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Zou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tiantian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rixing Zhan
- State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jinwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Dermatology, Chongqing General Hospital, Chongqing 401147, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Gupta RK, Figueroa DS, Fung K, Miki H, Miller J, Ay F, Croft M. LIGHT signaling through LTβR and HVEM in keratinocytes promotes psoriasis and atopic dermatitis-like skin inflammation. J Autoimmun 2024; 144:103177. [PMID: 38368767 DOI: 10.1016/j.jaut.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin β receptor (LTβR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTβR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTβR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.
Collapse
Affiliation(s)
- Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Daniela Salgado Figueroa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
17
|
Cavagnero KJ, Li F, Dokoshi T, Nakatsuji T, O’Neill AM, Aguilera C, Liu E, Shia M, Osuoji O, Hata T, Gallo RL. CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 2024; 221:e20231425. [PMID: 38393304 PMCID: PMC10890925 DOI: 10.1084/jem.20231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The skin provides an essential barrier for host defense through rapid action of multiple resident and recruited cell types, but the complex communication network governing these processes is incompletely understood. To define these cell-cell interactions more clearly, we performed an unbiased network analysis of mouse skin during invasive S. aureus infection and revealed a dominant role for CXCL12+ fibroblast subsets in neutrophil communication. These subsets predominantly reside in the reticular dermis, express adipocyte lineage markers, detect IL-17 and TNFα, and promote robust neutrophil recruitment through NFKBIZ-dependent release of CXCR2 ligands and CXCL12. Targeted deletion of Il17ra in mouse fibroblasts resulted in greatly reduced neutrophil recruitment and increased infection by S. aureus. Analogous human CXCL12+ fibroblast subsets abundantly express neutrophil chemotactic factors in psoriatic skin that are subsequently decreased upon therapeutic targeting of IL-17. These findings show that CXCL12+ dermal immune acting fibroblast subsets play a critical role in cutaneous neutrophil recruitment and host defense.
Collapse
Affiliation(s)
- Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Edward Liu
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Michael Shia
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Olive Osuoji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| |
Collapse
|
18
|
Long F, Wei X, Chen Y, Li M, Lian N, Yu S, Chen S, Yang Y, Li M, Gu H, Chen X. Gasdermin E promotes translocation of p65 and c-jun into nucleus in keratinocytes for progression of psoriatic skin inflammation. Cell Death Dis 2024; 15:180. [PMID: 38429278 PMCID: PMC10907691 DOI: 10.1038/s41419-024-06545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Gasdermin E (GSDME) has recently been identified as a critical executioner to mediate pyroptosis. While epidermal keratinocytes can initiate GSDME-mediated pyroptosis, the role of keratinocyte GSDME in psoriatic dermatitis remains poorly characterized. Through analysis of GEO datasets, we found elevated GSDME levels in psoriatic lesional skin. Additionally, GSDME levels correlated with both psoriasis severity and response to biologics treatments. Single-cell RNA sequencing (scRNA-seq) from a GEO dataset revealed GSDME upregulation in keratinocytes of psoriasis patients. In the imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model, both full-length and cleaved forms of caspase-3 and GSDME were elevated in the epidermis. Abnormal proliferation and differentiation of keratinocytes and dermatitis were attenuated in Gsdme-/- mice and keratinocyte-specific Gsdme conditional knockout mice after IMQ stimulation. Exposure of keratinocytes to mixed cytokines (M5), mimicking psoriatic conditions, led to GSDME cleavage. Moreover, the interaction between GSDME-FL and p65 or c-jun was significantly increased after M5 stimulation. GSDME knockdown inhibited nuclear translocation of p65 and c-jun and decreased upregulation of psoriatic inflammatory mediators such as IL1β, CCL20, CXCL1, CXCL8, S100A8, and S100A9 in M5-challenged keratinocytes. In conclusion, GSDME in keratinocytes contributes to the pathogenesis and progression of psoriasis, potentially in a pyroptosis-independent manner by interacting and promoting translocation of p65 and c-jun. These findings suggest that keratinocyte GSDME could serve as a potential therapeutic target for psoriasis treatment.
Collapse
Affiliation(s)
- Fangyuan Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Xuecui Wei
- School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Yujie Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Ni Lian
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Shanshan Yu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Sihan Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Yong Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, 210042, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Miao H, Bai Y, Shen S, Chu M, Miao C, Yang J, Li X, Li L, Shao S, Wang G, Dang E. Biological agent exerts therapeutic effects by reversing abnormalities in amino acid metabolic pathways in psoriasis. Exp Dermatol 2024; 33:e15059. [PMID: 38532578 DOI: 10.1111/exd.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease with a complex pathogenesis involving immune system dysregulation and inflammation. Previous studies have indicated that metabolic abnormalities are closely related to the development and occurrence of psoriasis. However, the specific involvement of amino acid metabolism in the pathogenesis of psoriasis remains unclear. In this study, we conducted a comprehensive analysis of amino acid metabolism pathway changes in psoriasis patients using transcriptome data, genome-wide association studies (GWASs) data, and single-cell data. Our findings revealed 11 significant alterations in amino acid metabolism pathways within psoriatic lesions, with notable restorative changes observed after biological therapy. Branched-chain amino acids, tyrosine and arginine metabolism have a causal relationship with the occurrence of psoriasis and may play a crucial role by promoting the proliferation and differentiation of the keratinocytes or immune-related pathways. Activation of phenylalanine, tyrosine and tryptophan biosynthesis suggests a favourable prognosis of psoriasis after treatment. Additionally, we identified the abnormal metabolic pathways in specific cell types and key gene sets that contribute to amino acid metabolic disorders in psoriasis. Overall, our study enhances understanding of the role of metabolism in the pathogenesis of psoriasis and provides potential targets for developing new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Haijun Miao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Shengxian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Mengyang Chu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Chang Miao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Jundan Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Xia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Liang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
20
|
Francis L, McCluskey D, Ganier C, Jiang T, Du-Harpur X, Gabriel J, Dhami P, Kamra Y, Visvanathan S, Barker JN, Smith CH, Capon F, Mahil SK. Single-cell analysis of psoriasis resolution demonstrates an inflammatory fibroblast state targeted by IL-23 blockade. Nat Commun 2024; 15:913. [PMID: 38291032 PMCID: PMC10828502 DOI: 10.1038/s41467-024-44994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Biologic therapies targeting the IL-23/IL-17 axis have transformed the treatment of psoriasis. However, the early mechanisms of action of these drugs remain poorly understood. Here, we perform longitudinal single-cell RNA-sequencing in affected individuals receiving IL-23 inhibitor therapy. By profiling skin at baseline, day 3 and day 14 of treatment, we demonstrate that IL-23 blockade causes marked gene expression shifts, with fibroblast and myeloid populations displaying the most extensive changes at day 3. We also identify a transient WNT5A+/IL24+ fibroblast state, which is only detectable in lesional skin. In-silico and in-vitro studies indicate that signals stemming from these WNT5A+/IL24+ fibroblasts upregulate multiple inflammatory genes in keratinocytes. Importantly, the abundance of WNT5A+/IL24+ fibroblasts is significantly reduced after treatment. This observation is validated in-silico, by deconvolution of multiple transcriptomic datasets, and experimentally, by RNA in-situ hybridization. These findings demonstrate that the evolution of inflammatory fibroblast states is a key feature of resolving psoriasis skin.
Collapse
Affiliation(s)
- Luc Francis
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Daniel McCluskey
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Clarisse Ganier
- Center of Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Treasa Jiang
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Xinyi Du-Harpur
- Center of Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Jeyrroy Gabriel
- Center of Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Pawan Dhami
- Genomics Research Platform, King's College London NIHR Biomedical Research Centre, London, UK
| | - Yogesh Kamra
- Genomics Research Platform, King's College London NIHR Biomedical Research Centre, London, UK
| | | | - Jonathan N Barker
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Catherine H Smith
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Francesca Capon
- Department of Medical and Molecular Genetics, King's College London, London, UK.
| | - Satveer K Mahil
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
21
|
Zhou Y, Cao T, Li Z, Qiao H, Dang E, Shao S, Wang G. Fibroblasts in immune-mediated inflammatory diseases: The soil of inflammation. Clin Immunol 2024; 258:109849. [PMID: 38008146 DOI: 10.1016/j.clim.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
As one of the most abundant stromal cells, fibroblasts are primarily responsible for the production and remodeling of the extracellular matrix. Traditionally, fibroblasts have been viewed as quiescent cells. However, recent advances in multi-omics technologies have demonstrated that fibroblasts exhibit remarkable functional diversity at the single-cell level. Additionally, fibroblasts are heterogeneous in their origins, tissue locations, and transitions with stromal cells. The dynamic nature of fibroblasts is further underscored by the fact that disease stages can impact their heterogeneity and behavior, particularly in immune-mediated inflammatory diseases such as psoriasis, inflammatory bowel diseases, and rheumatoid arthritis, etc. Fibroblasts can actively contribute to the disease initiation, progression, and relapse by responding to local microenvironmental signals, secreting downstream inflammatory factors, and interacting with immune cells during the pathological process. Here we focus on the development, plasticity, and heterogeneity of fibroblasts in inflammation, emphasizing the need for a developmental and dynamic perspective on fibroblasts.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiguo Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Shuai Shao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Gang Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| |
Collapse
|
22
|
Hao J, Yu J, Yorek MS, Yu CL, Pope RM, Chimenti MS, Xiong Y, Klingelhutz A, Jabbari A, Li B. Keratinocyte FABP5-VCP complex mediates recruitment of neutrophils in psoriasis. Cell Rep 2023; 42:113449. [PMID: 37967009 PMCID: PMC10729729 DOI: 10.1016/j.celrep.2023.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
One of the hallmarks of intractable psoriasis is neutrophil infiltration in skin lesions. However, detailed molecular mechanisms of neutrophil chemotaxis and activation remain unclear. Here, we demonstrate a significant upregulation of epidermal fatty acid binding protein (E-FABP, FABP5) in the skin of human psoriasis and psoriatic mouse models. Genetic deletion of FABP5 in mice by global knockout and keratinocyte conditional (Krt6a-Cre) knockout, but not myeloid cell conditional (LysM-Cre) knockout, attenuates psoriatic symptoms. Immunophenotypic analysis shows that FABP5 deficiency specifically reduces skin recruitment of Ly6G+ neutrophils. Mechanistically, activated keratinocytes produce chemokines and cytokines that trigger neutrophil chemotaxis and activation in an FABP5-dependent manner. Proteomic analysis further identifies that FABP5 interacts with valosin-containing protein (VCP), a key player in NF-κB signaling activation. Silencing of FABP5, VCP, or both inhibits NF-κB/neutrophil chemotaxis signaling. Collectively, these data demonstrate dysregulated FABP5 as a molecular mechanism promoting NF-κB signaling and neutrophil infiltration in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Matthew S Yorek
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Chi-Li Yu
- Proteomics Facility, University of Iowa, Iowa City, IA, USA
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, USA; Iowa City VA Medical Center, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
23
|
Ettinger M, Burner T, Sharma A, Chang YT, Lackner A, Prompsy P, Deli IM, Traxler J, Wahl G, Altrichter S, Langer R, Tsai YC, Varkhande SR, Schoeftner LC, Iselin C, Gratz IK, Kimeswenger S, Guenova E, Hoetzenecker W. Th17-associated cytokines IL-17 and IL-23 in inflamed skin of Darier disease patients as potential therapeutic targets. Nat Commun 2023; 14:7470. [PMID: 37978298 PMCID: PMC10656568 DOI: 10.1038/s41467-023-43210-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Darier disease (DD) is a rare, inherited multi-organ disorder associated with mutations in the ATP2A2 gene. DD patients often have skin involvement characterized by malodorous, inflamed skin and recurrent, severe infections. Therapeutic options are limited and inadequate for the long-term management of this chronic disease. The aim of this study was to characterize the cutaneous immune infiltrate in DD skin lesions in detail and to identify new therapeutic targets. Using gene and protein expression profiling assays including scRNA sequencing, we demonstrate enhanced expression of Th17-related genes and cytokines and increased numbers of Th17 cells in six DD patients. We provide evidence that targeting the IL-17/IL-23 axis in a case series of three DD patients with monoclonal antibodies is efficacious with significant clinical improvement. As DD is a chronic, relapsing disease, our findings might pave the way toward additional options for the long-term management of skin inflammation in patients with DD.
Collapse
Affiliation(s)
- Monika Ettinger
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Teresa Burner
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Anshu Sharma
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Yun-Tsan Chang
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Angelika Lackner
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Pacôme Prompsy
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Isabella M Deli
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
| | - Judith Traxler
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
| | - Gerald Wahl
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
| | - Sabine Altrichter
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rupert Langer
- Institute of Pathology and Molecular Pathology, Kepler University Hospital Linz, Linz, Austria
- Institute of Pathology and Molecular Pathology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Yi-Chien Tsai
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Suraj R Varkhande
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Leonie C Schoeftner
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christoph Iselin
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Iris K Gratz
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Susanne Kimeswenger
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Emmanuella Guenova
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
- Department of Dermatology, Hospital 12 de octubre, Medical school, University Complutense, Madrid, Spain
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria.
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
24
|
Correa-Gallegos D, Ye H, Dasgupta B, Sardogan A, Kadri S, Kandi R, Dai R, Lin Y, Kopplin R, Shenai DS, Wannemacher J, Ichijo R, Jiang D, Strunz M, Ansari M, Angelidis I, Schiller HB, Volz T, Machens HG, Rinkevich Y. CD201 + fascia progenitors choreograph injury repair. Nature 2023; 623:792-802. [PMID: 37968392 PMCID: PMC10665192 DOI: 10.1038/s41586-023-06725-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.
Collapse
Affiliation(s)
| | - Haifeng Ye
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Bikram Dasgupta
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Aydan Sardogan
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Safwen Kadri
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Ravinder Kandi
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Yue Lin
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Robert Kopplin
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Disha Shantaram Shenai
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Juliane Wannemacher
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Ryo Ichijo
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Maximilian Strunz
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Meshal Ansari
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Illias Angelidis
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Herbert B Schiller
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
- Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Thomas Volz
- Klinikum rechts der Isar, Department of Dermatology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Günther Machens
- Klinikum rechts der Isar, Department of Plastic and Hand Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany.
| |
Collapse
|
25
|
Siebert S, Pennington SR, Raychaudhuri SP, Chaudhari AJ, Jin JQ, Liao W, Chandran V, FitzGerald O. Novel Insights From Basic Science in Psoriatic Disease at the GRAPPA 2022 Annual Meeting. J Rheumatol 2023; 50:66-70. [PMID: 37527860 DOI: 10.3899/jrheum.2023-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
Recent basic science advances in psoriatic disease (PsD) were presented and discussed at the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2022 annual meeting. Topics included clinical applications of biomarkers, what the future of biomarkers for PsD may hold, the challenges of developing biomarker research to the point of clinical utility, advances in total-body positron emission tomography/computed tomography imaging, and emerging concepts from single-cell studies in PsD.
Collapse
Affiliation(s)
- Stefan Siebert
- S. Siebert, MD, PhD, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stephen R Pennington
- S.R. Pennington, PhD, O. FitzGerald, MD, School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Siba P Raychaudhuri
- S.P. Raychaudhuri, MD, Department of Internal Medicine-Rheumatology, UC Davis School of Medicine and Northern California Veterans Affairs Medical Center, Mather, California, USA
| | - Abhijit J Chaudhari
- A.J. Chaudhari, PhD, Department of Radiology, UC Davis School of Medicine, Sacramento, California, USA
| | - Joy Q Jin
- J.Q. Jin, AB, School of Medicine, and Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Wilson Liao
- W. Liao, MD, Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Vinod Chandran
- V. Chandran, DM, PhD, Departments of Medicine, Laboratory Medicine, and Pathobiology and Institute of Medical Science, University of Toronto, and Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Oliver FitzGerald
- S.R. Pennington, PhD, O. FitzGerald, MD, School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, Dublin, Ireland;
| |
Collapse
|
26
|
Gao Y, Na M, Yao X, Li C, Li L, Yang G, Li Y, Hu Y. Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis. Front Immunol 2023; 14:1265517. [PMID: 37822943 PMCID: PMC10562854 DOI: 10.3389/fimmu.2023.1265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Psoriasis is a complex, chronic autoimmune disorder predominantly affecting the skin. Accumulating evidence underscores the critical role of localized cellular inflammation in the development and persistence of psoriatic skin lesions, involving cell types such as keratinocytes, mesenchymal cells, and Schwann cells. However, the underlying mechanisms remain largely unexplored. Long non-coding RNAs (lncRNAs), known to regulate gene expression across various cellular processes, have been particularly implicated in immune regulation. We utilized our neural-network learning pipeline to integrate 106,675 cells from healthy human skin and 79,887 cells from psoriatic human skin. This formed the most extensive cell transcriptomic atlas of human psoriatic skin to date. The robustness of our reclassified cell-types, representing full-layer zonation in human skin, was affirmed through neural-network learning-based cross-validation. We then developed a publicly available website to present this integrated dataset. We carried out analysis for differentially expressed lncRNAs, co-regulated gene patterns, and GO-bioprocess enrichment, enabling us to pinpoint lncRNAs that modulate localized cellular inflammation in psoriasis at the single-cell level. Subsequent experimental validation with skin cell lines and primary cells from psoriatic skin confirmed these lncRNAs' functional role in localized cellular inflammation. Our study provides a comprehensive cell transcriptomic atlas of full-layer human skin in both healthy and psoriatic conditions, unveiling a new regulatory mechanism that governs localized cellular inflammation in psoriasis and highlights the therapeutic potential of lncRNAs in this disease's management.
Collapse
Affiliation(s)
- Yuge Gao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengxue Na
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Yao
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Chao Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangyu Yang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Wang L, Wang B, Kou E, Du L, Zhu Y. New insight into the role of fibroblasts in the epithelial immune microenvironment in the single-cell era. Front Immunol 2023; 14:1259515. [PMID: 37809065 PMCID: PMC10556469 DOI: 10.3389/fimmu.2023.1259515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The skin is exposed to environmental challenges and contains heterogeneous cell populations such as epithelial cells, stromal cells, and skin-resident immune cells. As the most abundant type of stromal cells, fibroblasts have been historically considered silent observers in the immune responses of the cutaneous epithelial immune microenvironment (EIME), with little research conducted on their heterogeneity and immune-related functions. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have overcome the limitations of bulk RNA sequencing and help recognize the functional and spatial heterogeneity of fibroblasts, as well as their crosstalk with other types of cells in the cutaneous EIME. Recently, emerging single-cell sequencing data have demonstrated that fibroblasts notably participate in the immune responses of the EIME and impact the initiation and progression of inflammatory skin diseases. Here, we summarize the latest advances in the role of fibroblasts in the cutaneous EIME of inflammatory skin diseases and discuss the distinct functions and molecular mechanisms of activated fibroblasts in fibrotic skin diseases and non-fibrotic inflammatory skin diseases. This review help unveil the multiple roles of fibroblasts in the cutaneous EIME and offer new promising therapeutic strategies for the management of inflammatory skin diseases by targeting fibroblasts or the fibroblast-centered EIME.
Collapse
Affiliation(s)
| | | | | | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
28
|
Roth-Carter QR, Burks HE, Ren Z, Koetsier JL, Tsoi LC, Harms PW, Xing X, Kirma J, Harmon RM, Godsel LM, Perl AL, Gudjonsson JE, Green KJ. Transcriptional profiling of rare acantholytic disorders suggests common mechanisms of pathogenesis. JCI Insight 2023; 8:e168955. [PMID: 37471166 PMCID: PMC10543711 DOI: 10.1172/jci.insight.168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.
Collapse
Affiliation(s)
| | | | - Ziyou Ren
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine & Bioinformatics
- Department of Biostatistics, and
| | - Paul W. Harms
- Department of Dermatology
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Lisa M. Godsel
- Department of Pathology, and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Kathleen J. Green
- Department of Pathology, and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
29
|
Sivasami P, Elkins C, Diaz-Saldana PP, Goss K, Peng A, Hamersky M, Bae J, Xu M, Pollack BP, Horwitz EM, Scharer CD, Seldin L, Li C. Obesity-induced dysregulation of skin-resident PPARγ + Treg cells promotes IL-17A-mediated psoriatic inflammation. Immunity 2023; 56:1844-1861.e6. [PMID: 37478855 PMCID: PMC10527179 DOI: 10.1016/j.immuni.2023.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Obesity is a major risk factor for psoriasis, but how obesity disrupts the regulatory mechanisms that keep skin inflammation in check is unclear. Here, we found that skin was enriched with a unique population of CD4+Foxp3+ regulatory T (Treg) cells expressing the nuclear receptor peroxisome proliferation-activated receptor gamma (PPARγ). PPARγ drove a distinctive transcriptional program and functional suppression of IL-17A+ γδ T cell-mediated psoriatic inflammation. Diet-induced obesity, however, resulted in a reduction of PPARγ+ skin Treg cells and a corresponding loss of control over IL-17A+ γδ T cell-mediated inflammation. Mechanistically, PPARγ+ skin Treg cells preferentially took up elevated levels of long-chain free fatty acids in obese mice, which led to cellular lipotoxicity, oxidative stress, and mitochondrial dysfunction. Harnessing the anti-inflammatory properties of these PPARγ+ skin Treg cells could have therapeutic potential for obesity-associated inflammatory skin diseases.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pamela P Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kyndal Goss
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Hamersky
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer Bae
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Rindler K, Tschandl P, Levine JP, Shaw LE, Weninger W, Farlik M, Jonak C, Brunner PM. Single-cell RNA sequencing analysis of a COVID-19-associated maculopapular rash in a patient with psoriasis treated with ustekinumab. J Dermatol 2023; 50:1052-1057. [PMID: 37002794 DOI: 10.1111/1346-8138.16793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 08/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) primarily affects the respiratory system but extrapulmonary manifestations, including the skin, have been well documented. However, transcriptomic profiles of skin lesions have not been performed thus far. Here, we present a single-cell RNA sequencing analysis in a patient with COVID-19 infection with a maculopapular skin rash while on treatment with the interleukin (IL)-12/IL-23 blocker ustekinumab for his underlying psoriasis. Results were compared with healthy controls and untreated psoriasis lesions. We found the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry receptors ACE2 and TMPRSS2 in keratinocytes of the patient with COVID-19, while ACE2 expression was low to undetectable in psoriasis lesions and healthy skin. Among all cell types, ACE2+ keratinocyte clusters showed the highest levels of transcriptomic dysregulation in COVID-19, expressing type 1-associated immune markers such as CXCL9 and CXCL10. In line with a generally type 1-skewed immune microenvironment, cytotoxic lymphocytes showed increased expression of the IFNG gene and other T-cell effector genes, while type 2, type 17, or type 22 T-cell activation was largely absent. Conversely, downregulation of several anti-inflammatory mediators was observed. This first transcriptomic description of a COVID-19-associated rash identifies ACE2+ keratinocytes displaying profound transcriptional changes, and inflammatory immune cells that might help to improve the understanding of SARS-CoV-2-associated skin conditions.
Collapse
Affiliation(s)
- Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jasmine P Levine
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York Medical College, Valhalla, New York, USA
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Malik B, Vokic I, Mohr T, Poppelaars M, Holcmann M, Novoszel P, Timelthaler G, Lendl T, Krauss D, Elling U, Mildner M, Penninger JM, Petzelbauer P, Sibilia M, Csiszar A. FAM3C/ILEI protein is elevated in psoriatic lesions and triggers psoriasiform hyperproliferation in mice. EMBO Mol Med 2023; 15:e16758. [PMID: 37226685 PMCID: PMC10331587 DOI: 10.15252/emmm.202216758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Barizah Malik
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Present address:
School of Biochemistry and Biotechnology, Quaid‐e‐Azam CampusUniversity of the PunjabLahorePakistan
| | - Iva Vokic
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Marle Poppelaars
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Martin Holcmann
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Philipp Novoszel
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Lendl
- Research Institute of Molecular PathologyViennaAustria
| | - Dana Krauss
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Michael Mildner
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Agnes Csiszar
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| |
Collapse
|
32
|
Huang M, Hua N, Zhuang S, Fang Q, Shang J, Wang Z, Tao X, Niu J, Li X, Yu P, Yang W. Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics. J Pharm Anal 2023; 13:745-759. [PMID: 37577389 PMCID: PMC10422139 DOI: 10.1016/j.jpha.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Pathological dry skin is a disturbing and intractable healthcare burden, characterized by epithelial hyperplasia and severe itch. Atopic dermatitis (AD) and psoriasis models with complications of dry skin have been studied using single-cell RNA sequencing (scRNA-seq). However, scRNA-seq analysis of the dry skin mouse model (acetone/ether/water (AEW)-treated model) is still lacking. Here, we used scRNA-seq and in situ hybridization to identify a novel proliferative basal cell (PBC) state that exclusively expresses transcription factor CUT-like homeobox 1 (Cux1). Further in vitro study demonstrated that Cux1 is vital for keratinocyte proliferation by regulating a series of cyclin-dependent kinases (CDKs) and cyclins. Clinically, Cux1+ PBCs were increased in patients with psoriasis, suggesting that Cux1+ PBCs play an important part in epidermal hyperplasia. This study presents a systematic knowledge of the transcriptomic changes in a chronic dry skin mouse model, as well as a potential therapeutic target against dry skin-related dermatoses.
Collapse
Affiliation(s)
- Minhua Huang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ning Hua
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Siyi Zhuang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qiuyuan Fang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jiangming Shang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
| | - Jianguo Niu
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750000, China
| | - Xiangyao Li
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
33
|
Ma F, Plazyo O, Billi AC, Tsoi LC, Xing X, Wasikowski R, Gharaee-Kermani M, Hile G, Jiang Y, Harms PW, Xing E, Kirma J, Xi J, Hsu JE, Sarkar MK, Chung Y, Di Domizio J, Gilliet M, Ward NL, Maverakis E, Klechevsky E, Voorhees JJ, Elder JT, Lee JH, Kahlenberg JM, Pellegrini M, Modlin RL, Gudjonsson JE. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat Commun 2023; 14:3455. [PMID: 37308489 PMCID: PMC10261041 DOI: 10.1038/s41467-023-39020-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
The immunopathogenesis of psoriasis, a common chronic inflammatory disease of the skin, is incompletely understood. Here we demonstrate, using a combination of single cell and spatial RNA sequencing, IL-36 dependent amplification of IL-17A and TNF inflammatory responses in the absence of neutrophil proteases, which primarily occur within the supraspinous layer of the psoriatic epidermis. We further show that a subset of SFRP2+ fibroblasts in psoriasis contribute to amplification of the immune network through transition to a pro-inflammatory state. The SFRP2+ fibroblast communication network involves production of CCL13, CCL19 and CXCL12, connected by ligand-receptor interactions to other spatially proximate cell types: CCR2+ myeloid cells, CCR7+ LAMP3+ dendritic cells, and CXCR4 expressed on both CD8+ Tc17 cells and keratinocytes, respectively. The SFRP2+ fibroblasts also express cathepsin S, further amplifying inflammatory responses by activating IL-36G in keratinocytes. These data provide an in-depth view of psoriasis pathogenesis, which expands our understanding of the critical cellular participants to include inflammatory fibroblasts and their cellular interactions.
Collapse
Affiliation(s)
- Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Grace Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Enze Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph Kirma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jingyue Xi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jer-En Hsu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yutein Chung
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeremy Di Domizio
- Department of Dermatology, University Hospital of Lausanne, 1011, Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology, University Hospital of Lausanne, 1011, Lausanne, Switzerland
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis, Sacramento, CA, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, 48105, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
34
|
Yadav K, Singh D, Singh MR, Minz S, Princely Ebenezer Gnanakani S, Sucheta, Yadav R, Vora L, Sahu KK, Bagchi A, Singh Chauhan N, Pradhan M. Preclinical study models of psoriasis: State-of-the-art techniques for testing pharmaceutical products in animal and nonanimal models. Int Immunopharmacol 2023; 117:109945. [PMID: 36871534 DOI: 10.1016/j.intimp.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Local and systemic treatments exist for psoriasis, but none can do more than control its symptoms because of its numerous unknown mechanisms. The lack of validated testing models or a defined psoriatic phenotypic profile hinders antipsoriatic drug development. Despite their intricacy, immune-mediated diseases have no improved and precise treatment. The treatment actions may now be predicted for psoriasis and other chronic hyperproliferative skin illnesses using animal models. Their findings confirmed that a psoriasis animal model could mimic a few disease conditions. However, their ethical approval concerns and inability to resemble human psoriasis rightly offer to look for more alternatives. Hence, in this article, we have reported various cutting-edge techniques for the preclinical testing of pharmaceutical products for the treatment of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra (AYUSH), Government Ayurvedic College, Raipur, India
| | | |
Collapse
|
35
|
Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy. Nat Rev Rheumatol 2023; 19:153-165. [PMID: 36596924 DOI: 10.1038/s41584-022-00874-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 01/04/2023]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.
Collapse
|
36
|
Cao S, Kruglov O, Akilov OE. CD8+ T Lymphocytes in Hypopigmented Mycosis Fungoides: Malignant Cells or Reactive Clone? J Invest Dermatol 2023; 143:521-524.e3. [PMID: 36116507 PMCID: PMC11186597 DOI: 10.1016/j.jid.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Simon Cao
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg Kruglov
- Cutaneous Lymphoma Program, Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Cutaneous Lymphoma Program, Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
37
|
Coletto LA, Rizzo C, Guggino G, Caporali R, Alivernini S, D’Agostino MA. The Role of Neutrophils in Spondyloarthritis: A Journey across the Spectrum of Disease Manifestations. Int J Mol Sci 2023; 24:4108. [PMID: 36835520 PMCID: PMC9959122 DOI: 10.3390/ijms24044108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Spondyloarthritis (SpA) contemplates the inflammatory involvement of the musculoskeletal system, gut, skin, and eyes, delineating heterogeneous diseases with a common pathogenetic background. In the framework of innate and adaptive immune disruption in SpA, neutrophils are arising, across different clinical domains, as pivotal cells crucial in orchestrating the pro-inflammatory response, both at systemic and tissue levels. It has been suggested they act as key players along multiple stages of disease trajectory fueling type 3 immunity, with a significant impact in the initiation and amplification of inflammation as well as in structural damage occurrence, typical of long-standing disease. The aim of our review is to focus on neutrophils' role within the spectrum of SpA, dissecting their functions and abnormalities in each of the relevant disease domains to understand their rising appeal as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lavinia Agra Coletto
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90127 Palermo, Italy
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90127 Palermo, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Stefano Alivernini
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Maria Antonietta D’Agostino
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
38
|
Patel JR, Joel MZ, Lee KK, Kambala A, Cornman H, Oladipo O, Taylor M, Deng J, Parthasarathy V, Cravero K, Marani M, Zhao R, Sankararam S, Li R, Pritchard T, Rebecca V, Kwatra MM, Ho WJ, Dong X, Kang S, Kwatra SG. Single-cell RNA sequencing reveals dysregulated fibroblast subclusters in prurigo nodularis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526050. [PMID: 36778229 PMCID: PMC9915465 DOI: 10.1101/2023.01.29.526050] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prurigo nodularis (PN) is an intensely pruritic, chronic inflammatory skin disease that disproportionately affects black patients. However, the pathogenesis of PN is poorly understood. We performed single-cell transcriptomic profiling, ligand receptor analysis and cell trajectory analysis of 28,695 lesional and non-lesional PN skin cells to uncover disease-identifying cell compositions and genetic characteristics. We uncovered a dysregulated role for fibroblasts (FBs) and myofibroblasts as a key pathogenic element in PN, which were significantly increased in PN lesional skin. We defined seven unique subclusters of FBs in PN skin and observed a shift of PN lesional FBs towards a cancer-associated fibroblast (CAF)-like phenotype, with WNT5A+ CAFs increased in the skin of PN patients and similarly so in squamous cell carcinoma (SCC). A multicenter PN cohort study subsequently revealed an increased risk of SCC as well as additional CAF-associated malignancies in PN patients, including breast and colorectal cancers. Systemic fibroproliferative diseases were also upregulated in PN patients, including renal sclerosis and idiopathic pulmonary fibrosis. Ligand receptor analyses demonstrated increased FB1-derived WNT5A and periostin interactions with neuronal receptors MCAM and ITGAV, suggesting a fibroblast-neuronal axis in PN. Type I IFN responses in immune cells and increased angiogenesis/permeability in endothelial cells were also observed. As compared to atopic dermatitis (AD) and psoriasis (PSO) patients, increased mesenchymal dysregulation is unique to PN with an intermediate Th2/Th17 phenotype between atopic dermatitis and psoriasis. These findings identify a pathogenic role for CAFs in PN, including a novel targetable WNT5A+ fibroblast subpopulation and CAF-associated malignancies in PN patients.
Collapse
Affiliation(s)
- Jay R. Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marina Z. Joel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin K. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - June Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Cravero
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Zhao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreenidhi Sankararam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruixiang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vito Rebecca
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Kim SH, Oh J, Roh WS, Park J, Chung KB, Lee GH, Lee YS, Kim JH, Lee HK, Lee H, Park CO, Kim DY, Lee MG, Kim TG. Pellino-1 promotes intrinsic activation of skin-resident IL-17A-producing T cells in psoriasis. J Allergy Clin Immunol 2023; 151:1317-1328. [PMID: 36646143 DOI: 10.1016/j.jaci.2022.12.823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. OBJECTIVE We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells. METHODS We performed single-cell RNA sequencing of relapsing and resolved psoriatic lesions with analysis for validation data set of psoriasis. Mice with systemic and conditional depletion of Peli1 were generated to evaluate the role of Peli1 in imiquimod-induced psoriasiform dermatitis. Pharmacologic inhibition of Peli1 in human CD4+ T cells and ex vivo human skin cultures was also examined to evaluate its potential therapeutic implications. RESULTS Single-cell RNA sequencing analysis revealed distinct T-cell subsets in relapsing psoriasis exhibiting highly enriched gene signatures for (1) tissue-resident T cells, (2) T17 cells, and (3) NF-κB signaling pathway including PELI1. Peli1-deficient mice were profoundly protected from psoriasiform dermatitis, with reduced IL-17A production and NF-κB activation in γδ T17 cells. Mice with conditional depletion of Peli1 treated with FTY720 revealed that Peli1 was intrinsically required for the skin-resident T17 cell immune responses. Notably, pharmacologic inhibition of Peli1 significantly ameliorated murine psoriasiform dermatitis and IL-17A production from the stimulated human CD4+ T cells and ex vivo skin explants modeling psoriasis. CONCLUSION Targeting Peli1 would be a promising therapeutic strategy for psoriasis by limiting skin-resident T17 cell immune responses.
Collapse
Affiliation(s)
- Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jongwook Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Roh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Bae Chung
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Jong Hoon Kim
- Deparment of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Korea
| | - Chang-Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
40
|
Lee B, Lee SH, Shin K. Crosstalk between fibroblasts and T cells in immune networks. Front Immunol 2023; 13:1103823. [PMID: 36700220 PMCID: PMC9868862 DOI: 10.3389/fimmu.2022.1103823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Fibroblasts are primarily considered as cells that support organ structures and are currently receiving attention for their roles in regulating immune responses in health and disease. Fibroblasts are assigned distinct phenotypes and functions in different organs owing to their diverse origins and functions. Their roles in the immune system are multifaceted, ranging from supporting homeostasis to inducing or suppressing inflammatory responses of immune cells. As a major component of immune cells, T cells are responsible for adaptive immune responses and are involved in the exacerbation or alleviation of various inflammatory diseases. In this review, we discuss the mechanisms by which fibroblasts regulate immune responses by interacting with T cells in host health and diseases, as well as their potential as advanced therapeutic targets.
Collapse
Affiliation(s)
- Byunghyuk Lee
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Republic of Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea,R&D Division, GenoFocus Inc., Daejeon, Republic of Korea,*Correspondence: Seung-Hyo Lee, ; Kihyuk Shin,
| | - Kihyuk Shin
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Republic of Korea,Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea,*Correspondence: Seung-Hyo Lee, ; Kihyuk Shin,
| |
Collapse
|
41
|
Kong Y, Jiang J, Huang Y, Liu X, Jin Z, Li L, Wei F, Liu X, Yin J, Zhang Y, Tong Q, Chen H. Narciclasine inhibits phospholipase A2 and regulates phospholipid metabolism to ameliorate psoriasis-like dermatitis. Front Immunol 2023; 13:1094375. [PMID: 36700214 PMCID: PMC9869703 DOI: 10.3389/fimmu.2022.1094375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Psoriasis is a common inflammatory skin disease recognized by the World Health Organization as "an incurable chronic, noninfectious, painful, disfiguring and disabling disease." The fact that metabolic syndrome (MetS) is the most common and important comorbidities of psoriasis suggests an important role of lipid metabolism in the pathogenesis of psoriasis. Narciclasine (Ncs) is an alkaloid isolated from the Amaryllidaceae plants. Its biological activities include antitumor, antibacterial, antiinflammatory, anti-angiogenic and promoting energy expenditure to improve dietinduced obesity. Here, we report that Ncs may be a potential candidate for psoriasis, acting at both the organismal and cellular levels. Methods The therapeutic effect of Ncs was assessed in IMQ-induced psoriasis-like mouse model. Then, through in vitro experiments, we explored the inhibitory effect of Ncs on HaCaT cell proliferation and Th17 cell polarization; Transcriptomics and lipidomics were used to analyze the major targets of Ncs; Single-cell sequencing data was used to identify the target cells of Ncs action. Results Ncs can inhibit keratinocyte proliferation and reduce the recruitment of immune cells in the skin by inhibiting psoriasis-associated inflammatory mediators. In addition, it showed a direct repression effect on Th17 cell polarization. Transcriptomic and lipidomic data further revealed that Ncs extensively regulated lipid metabolismrelated genes, especially the Phospholipase A2 (PLA2) family, and increased antiinflammatory lipid molecules. Combined with single-cell data analysis, we confirmed that keratinocytes are the main cells in which Ncs functions. Discussion Taken together, our findings indicate that Ncs alleviates psoriasiform skin inflammation in mice, which is associated with inhibition of PLA2 in keratinocytes and improved phospholipid metabolism. Ncs has the potential for further development as a novel anti-psoriasis drug.
Collapse
Affiliation(s)
- Yi Kong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zilin Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Fen Wei
- Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Hongxiang Chen, ; Qingyi Tong, ; Yonghui Zhang,
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Hongxiang Chen, ; Qingyi Tong, ; Yonghui Zhang,
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China,*Correspondence: Hongxiang Chen, ; Qingyi Tong, ; Yonghui Zhang,
| |
Collapse
|
42
|
Cavagnero KJ, Gallo RL. Essential immune functions of fibroblasts in innate host defense. Front Immunol 2022; 13:1058862. [PMID: 36591258 PMCID: PMC9797514 DOI: 10.3389/fimmu.2022.1058862] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
The term fibroblast has been used generally to describe spindle-shaped stromal cells of mesenchymal origin that produce extracellular matrix, establish tissue structure, and form scar. Current evidence has found that cells with this morphology are highly heterogeneous with some fibroblastic cells actively participating in both innate and adaptive immune defense. Detailed analysis of barrier tissues such as skin, gut, and lung now show that some fibroblasts directly sense pathogens and other danger signals to elicit host defense functions including antimicrobial activity, leukocyte recruitment, and production of cytokines and lipid mediators relevant to inflammation and immunosuppression. This review will synthesize current literature focused on the innate immune functions performed by fibroblasts at barrier tissues to highlight the previously unappreciated importance of these cells in immunity.
Collapse
Affiliation(s)
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
43
|
Jin JQ, Wu D, Spencer R, Elhage KG, Liu J, Davis M, Hakimi M, Kumar S, Huang ZM, Bhutani T, Liao W. Biologic insights from single-cell studies of psoriasis and psoriatic arthritis. Expert Opin Biol Ther 2022; 22:1449-1461. [PMID: 36317702 DOI: 10.1080/14712598.2022.2142465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Psoriasis (PSO) and psoriatic arthritis (PSA) represent a large burden of global inflammatory disease, but sustained treatment response and early diagnosis remain challenging. Both conditions arise from complex immune cell dysregulation. Single-cell techniques, including single-cell RNA sequencing (scRNA-seq), have revolutionized our understanding of pathogenesis by illuminating heterogeneous cell populations and their interactions. AREAS COVERED We discuss the transcriptional profiles and cellular interactions unique to PSO/PSA affecting T cells, myeloid cells, keratinocytes, innate lymphoid cells, and stromal cells. We also review advances, limitations, and future challenges associated with single-cell studies. EXPERT OPINION Following analyses of 22 single-cell studies, several themes emerged. A small subpopulation of cells can have a large impact on disease pathogenesis. Multiple cell types identified via scRNA-seq play supporting roles in PSO pathogenesis, contrary to the traditional paradigm focusing on IL-23/IL-17 signaling among dendritic cells and T cells. Immune cell states are dynamic, with psoriatic subpopulations aberrantly re-activating and differentiating into inflammatory phenotypes depending on surrounding signaling cues. Comparison of circulating immune cells with resident skin/joint cells has uncovered specific T cell clonotypes associated with the disease. Finally, machine learning models demonstrate great promise in identifying biomarkers to diagnose clinically ambiguous rashes and PSA at earlier stages.
Collapse
Affiliation(s)
- Joy Q Jin
- Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - David Wu
- Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Riley Spencer
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Kareem G Elhage
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Jared Liu
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Mitchell Davis
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Marwa Hakimi
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Sugandh Kumar
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Zhi-Ming Huang
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Zheng M, Hu Z, Zhou W, Kong Y, Wu R, Zhang B, Long H, Jia S, Lu Q, Zhao M. Single-cell transcriptome reveals immunopathological cell composition of skin lesions in subacute cutaneous lupus erythematosus. Clin Immunol 2022; 245:109172. [DOI: 10.1016/j.clim.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
|
45
|
Jin S, Wang Y, Qie C, Yang L, Wu Y, Zhang T, Di J, Liu J. Single-Cell RNA Sequencing Reveals the Immune Cell Profiling in IMQ Induced Psoriasis-Like Model. J Inflamm Res 2022; 15:5999-6012. [PMID: 36330167 PMCID: PMC9626250 DOI: 10.2147/jir.s379349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Psoriasis is a chronic systemic inflammatory skin disease with a high recurrence rate. The immune response plays an important role in psoriasis. However, the subsets of immune cells involved in inflammation in psoriatic mice have not been fully studied. This study showed the immune environment characteristics of psoriasis in mice. METHODS We used single-cell RNA sequencing (10× Genomics) as an unbiased analytical strategy to investigate the heterogeneity of skin immune cells in imiquimod-induced psoriasis mice systematically. RESULTS We identified 10 major clusters and their marker genes among 14,439 cells. The proportions of macrophages, NK/T cells, conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) were increased in psoriatic mice. Macrophages were the largest group and were further divided into 7 subgroups, and all macrophage clusters were increased in psoriatic mice. Differentially expressed genes in control versus psoriatic mice skin lesions showed that Fcgr4, Saa3 and Acp5 in macrophages, Acp5, Fcgr4 and Ms4a6d in NK/T cells, Saa3 in cDCs, and Ifitm1 in pDCs were upregulated in psoriasis mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis emphasized the role of oxidative phosphorylation signals and antigen processing and presentation signals in murine psoriasis-like models. CONCLUSION Our study reveals the immune environment characteristics of the commonly used IMQ induced psoriasis-like models and provides a systematic insight into the immune response of mice with psoriasis, which is conducive to comparing the similarities and differences between the mouse model and human psoriasis.
Collapse
Affiliation(s)
- Shasha Jin
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yixin Wang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chenxin Qie
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Lu Yang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yinhao Wu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tingting Zhang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Jianwen Di
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China,Correspondence: Jun Liu, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China, Tel +86-25-83271043, Fax +86-25-83271142, Email
| |
Collapse
|
46
|
Derakhshan T, Boyce JA, Dwyer DF. Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis. J Allergy Clin Immunol 2022; 150:739-747. [PMID: 36205448 PMCID: PMC9547083 DOI: 10.1016/j.jaci.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mast cells (MCs) are widely recognized as central effector cells during type 2 inflammatory reactions and thought to also play a role in innate immune responses, wound healing, and potentially cancer. Circulating progenitor cells mature to MCs in peripheral tissues, where they exhibit phenotypic and functional heterogeneity. This diversity likely originates from differences in MC development imprinted by microenvironmental signals. The advent of single-cell transcriptomics reveals MC diversity beyond differences in proteases that were classically used to identify MC phenotypes. Here, we provide an overview of the current knowledge on MC progenitor differentiation and characteristics, and MC heterogeneity seen in health versus disease, that are drastically advanced through single-cell profiling technologies. This powerful approach can provide detailed cellular maps of tissues to decipher the complex cellular functions and interactions that may lead to identifying candidate factors to target in therapies.
Collapse
Affiliation(s)
- Tahereh Derakhshan
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Daniel F Dwyer
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
47
|
Do TH, Ma F, Andrade PR, Teles R, de Andrade Silva BJ, Hu C, Espinoza A, Hsu JE, Cho CS, Kim M, Xi J, Xing X, Plazyo O, Tsoi LC, Cheng C, Kim J, Bryson BD, O'Neill AM, Colonna M, Gudjonsson JE, Klechevsky E, Lee JH, Gallo RL, Bloom BR, Pellegrini M, Modlin RL. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol 2022; 7:eabo2787. [PMID: 35867799 PMCID: PMC9400695 DOI: 10.1126/sciimmunol.abo2787] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acne affects 1 in 10 people globally, often resulting in disfigurement. The disease involves excess production of lipids, particularly squalene, increased growth of Cutibacterium acnes, and a host inflammatory response with foamy macrophages. By combining single-cell and spatial RNA sequencing as well as ultrahigh-resolution Seq-Scope analyses of early acne lesions on back skin, we identified TREM2 macrophages expressing lipid metabolism and proinflammatory gene programs in proximity to hair follicle epithelium expressing squalene epoxidase. We established that the addition of squalene induced differentiation of TREM2 macrophages in vitro, which were unable to kill C. acnes. The addition of squalene to macrophages inhibited induction of oxidative enzymes and scavenged oxygen free radicals, providing an explanation for the efficacy of topical benzoyl peroxide in the clinical treatment of acne. The present work has elucidated the mechanisms by which TREM2 macrophages and unsaturated lipids, similar to their involvement in atherosclerosis, may contribute to the pathogenesis of acne.
Collapse
Affiliation(s)
- Tran H Do
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Priscila R Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Rosane Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Bruno J de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Chanyue Hu
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jer-En Hsu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jingyue Xi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol Cheng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Barry R Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Park YJ, Kim YH, Lee ES, Kim YC. Comparative Analysis of Single-Cell Transcriptome Data Reveals a Novel Role of Keratinocyte-Derived IL-23 in Psoriasis. Front Immunol 2022; 13:905239. [PMID: 35693818 PMCID: PMC9174585 DOI: 10.3389/fimmu.2022.905239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis, a common inflammatory skin disease, is critically dependent on the IL-23/IL-17 cytokine axis. Although immune cell-derived IL-23 is generally associated with the disease pathogenesis, there have been reports of IL-23 production in keratinocytes. To determine the presence and potential role of keratinocyte-derived IL-23 in psoriasis, we investigated its expression levels using publicly available single-cell RNA sequencing data from human samples. We discovered that the expression of IL23A was detectable in keratinocytes as well as dendritic cells. Furthermore, we examined the IL-23p19 expression in an imiquimod-induced mouse model of psoriasis and found a close relationship between keratinocyte-produced IL-23 and IL-36, another key cytokine in psoriasis pathogenesis. The blockade of IL-23 signaling resulted in the reduced expression of IL-36 in the keratinocytes. Our findings reveal the novel association between keratinocyte-derived IL-23 and IL-36 in psoriasis progression.
Collapse
Affiliation(s)
- Young Joon Park
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - Yul Hee Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - You Chan Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
49
|
Liu B, Li A, Xu J, Cui Y. Single-Cell Transcriptional Analysis Deciphers the Inflammatory Response of Skin-Resident Stromal Cells. Front Surg 2022; 9:935107. [PMID: 35774389 PMCID: PMC9237500 DOI: 10.3389/fsurg.2022.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The skin is the outermost barrier of the body. It has developed a sophisticated system against the ever-changing environment. The application of single-cell technologies has revolutionized dermatology research and unraveled the changes and interactions across skin resident cells in the healthy and inflamed skin. Single-cell technologies have revealed the critical roles of stromal cells in an inflammatory response and explained a series of plausible previous findings concerning skin immunity. Here, we summarized the functional diversity of skin stromal cells defined by single-cell analyses and how these cells orchestrated events leading to inflammatory diseases, including atopic dermatitis, psoriasis, vitiligo, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Baoyi Liu
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang Li
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingkai Xu
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
| | - Yong Cui
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence: Yong Cui
| |
Collapse
|
50
|
Jin S, Ramos R. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data. Biochem Soc Trans 2022; 50:297-308. [PMID: 35191953 PMCID: PMC9022991 DOI: 10.1042/bst20210863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
Abstract
Tissue development and homeostasis require coordinated cell-cell communication. Recent advances in single-cell sequencing technologies have emerged as a revolutionary method to reveal cellular heterogeneity with unprecedented resolution. This offers a great opportunity to explore cell-cell communication in tissues systematically and comprehensively, and to further identify signaling mechanisms driving cell fate decisions and shaping tissue phenotypes. Using gene expression information from single-cell transcriptomics, several computational tools have been developed for inferring cell-cell communication, greatly facilitating analysis and interpretation. However, in single-cell transcriptomics, spatial information of cells is inherently lost. Given that most cell signaling events occur within a limited distance in tissues, incorporating spatial information into cell-cell communication analysis is critical for understanding tissue organization and function. Spatial transcriptomics provides spatial location of cell subsets along with their gene expression, leading to new directions for leveraging spatial information to develop computational approaches for cell-cell communication inference and analysis. These computational approaches have been successfully applied to uncover previously unrecognized mechanisms of intercellular communication within various contexts and across organ systems, including the skin, a formidable model to study mechanisms of cell-cell communication due to the complex interactions between the different cell populations that comprise it. Here, we review emergent cell-cell communication inference tools using single-cell transcriptomics and spatial transcriptomics, and highlight the biological insights gained by applying these computational tools to exploring cellular communication in skin development, homeostasis, disease and aging, as well as discuss future potential research avenues.
Collapse
Affiliation(s)
- Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, U.S.A
| |
Collapse
|