1
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Han J, Zheng D, Liu PS, Wang S, Xie X. Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis. Cell Commun Signal 2024; 22:475. [PMID: 39367496 PMCID: PMC11451054 DOI: 10.1186/s12964-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jiwei Han
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
3
|
Tian L, Liu Q, Wang X, Chen S, Li Y. Fighting ferroptosis: Protective effects of dexmedetomidine on vital organ injuries. Life Sci 2024; 354:122949. [PMID: 39127318 DOI: 10.1016/j.lfs.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Vital organ injury is one of the leading causes of global mortality and socio-economic burdens. Current treatments have limited efficacy, and new strategies are needed. Dexmedetomidine (DEX) is a highly selective α2-adrenergic receptor that protects multiple organs by reducing inflammation and preventing cell death. However, its exact mechanism is not yet fully understood. Understanding the underlying molecular mechanisms of its protective effects is crucial as it could provide a basis for designing highly targeted and more effective drugs. Ferroptosis is the primary mode of cell death during organ injury, and recent studies have shown that DEX can protect vital organs from this process. This review provides a detailed analysis of preclinical in vitro and in vivo studies and gains a better understanding of how DEX protects against vital organ injuries by inhibiting ferroptosis. Our findings suggest that DEX can potentially protect vital organs mainly by regulating iron metabolism and the antioxidant defense system. This is the first review that summarizes all evidence of ferroptosis's role in DEX's protective effects against vital organ injuries. Our work aims to provide new insights into organ therapy with DEX and accelerate its translation from the laboratory to clinical settings.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, China
| | - Xing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Liu Y, Fleishman JS, Wang H, Huo L. Pharmacologically Targeting Ferroptosis and Cuproptosis in Neuroblastoma. Mol Neurobiol 2024:10.1007/s12035-024-04501-0. [PMID: 39331355 DOI: 10.1007/s12035-024-04501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma is a deadly pediatric cancer that originates from the neural crest and frequently develops in the abdomen or adrenal gland. Although multiple approaches, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, are recommended for treating neuroblastoma, the tumor will eventually develop resistance, leading to treatment failure and cancer relapse. Therefore, a firm understanding of the molecular mechanisms underlying therapeutic resistance is vital for the development of new effective therapies. Recent research suggests that cancer-specific modifications to multiple subtypes of nonapoptotic regulated cell death (RCD), such as ferroptosis and cuproptosis, contribute to therapeutic resistance in neuroblastoma. Targeting these specific types of RCD may be viable novel targets for future drug discovery in the treatment of neuroblastoma. In this review, we summarize the core mechanisms by which the inability to properly execute ferroptosis and cuproptosis can enhance the pathogenesis of neuroblastoma. Therefore, we focus on emerging therapeutic compounds that can induce ferroptosis or cuproptosis, delineating their beneficial pharmacodynamic effects in neuroblastoma treatment. Cumulatively, we suggest that the pharmacological stimulation of ferroptosis and ferroptosis may be a novel and therapeutically viable strategy to target neuroblastoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 100012, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
5
|
Zhu L, Du Y. A promising new approach to cancer therapy: Manipulate ferroptosis by hijacking endogenous iron. Int J Pharm 2024; 662:124517. [PMID: 39084581 DOI: 10.1016/j.ijpharm.2024.124517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent phospholipid peroxidation, has emerged as a focal point in the field of cancer therapy. Compared with other cell death modes such as apoptosis and necrosis, ferroptosis exhibits many distinct characteristics in the molecular mechanisms and cell morphology, offering a promising avenue for combating cancers that are resistant to conventional therapeutic modalities. In light of the serious side effects associated with current Fenton-modulating ferroptosis therapies utilizing exogenous iron-based inorganic nanomaterials, hijacking endogenous iron could serve as an effective alternative strategy to trigger ferroptosis through targeting cellular iron regulatory mechanisms. A better understanding of the underlying iron regulatory mechanism in the process of ferroptosis has shed light on the current findings of endogenous ferroptosis-based nanomedicine strategies for cancer therapy. Here in this review article, we provide a comprehensive discussion on the regulatory network of iron metabolism and its pivotal role in ferroptosis, and present recent updates on the application of nanoparticles endowed with the ability to hijack endogenous iron for ferroptosis. We envision that the insights in the study may expedite the development and translation of endogenous ferroptosis-based nanomedicines for effective cancer treatment.
Collapse
Affiliation(s)
- Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
6
|
Nakamura T, Conrad M. Exploiting ferroptosis vulnerabilities in cancer. Nat Cell Biol 2024; 26:1407-1419. [PMID: 38858502 DOI: 10.1038/s41556-024-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis is a distinct lipid peroxidation-dependent form of necrotic cell death. This process has been increasingly contemplated as a new target for cancer therapy because of an intrinsic or acquired ferroptosis vulnerability in difficult-to-treat cancers and tumour microenvironments. Here we review recent advances in our understanding of the molecular mechanisms that underlie ferroptosis and highlight available tools for the modulation of ferroptosis sensitivity in cancer cells and communication with immune cells within the tumour microenvironment. We further discuss how these new insights into ferroptosis-activating pathways can become new armouries in the fight against cancer.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
7
|
Wang R, Lang W, Xue Q, Zhang L, Xujia Y, Wang C, Fang X, Gao S, Guo L. Screening for ferroptosis genes related to endometrial carcinoma and predicting of targeted drugs based on bioinformatics. Arch Toxicol 2024; 98:3155-3165. [PMID: 38758406 DOI: 10.1007/s00204-024-03783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Endometrial carcinoma is one of most common malignant tumors in women, and ferroptosis is closely related to the development and treatment of endometrial carcinoma. The aim of this study was to screen ferroptosis-related genes associated with endometrial carcinoma and predict targeted drugs through bioinformatics. 761 differentially expressed genes were obtained by the dataset GSE63678 from the GEO database, and most of the genes were enriched in the KEGG_CELL_CYCLE and KEGG_OOCYTE_MEIOSIS signaling pathways. 22 ferroptosis-differentially expressed genes were obtained by intersection with the FerrDb database. These genes were involved in biological processes including macromolecular complex assembly and others, and involved in signal pathways including glutathione metabolism, p53 signaling pathway and others. CDKN2A, IDH1, NRAS, TFRC and GOT1 were obtained as hub genes by PPI network analysis. GEPIA showed that CDKN2A, IDH1, NRAS and TFRC were significantly expressed in endometrial carcinoma. Immunohistochemical results showed that CDKN2A, NRAS and TFRC were significantly expressed in endometrial carcinoma clinical tissue samples. The ROC constructed by TCGA database showed that CDKN2A, NRAS and TFRC had significant value in the diagnosis of endometrial carcinoma, and all had prognostic efficacy. 136,572-09-3 BOSS and others were identified as potential targeted drugs for endometrial carcinoma targeting ferroptosis. Our study has shown that ferroptosis-related genes CDKN2A, NRAS and TFRC are diagnostic markers of endometrial carcinoma, and 136,572-09-3 BOSS, methyprylon BOSS, daunorubicin CTD 00005752, nitroglycerin BOSS and dUTP BOSS, IRON BOSS, Imatinib mesylate BOSS, 2-Butanone BOSS, water BOSS, and L-thyroxine BOSS may be potential therapeutic drugs.
Collapse
Affiliation(s)
- Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Wei Lang
- Department of Gynecology III, Changchun Obstetrics-Gynecology Hospital, Changchun, 130042, Jilin Province, China
| | - Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Yunzhu Xujia
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Xin Fang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Shidi Gao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
8
|
Faust D, Wenz C, Holm S, Harms G, Greffrath W, Dietrich C. Cell-cell contacts prevent t-BuOOH-triggered ferroptosis and cellular damage in vitro by regulation of intracellular calcium. Arch Toxicol 2024; 98:2953-2969. [PMID: 38814333 PMCID: PMC11324706 DOI: 10.1007/s00204-024-03792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Tert-butyl hydroperoxide (t-BuOOH) is an organic hydroperoxide widely used as a model compound to induce oxidative stress. It leads to a plethora of cellular damage, including lipid peroxidation, DNA double-strand breaks (DNA DSBs), and breakdown of the mitochondrial membrane potential (MMP). We could show in several cell lines that t-BuOOH induces ferroptosis, triggered by iron-dependent lipid peroxidation. We have further revealed that not only t-BuOOH-mediated ferroptosis, but also DNA DSBs and loss of MMP are prevented by cell-cell contacts. The underlying mechanisms are not known. Here, we show in murine fibroblasts and a human colon carcinoma cell line that t-BuOOH (50 or 100 µM, resp.) causes an increase in intracellular Ca2+, and that this increase is key to lipid peroxidation and ferroptosis, DNA DSB formation and dissipation of the MMP. We further demonstrate that cell-cell contacts prevent t-BuOOH-mediated raise in intracellular Ca2+. Hence, we provide novel insights into the mechanism of t-BuOOH-triggered cellular damage including ferroptosis and propose a model in which cell-cell contacts control intracellular Ca2+ levels to prevent lipid peroxidation, DNA DSB-formation and loss of MMP. Since Ca2+ is a central player of toxicity in response to oxidative stress and is involved in various cell death pathways, our observations suggest a broad protective function of cell-cell contacts against a variety of exogenous toxicants.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Christine Wenz
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
- Department of General and Visceral Surgery, Albklinik Münsingen of the District Hospital Association Reutlingen, Lautertalstraße 47, 72525, Münsingen, Germany
| | - Stefanie Holm
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167, Mannheim, Germany
| | - Cornelia Dietrich
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
9
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
10
|
Lv S, Li Y, Li X, Zhu L, Zhu Y, Guo C, Li Y. Silica nanoparticles triggered epithelial ferroptosis via miR-21-5p/GCLM signaling to contribute to fibrogenesis in the lungs. Chem Biol Interact 2024; 399:111121. [PMID: 38944326 DOI: 10.1016/j.cbi.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The toxicity of silica nanoparticles (SiNPs) to lung is known. We previously demonstrated that exposure to SiNPs promoted pulmonary impairments, but the precise pathogenesis remains elucidated. Ferroptosis has now been identified as a unique form of oxidative cell death, but whether it participated in SiNPs-induced lung injury remains unclear. In this work, we established a rat model with sub-chronic inhalation exposure of SiNPs via intratracheal instillation, and conducted histopathological examination, iron detection, and ferroptosis-related lipid peroxidation and protein assays. Moreover, we evaluated the effect of SiNPs on epithelial ferroptosis, possible mechanisms using in vitro-cultured human bronchial epithelial cells (16HBE), and also assessed the ensuing impact on fibroblast activation for fibrogenesis. Consequently, fibrotic lesions occurred in the rat lungs, concomitantly by enhanced lipid peroxidation, iron overload, and ferroptosis. Consistently, the in vitro data showed SiNPs triggered oxidative stress and caused the accumulation of lipid peroxides, resulting in ferroptosis. Importantly, the mechanistic investigation revealed miR-21-5p as a key player in the epithelial ferroptotic process induced by SiNPs via targeting GCLM for GSH depletion. Of note, ferrostatin-1 could greatly suppress ferroptosis and alleviate epithelial injury and ensuing fibroblast activation by SiNPs. In conclusion, our findings first revealed SiNPs triggered epithelial ferroptosis through miR-21-5p/GCLM signaling and thereby promoted fibroblast activation for fibrotic lesions, and highlighted the therapeutic potential of inhibiting ferroptosis against lung impairments upon SiNPs exposure.
Collapse
Affiliation(s)
- Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yurou Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Yu X, Guo Q, Zhang H, Wang X, Han Y, Yang Z. Hypoxia-inducible factor-1α can reverse the Adriamycin resistance of breast cancer adjuvant chemotherapy by upregulating transferrin receptor and activating ferroptosis. FASEB J 2024; 38:e23876. [PMID: 39120539 DOI: 10.1096/fj.202401119r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer is a common malignant tumor in women. Ferroptosis, a programmed cell death pathway, is closely associated with breast cancer and its resistance. The transferrin receptor (TFRC) is a key factor in ferroptosis, playing a crucial role in intracellular iron accumulation and the occurrence of ferroptosis. This study investigates the influence and significance of TFRC and its upstream transcription factor hypoxia-inducible factor-1α (HIF1α) on the efficacy of neoadjuvant therapy in breast cancer. The differential gene obtained from clinical samples through genetic sequencing is TFRC. Bioinformatics analysis revealed that TFRC expression in breast cancer was significantly greater in breast cancer tissues than in normal tissues, but significantly downregulated in Adriamycin (ADR)-resistant tissues. Iron-responsive element-binding protein 2 (IREB2) interacts with TFRC and participates in ferroptosis. HIF1α, an upstream transcription factor, positively regulates TFRC. Experimental results indicated higher levels of ferroptosis markers in breast cancer tissue than in normal tissue. In the TAC neoadjuvant regimen-sensitive group, iron ion (Fe2+) and malondialdehyde (MDA) levels were greater than those in the resistant group (all p < .05). Expression levels of TFRC, IREB2, FTH1, and HIF1α were higher in breast cancer tissue compared to normal tissue. Additionally, the expression of the TFRC protein in the TAC neoadjuvant regimen-sensitive group was significantly higher than that in the resistant group (all p < .05), while the difference in the level of expression of IREB2 and FTH1 between the sensitive and resistant groups was not significant (p > .05). The dual-luciferase assay revealed that HIF1α acts as an upstream transcription factor of TFRC (p < .05). Overexpression of HIF1α in ADR-resistant breast cancer cells increased TFRC, Fe2+, and MDA content. After ADR treatment, the cell survival rate decreased significantly, and ferroptosis could be reversed by the combined application of Fer-1 (all p < .05). In conclusion, ferroptosis and chemotherapy resistance are correlated in breast cancer. TFRC is a key regulatory factor influenced by HIF1α and is associated with chemotherapy resistance. Upregulating HIF1α in resistant cells may reverse resistance by activating ferroptosis through TFRC overexpression.
Collapse
MESH Headings
- Female
- Humans
- Middle Aged
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Chemotherapy, Adjuvant/methods
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- MCF-7 Cells
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Qingqun Guo
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
12
|
Tian X, Fu K, Huang X, Zou H, Shi N, Li J, Bao Y, He S, Lv J. Ferroptosis in the adjuvant treatment of lung cancer-the potential of selected botanical drugs and isolated metabolites. Front Pharmacol 2024; 15:1430561. [PMID: 39193342 PMCID: PMC11347298 DOI: 10.3389/fphar.2024.1430561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Ferroptosis represents a distinct form of cell death that is not associated with necrosis, autophagy, apoptosis, or pyroptosis. It is characterised by intracellular iron-dependent lipid peroxidation. The current literature indicates that a number of botanical drugs and isolated metabolites can modulate ferroptosis, thereby exerting inhibitory effects on lung cancer cells or animal models. The aim of this review is to elucidate the mechanisms through which botanical drugs and isolated metabolites regulate ferroptosis in the context of lung cancer, thereby providing potential insights into lung cancer treatment. It is crucial to highlight that these preclinical findings should not be interpreted as evidence that these treatments can be immediately translated into clinical applications. In the future, we will continue to study the pharmacology, pharmacokinetics and toxicology of these drugs, as well as evaluating their efficacy and safety in clinical trials, with the aim of providing new approaches to the development of new agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunling Fu
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuemin Huang
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiyan Zou
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junyuan Lv
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Dai Q, Wei X, Zhao J, Zhang D, Luo Y, Yang Y, Xiang Y, Liu X. Inhibition of FSP1: A new strategy for the treatment of tumors (Review). Oncol Rep 2024; 52:105. [PMID: 38940330 PMCID: PMC11228423 DOI: 10.3892/or.2024.8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
Ferroptosis, a regulated form of cell death, is intricately linked to iron‑dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase‑4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.
Collapse
Affiliation(s)
- Qiangfang Dai
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaoli Wei
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Jumei Zhao
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yidan Luo
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yue Yang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
- College of Physical Education, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaolong Liu
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
14
|
Qin J, Li Z, Su L, Wen X, Tang X, Huang M, Wu J. Expression of transferrin receptor/TFRC protein in bladder cancer cell T24 and its role in inducing iron death in bladder cancer. Int J Biol Macromol 2024; 274:133323. [PMID: 38908617 DOI: 10.1016/j.ijbiomac.2024.133323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Bladder cancer (BC) is a very common malignant tumor in the urinary system. However, the incidence rate, recurrence rate, progression rate and metastasis rate of bladder cancer are still very high, leading to poor long-term prognosis of patients. This study was to investigate the expression of transferrin receptor/TFRC protein in bladder cancer tissue and its role in inducing iron death of T24 human bladder cancer cells. Based on the intersection of 259 FerrDb genes in the iron death database with GSE13507 and GSE13167 data sets, 54 genes related to iron death in bladder cancer were obtained. Analyzing 54 genes, KEGG enrichment analysis showed that the pathways involved were mainly focused on iron death, autophagy, and tumor center carbon metabolism. GO analysis found that the molecular functions mainly gather in ubiquitin like protein ligase binding, ubiquitin protein ligase binding, and antioxidant activity. In the cellular components, it is mainly distributed in pigment granules, melanosomes, and the basal lateral plasma membrane. In biological processes, it is enriched in nutrient level responses, responses to extracellular stimuli, and cellular redox homeostasis. Screen out the top 10 core genes. The 10 core genes are SLC2A1, TFRC, EGFR, KRAS, CAV1, HSPA5, NFE2L2, VEGFA, PIK3CA, and HRAS. Finally, TFRC was selected as the research object. TCGA analysis showed that the expression level in bladder cancer tissue was higher than that in normal tissue, and the difference was statistically significant (P < 0.001). Conclusion (1) TFRC is highly expressed in many kinds of tumors, and it is more highly expressed in bladder cancer than in normal bladder tissue. (2) TFRC has certain diagnostic and prognostic value in bladder cancer. (3) Erastin, an iron death inducer, induced the iron death of T24 human bladder cancer cells, knocked down the expression of TFRC in T24 human bladder cancer cells, and preliminarily verified that silencing TFRC could inhibit the iron death of T24 human bladder cancer cells.
Collapse
Affiliation(s)
- Junkai Qin
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zhidan Li
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Lize Su
- Department of Urology, Baidong Hospital, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - Xilin Wen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingzhi Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Minyu Huang
- Department of Urology, Baidong Hospital, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China.
| | - Jun Wu
- Department of Urology, Baidong Hospital, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
15
|
Fujita H, Tanaka YK, Ogata S, Suzuki N, Kuno S, Barayeu U, Akaike T, Ogra Y, Iwai K. PRDX6 augments selenium utilization to limit iron toxicity and ferroptosis. Nat Struct Mol Biol 2024; 31:1277-1285. [PMID: 38867112 PMCID: PMC11327102 DOI: 10.1038/s41594-024-01329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Ferroptosis is a form of regulated cell death induced by iron-dependent accumulation of lipid hydroperoxides. Selenoprotein glutathione peroxidase 4 (GPX4) suppresses ferroptosis by detoxifying lipid hydroperoxides via a catalytic selenocysteine (Sec) residue. Sec, the genetically encoded 21st amino acid, is biosynthesized from a reactive selenium donor on its cognate tRNA[Ser]Sec. It is thought that intracellular selenium must be delivered 'safely' and 'efficiently' by a carrier protein owing to its high reactivity and very low concentrations. Here, we identified peroxiredoxin 6 (PRDX6) as a novel selenoprotein synthesis factor. Loss of PRDX6 decreases the expression of selenoproteins and induces ferroptosis via a reduction in GPX4. Mechanistically, PRDX6 increases the efficiency of intracellular selenium utilization by transferring selenium between proteins within the selenocysteyl-tRNA[Ser]Sec synthesis machinery, leading to efficient synthesis of selenocysteyl-tRNA[Ser]Sec. These findings highlight previously unidentified selenium metabolic systems and provide new insights into ferroptosis.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, Japan.
| | - Yu-Ki Tanaka
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Sota Kuno
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, Japan
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, Japan.
| |
Collapse
|
16
|
Liang Y, Zhong H, Zhao Y, Tang X, Pan C, Sun J, Sun J. Epigenetic mechanism of RBM15 in affecting cisplatin resistance in laryngeal carcinoma cells by regulating ferroptosis. Biol Direct 2024; 19:57. [PMID: 39039611 PMCID: PMC11264397 DOI: 10.1186/s13062-024-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Laryngeal carcinoma (LC) is a common cancer of the respiratory tract. This study aims to investigate the role of RNA-binding motif protein 15 (RBM15) in the cisplatin (DDP) resistance of LC cells. LC-DDP-resistant cells were constructed. RBM15, lysine-specific demethylase 5B (KDM5B), lncRNA Fer-1 like family member 4 (FER1L4), lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family (ACSL4) was examined. Cell viability, IC50, and proliferation were assessed after RBM15 downregulation. The enrichment of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and N6-methyladenosine (m6A) on KDM5B was analyzed. KDM5B mRNA stability was measured after actinomycin D treatment. A tumor xenograft assay was conducted to verify the role of RBM15 in LC. Results showed that RBM15 was upregulated in LC and its knockdown decreased IC50, cell viability, proliferation, glutathione, and upregulated iron ion content, ROS, malondialdehyde, ACSL4, and ferroptosis. Mechanistically, RBM15 improved KDM5B stability in an IGF2BP3-dependent manner, resulting in FER1L4 downregulation and GPX4 upregulation. KDM5B increased KCNQ1OT1 and inhibited ACSL4. KDM5B/KCNQ1OT1 overexpression or FER1L4 knockdown promoted DDP resistance in LC by inhibiting ferroptosis. In conclusion, RBM15 promoted KDM5B expression, and KDM5B upregulation inhibited ferroptosis and promoted DDP resistance in LC by downregulating FER1L4 and upregulating GPX4, as well as by upregulating KCNQ1OT1 and inhibiting ACSL4. Silencing RBM15 inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Yue Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Haoyue Zhong
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Yi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - XiaoMin Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Chunchen Pan
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China
| | - Jingwu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Jiaqiang Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| |
Collapse
|
17
|
Zhao Y, Qin G, Jiang B, Huang J, He S, Peng H. Melatonin regulates mitochondrial function to alleviate ferroptosis through the MT2/Akt signaling pathway in swine testicular cells. Sci Rep 2024; 14:15215. [PMID: 38956409 PMCID: PMC11219911 DOI: 10.1038/s41598-024-65666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
Increasing evidence has shown that many environmental and toxic factors can cause testicular damage, leading to testicular ferroptosis and subsequent male reproductive disorders. Melatonin is a major hormone and plays an vital role in regulating male reproduction. However, there is a lack of research on whether Mel can alleviate testicular cell ferroptosis and its specific mechanism. In this study, the results indicated that Mel could enhance the viability of swine testis cells undergoing ferroptosis, reduce LDH enzyme release, increase mitochondrial membrane potential, and affect the expression of ferroptosis biomarkers. Furthermore, we found that melatonin depended on melatonin receptor 1B to exert these functions. Detection of MMP and ferroptosis biomarker protein expression confirmed that MT2 acted through the downstream Akt signaling pathway. Moreover, inhibition of the Akt signaling pathway can eliminate the protective effect of melatonin on ferroptosis, inhibit AMPK phosphorylation, reduce the expression of mitochondrial gated channel (VDAC2/3), and affect mitochondrial DNA transcription and ATP content. These results suggest that melatonin exerts a beneficial effect on mitochondrial function to mitigate ferroptosis through the MT2/Akt signaling pathway in ST cells.
Collapse
Affiliation(s)
- Yuanjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
- College of Life and Health, Hainan University, Haikou, 570228, China
| | - Ge Qin
- College of Animal Science and Technology, Southwest University, Chongqing, 404100, China
| | - Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Shiwen He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
18
|
Li R, Yan X, Xiao C, Wang T, Li X, Hu Z, Liang J, Zhang J, Cai J, Sui X, Liu Q, Wu M, Xiao J, Chen H, Liu Y, Jiang C, Lv G, Chen G, Zhang Y, Yao J, Zheng J, Yang Y. FTO deficiency in older livers exacerbates ferroptosis during ischaemia/reperfusion injury by upregulating ACSL4 and TFRC. Nat Commun 2024; 15:4760. [PMID: 38834654 PMCID: PMC11150474 DOI: 10.1038/s41467-024-49202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Cuicui Xiao
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tingting Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Jianye Cai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Manli Wu
- Department of ultrasound, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiaqi Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Haitian Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Yasong Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Chenhao Jiang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Guo Lv
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Yingcai Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Jia Yao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Jun Zheng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| |
Collapse
|
19
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
20
|
Miao S, Yang L, Xu T, Liu Z, Zhang Y, Ding L, Ding W, Ao X, Wang J. A novel circPIK3C2A/miR‐31‐5p/TFRC axis drives ferroptosis and accelerates myocardial injury. MedComm (Beijing) 2024; 5:e571. [PMID: 38840772 PMCID: PMC11151151 DOI: 10.1002/mco2.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 06/07/2024] Open
Abstract
Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lanting Yang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Tao Xu
- Central LaboratoryQingdao Agricultural UniversityQingdaoChina
| | - Zhantao Liu
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yixiao Zhang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lin Ding
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- Department of Comprehensive Internal MedicineAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
21
|
Miranda A, Pattnaik S, Hamilton PT, Fuss MA, Kalaria S, Laumont CM, Smazynski J, Mesa M, Banville A, Jiang X, Jenkins R, Cañadas I, Nelson BH. N-MYC impairs innate immune signaling in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadj5428. [PMID: 38748789 PMCID: PMC11095474 DOI: 10.1126/sciadv.adj5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, NSW, Australia
| | - Phineas T. Hamilton
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Céline M. Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Monica Mesa
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Allyson Banville
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Russell Jenkins
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| |
Collapse
|
22
|
Huan R, Zhang J, Yue J, Yang S, Han G, Cheng Y, Tan Y. Orexin-A mediates glioblastoma proliferation inhibition by increasing ferroptosis triggered by unstable iron pools and GPX4 depletion. J Cell Mol Med 2024; 28:e18318. [PMID: 38685674 PMCID: PMC11058333 DOI: 10.1111/jcmm.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.
Collapse
Affiliation(s)
- Rengzheng Huan
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiqin Zhang
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Jianhe Yue
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Sha Yang
- Department of biomedical sciencesMedical College of Guizhou UniversityGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
23
|
Hou J, Wang B, Li J, Liu W. Ferroptosis and its role in gastric and colorectal cancers. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:183-196. [PMID: 38682167 PMCID: PMC11058540 DOI: 10.4196/kjpp.2024.28.3.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024]
Abstract
Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.
Collapse
Affiliation(s)
- Jinxiu Hou
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Weifang People’s Hospital, Weifang 261041, Shandong, China
| | - Wenbo Liu
- Central Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China
| |
Collapse
|
24
|
Mete M, Ojha A, Dhar P, Das D. Deciphering Ferroptosis: From Molecular Pathways to Machine Learning-Guided Therapeutic Innovation. Mol Biotechnol 2024:10.1007/s12033-024-01139-0. [PMID: 38613722 DOI: 10.1007/s12033-024-01139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a unique form of cell death reliant on iron and lipid peroxidation. It disrupts redox balance, causing cell death by damaging the plasma membrane, with inducers acting through enzymatic pathways or transport systems. In cancer treatment, suppressing ferroptosis or circumventing it holds significant promise. Beyond cancer, ferroptosis affects aging, organs, metabolism, and nervous system. Understanding ferroptosis mechanisms holds promise for uncovering novel therapeutic strategies across a spectrum of diseases. However, detection and regulation of this regulated cell death are still mired with challenges. The dearth of cell, tissue, or organ-specific biomarkers muted the pharmacological use of ferroptosis. This review covers recent studies on ferroptosis, detailing its properties, key genes, metabolic pathways, and regulatory networks, emphasizing the interaction between cellular signaling and ferroptotic cell death. It also summarizes recent findings on ferroptosis inducers, inhibitors, and regulators, highlighting their potential therapeutic applications across diseases. The review addresses challenges in utilizing ferroptosis therapeutically and explores the use of machine learning to uncover complex patterns in ferroptosis-related data, aiding in the discovery of biomarkers, predictive models, and therapeutic targets. Finally, it discusses emerging research areas and the importance of continued investigation to harness the full therapeutic potential of targeting ferroptosis.
Collapse
Affiliation(s)
- Megha Mete
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Priyanka Dhar
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| |
Collapse
|
25
|
Guo Y, Jia X, Du P, Wang J, Du Y, Li B, Xue Y, Jiang J, Cai Y, Yang Q. Mechanistic insights into the ameliorative effects of Xianglianhuazhuo formula on chronic atrophic gastritis through ferroptosis mediated by YY1/miR-320a/TFRC signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117608. [PMID: 38158098 DOI: 10.1016/j.jep.2023.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianglianhuazhuo formula (XLHZ) has a potential therapeutic effect on chronic atrophic gastritis (CAG). However, the specific molecular mechanism remains unclear. AIM OF THE STUDY To evaluate the effect of XLHZ on CAG in vitro and in vivo and its potential mechanisms. METHODS A rat model of CAG was established using a composite modeling method, and the pathological changes and ultrastructure of gastric mucosa were observed. YY1/miR-320a/TFRC and ferroptosis-related molecules were detected. An MNNG-induced gastric epithelial cell model was established in vitro to evaluate the inhibitory effect of XLHZ on cell ferroptosis by observing cell proliferation, migration, invasion, apoptosis, and molecules related to ferroptosis. The specific mechanism of action of XLHZ in treating CAG was elucidated by silencing or overexpression of targets. RESULTS In vivo experiments showed that XLHZ could improve the pathological status and ultrastructure of gastric mucosa and inhibit ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway. The results in vitro demonstrated that transfection of miR-320a mimics inhibited cell proliferation, migration, and invasion while promoting cell apoptosis. MiR-320a targeted TFRC and inhibited ferroptosis. Overexpression of TFRC reversed the inhibitory effect of miR-320a overexpression on cell proliferation. The effect of XLHZ was consistent with that of miR-320a. YY1 targeted miR-320a, and its overexpression promoted ferroptosis. CONCLUSION XLHZ inhibited ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway, ultimately impeding the progression of CAG.
Collapse
Affiliation(s)
- Yuxi Guo
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China
| | - Xuemei Jia
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China
| | - Pengli Du
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China; Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China; Hebei Key Laboratory of Turbidity Toxin Syndrome, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Jie Wang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China
| | - Yao Du
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China; Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China; Hebei Key Laboratory of Turbidity Toxin Syndrome, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Bolin Li
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China; Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China; Hebei Key Laboratory of Turbidity Toxin Syndrome, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China
| | - Yucong Xue
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050200, China
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050200, China
| | - Yanru Cai
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China; Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China; Hebei Key Laboratory of Turbidity Toxin Syndrome, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China.
| | - Qian Yang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Heibei, 050011, China; Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China; Hebei Key Laboratory of Turbidity Toxin Syndrome, First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
26
|
Khan F, Pandey P, Verma M, Ramniwas S, Lee D, Moon S, Park MN, Upadhyay TK, Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed Pharmacother 2024; 173:116363. [PMID: 38479184 DOI: 10.1016/j.biopha.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a novel form of regulated cell death characterized by dependence on iron and lipid peroxidation, has been implicated in a wide range of clinical conditions including neurological diseases, cardiovascular disorders, acute kidney failure, and various types of cancer. Therefore, it is critical to suppress cancer progression and proliferation. Ferroptosis can be triggered in cancer cells and some normal cells by synthetic substances, such as erastin, Ras-selective lethal small molecule-3, or clinical pharmaceuticals. Natural bioactive compounds are traditional drug discovery tools, and some have been therapeutically used as dietary additives or pharmaceutical agents against various malignancies. The fact that natural products have multiple targets and minimal side effects has led to notable advances in anticancer research. Research has indicated that ferroptosis can also be induced by natural compounds during cancer treatment. In this review, we focused on the most recent developments in emerging molecular processes and the significance of ferroptosis in cancer. To provide new perspectives on the future development of ferroptosis-related anticancer medications, we also provide a summary of the implications of natural phytochemicals in triggering ferroptosis through ROS production and ferritinophagy induction in a variety of malignancies.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pratibha Pandey
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
27
|
Li X, Xu H, Zhao X, Li Y, Lv S, Zhou W, Wang J, Sun Z, Li Y, Guo C. Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling. Part Fibre Toxicol 2024; 21:17. [PMID: 38561847 PMCID: PMC10983742 DOI: 10.1186/s12989-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
28
|
Yu X, Cheng L, Liu S, Wang M, Zhang H, Wang X, Zhang H, Yang Z, Wu S. Correlation between ferroptosis and adriamycin resistance in breast cancer regulated by transferrin receptor and its molecular mechanism. FASEB J 2024; 38:e23550. [PMID: 38466338 DOI: 10.1096/fj.202302597r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most prevalent malignant tumor in women. Adriamycin (ADR) is a primary chemotherapy drug, but resistance limits its effectiveness. Ferroptosis, a newly identified cell death mechanism, involves the transferrin receptor (TFRC), closely linked with tumor cells. This study aimed to explore TFRC and ferroptosis's role in breast cancer drug resistance. Bioinformatics analysis showed that TFRC was significantly downregulated in drug-resistant cell lines, and patients with low TFRC expression might demonstrate a poor chemotherapeutic response to standard treatment. High expression of TFRC was positively correlated with most of the ferroptosis-related driver genes. The research findings indicate that ferroptosis markers were higher in breast cancer tissues than in normal ones. In chemotherapy-sensitive cases, Ferrous ion (Fe2+ ) and malondialdehyde (MDA) levels were higher than in resistant cases (all p < .05). TFRC expression was higher in breast cancer than in normal tissue, especially in the sensitive group (all p < .05). Cytological experiments showed increased hydrogen peroxide (H2 O2 ) after ADR treatment in both sensitive and resistant cells, with varying MDA changes (all p < .05). Elevating TFRC increased Fe2+ and MDA in ADR-resistant cells, enhancing their sensitivity to ADR. However, TFRC upregulation combined with ADR increased proliferation and invasiveness in resistant cell lines (all p < .05). In conclusion, ADR resistance to breast cancer is related to the regulation of iron ion-mediated ferroptosis by TFRC. Upregulation of TFRC in ADR-resistant breast cancer cells activates ferroptosis and reverses ADR chemotherapy resistance of breast cancer.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Lihao Cheng
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Song Liu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Miaomaio Wang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| |
Collapse
|
29
|
Dong B, Jiang Y, Shi B, Zhang Z, Zhang Z. Selenomethionine alleviates decabromodiphenyl ether-induced oxidative stress and ferroptosis via the NRF2/GPX4 pathway in the chicken brain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133307. [PMID: 38154185 DOI: 10.1016/j.jhazmat.2023.133307] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Decabromodiphenyl ether (BDE209) is a toxic environmental pollutant that can cause neurotoxicity, behavioral abnormalities, and cognitive impairment in animals. However, the specific mechanisms of BDE209-induced neurological injury and effective preventative and therapeutic interventions are lacking. Even though selenomethionine (Se-Met) has a significant detoxification effect and protects the nervous system, it remains unclear whether Se-Met can counteract the toxic effects of BDE209. For the in vivo test, we randomly divided 60 1-week-old hy-line white variety chicks into the Con, BDE209, Se-Met, and BDE209 +Se-Met groups. In vitro experiments were performed, exposing chick embryo brain neurons to BDE209, Se-Met, N-Acetylcysteine (NAC, a ROS inhibitor), and RSL3 (a GPX4 inhibitor). We demonstrated that BDE209 induced oxidative stress and ferroptosis in the chicken brain, which mainly manifested as mitochondrial atrophy, cristae breakage, increased Fe2+ and MDA content, decreased antioxidant enzyme activity, and the inhibition of the NRF2/GPX4 signaling pathway in the brain neurons. However, Se-Met supplementation reversed these changes by activating the NRF2/GPX4 pathway, reducing mitochondrial damage, enhancing antioxidant enzyme activity, and alleviating ferroptosis. This study provides insight into the mechanism of BDE209-related neurotoxicity and suggests Se-Met as an effective preventative and control measure against BDE209 poisoning.
Collapse
Affiliation(s)
- Bowen Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhuoqi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
30
|
Huang Y, Du J, Li D, He W, Liu Z, Liu L, Yang X, Cheng X, Chen R, Yang Y. LASS2 suppresses metastasis in multiple cancers by regulating the ferroptosis signalling pathway through interaction with TFRC. Cancer Cell Int 2024; 24:87. [PMID: 38419028 PMCID: PMC10900749 DOI: 10.1186/s12935-024-03275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND As a key enzyme in ceramide synthesis, longevity assurance homologue 2 (LASS2) has been indicated to act as a tumour suppressor in a variety of cancers. Ferroptosis is involved in a variety of tumour processes; however, the role of LASS2 in regulating ferroptosis has yet to be explored. This article explores the potential underlying mechanisms involved. METHODS Bioinformatics tools and immunohistochemical staining were used to evaluate LASS2 expression, and the results were analysed in relation to overall survival and clinical association in multiple cancers. Coimmunoprecipitation-coupled liquid chromatography-mass spectrometry (co-IP LC-MS) was performed to identify potential LASS2-interacting proteins in thyroid, breast, and liver cancer cell lines. Transcriptomics, proteomics and metabolomics analyses of multiple cancer cell types were performed using MS or LC-MS to further explore the underlying mechanisms involved. Among these tumour cells, the common LASS2 interaction partner transferrin receptor (TFRC) was analysed by protein-protein docking and validated by coimmunoprecipitation western blot, immunofluorescence, and proximity ligation assays. Then, we performed experiments in which tumour cells were treated with Fer-1 or erastin or left untreated, with or without inducing LASS2 overexpression, and assessed the molecular biological and cellular functions by corresponding analyses. RESULTS Low LASS2 expression is correlated with adverse clinical characteristic and poor prognosis in patients with thyroid cancer, breast cancer or HCC. Multiomics analyses revealed significant changes in the ferroptosis signalling pathway, iron ion transport and iron homeostasis. Our in vitro experiments revealed that LASS2 overexpression regulated ferroptosis status in these tumour cells by affecting iron homeostasis, which in turn inhibited tumour migration, invasion and EMT. In addition, LASS2 overexpression reversed the changes in tumour cell metastasis induced by either Fer-1 or erastin. Mechanistically, LASS2 interacts directly with TFRC to regulate iron homeostasis in these tumour cells. CONCLUSIONS In summary, our study reveals for the first time that LASS2 can inhibit tumour cell metastasis by interacting with TFRC to regulate iron metabolism and influence ferroptosis status in thyroid, breast, and liver cancer cells, these results suggest potential universal therapeutic targets for the treatment of these cancers.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jie Du
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Dan Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of General Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Li Liu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaoming Cheng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
31
|
Liu Q, Liu CQ, Yi WZ, Ouyang PW, Yang BF, Liu Q, Liu JM, Wu YN, Liang AR, Cui YH, Meng J, Li XY, Pan HW. Ferroptosis Contributes to Microvascular Dysfunction in Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00069-5. [PMID: 38417697 DOI: 10.1016/j.ajpath.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/07/2024] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. The expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with RT-qPCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including GPX4, FTH1, long-chain acyl-CoA synthetase 4, TFRC, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; School of Basic Medicine, Nanchang Medical College, Nanchang, China
| | - Chao-Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Bo-Fan Yang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Qi Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing-Min Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ya-Ni Wu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ai-Rong Liang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Xiu-Yun Li
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
32
|
Su W, Yu X, Wang S, Wang X, Dai Z, Li Y. METTL3 regulates TFRC ubiquitination and ferroptosis through stabilizing NEDD4L mRNA to impact stroke. Cell Biol Toxicol 2024; 40:8. [PMID: 38302612 PMCID: PMC10834616 DOI: 10.1007/s10565-024-09844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Stroke is a major medical problem, and novel therapeutic targets are urgently needed. This study investigates the protective role and potential mechanisms of the N6-methyladenosine (m6A) RNA methyltransferase METTL3 against cerebral injury resulting from insufficient cerebral blood flow. METHODS In this study, we constructed mouse MCAO models and HT-22 cell OGD/R models to mimic ischemic stroke-induced brain injury and neuronal damage. We generated NEDD4L knockout and METTL3 overexpression models and validated therapeutic effects using infarct volume, brain edema, and neurologic scoring. We performed qRT-PCR, western blotting, and co-immunoprecipitation to assess the influence of NEDD4L on ferroptosis markers and TFRC expression. We verified the effect of NEDD4L on TFRC ubiquitination by detecting half-life and ubiquitination. Finally, we validated the impact of METTL3 on NEDD4L mRNA stability and MCAO outcomes in both in vitro and in vivo experimental models. RESULT We find NEDD4L expression is downregulated in MCAO models. Overexpressing METTL3 inhibits the iron carrier protein TFRC by upregulating the E3 ubiquitin ligase NEDD4L, thereby alleviating oxidative damage and ferroptosis to protect the brain from ischemic injury. Mechanistic studies show METTL3 can methylate and stabilize NEDD4L mRNA, enhancing NEDD4L expression. As a downstream effector, NEDD4L ubiquitinates and degrades TFRC, reducing iron accumulation and neuronal ferroptosis. CONCLUSION In summary, we uncover the METTL3-NEDD4L-TFRC axis is critical for inhibiting post-ischemic brain injury. Enhancing this pathway may serve as an effective strategy for stroke therapy. This study lays the theoretical foundation for developing m6A-related therapies against ischemic brain damage.
Collapse
Affiliation(s)
- Wenjie Su
- Department of AnesthesiologySichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xiang Yu
- Department of RadiologySichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Shan Wang
- Department of Echocardiography & Noninvasive Cardiology Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xu Wang
- No. 2 Ward of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Zheng Dai
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Yi Li
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
33
|
Freitas FP, Alborzinia H, Dos Santos AF, Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N, Kaushal K, Kast B, Lorenz SM, Kunz V, Nehring H, Xavier da Silva TN, Chen Z, Atici S, Doll SG, Schaefer EL, Ekpo I, Schmitz W, Horling A, Imming P, Miyamoto S, Wehman AM, Genaro-Mattos TC, Mirnics K, Kumar L, Klein-Seetharaman J, Meierjohann S, Weigand I, Kroiss M, Bornkamm GW, Gomes F, Netto LES, Sathian MB, Konrad DB, Covey DF, Michalke B, Bommert K, Bargou RC, Garcia-Saez A, Pratt DA, Fedorova M, Trumpp A, Conrad M, Friedmann Angeli JP. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 2024; 626:401-410. [PMID: 38297129 DOI: 10.1038/s41586-023-06878-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.
Collapse
Affiliation(s)
- Florencio Porto Freitas
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ancély Ferreira Dos Santos
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Palina Nepachalovich
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Lohans Pedrera
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Omkar Zilka
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Inague
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nesrine Aroua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kamini Kaushal
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bettina Kast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktoria Kunz
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Helene Nehring
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thamara N Xavier da Silva
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zhiyi Chen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sena Atici
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian G Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emily L Schaefer
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ifedapo Ekpo
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aline Horling
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Peter Imming
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Sayuri Miyamoto
- Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lokender Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Judith Klein-Seetharaman
- Department of Physics, Colorado School of Mines, Golden, CO, USA
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Isabel Weigand
- Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany
| | - Matthias Kroiss
- Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany
| | - Georg W Bornkamm
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Fernando Gomes
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Manjima B Sathian
- Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, MO, USA
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center München (HMGU), Neuherberg, Germany
| | - Kurt Bommert
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ana Garcia-Saez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
34
|
Li XN, Shang NY, Kang YY, Sheng N, Lan JQ, Tang JS, Wu L, Zhang JL, Peng Y. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway. Acta Pharmacol Sin 2024; 45:248-267. [PMID: 37833536 PMCID: PMC10789749 DOI: 10.1038/s41401-023-01177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.
Collapse
Affiliation(s)
- Xin-Nan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Nian-Ying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
35
|
Zhao Y, Ye Z, Liu Y, Zhang J, Kuermanbayi S, Zhou Y, Guo H, Xu F, Li F. Investigating the Role of Extracellular Matrix Stiffness in Modulating the Ferroptosis Process in Hepatocellular Carcinoma Cells via Scanning Electrochemical Microscopy. Anal Chem 2024; 96:1102-1111. [PMID: 38179931 DOI: 10.1021/acs.analchem.3c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Extracellular matrix (ECM) stiffness modulates a variety of cellular processes, including ferroptosis, a process with significant potential implications for hepatocellular carcinoma (HCC) fibrosis and cirrhosis. However, the exact relationship between ECM stiffness and HCC ferroptosis is yet unclarified, partially due to the lack of in situ information on key parameters of the ferroptosis process of living HCC cells. This study pioneers the use of in vitro mechanical microenvironment models of HCC and the scanning electrochemical microscopy (SECM) technique for understanding this interplay. We first cultured HuH7 cells on 4.0, 18.0, and 44.0 kPa polyacrylamide (PA) gels to simulate early, intermediate, and advanced HCC ECM stiffness, respectively. Then, we used SECM to in situ monitor changes in cell membrane permeability, respiratory activity, and reactive oxygen species (ROS) levels of erastin-induced HuH7 cells on PA gels, finding that increasing ECM stiffness potentiates ferroptosis, including increased membrane permeabilization and H2O2 release as well as reduced respiratory activity. Through further transcriptome sequencing and molecular biology measurements, we identified a critical role for focal adhesion kinase (FAK)-mediated yes-associated protein (YAP) in regulating the ferroptosis process dependent on ECM stiffness, which provides novel insights into the mechanical regulation of ferroptosis in HCC cells and may pave the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuake Kuermanbayi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
36
|
Yu X, Xu C, Zou Y, Liu W, Xie Y, Wu C. A prognostic metabolism-related gene signature associated with the tumor immune microenvironment in neuroblastoma. Am J Cancer Res 2024; 14:253-273. [PMID: 38323276 PMCID: PMC10839309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Neuroblastoma (NB) is the most prevalent malignant solid tumor in children. Tumor metabolism, including lipid, amino acid, and glucose metabolism, is intricately linked to the genesis and progression of tumors. This study aimed to establish a prognostic gene signature for NB patients, based on metabolism-related genes, and to investigate a treatment approach that could enhance the survival rate of high-risk NB patients. From the NB dataset GSE49710, we identified metabolism-related gene markers utilizing the "limma" R package and univariate Cox analysis combined with least absolute shrinkage and selection operator (LASSO) regression analysis. We explored the correlation between these gene markers and the overall survival of NB patients. Gene set enrichment analysis (GSEA) and single-sample GSEA algorithms were used to assess the differences in metabolism and immune status. Furthermore, we examined the association between metabolic subgroups and drug responsiveness. Concurrently, data downloaded from TARGET and MTAB were used for external verification. Using multicolor immunofluorescence and immunohistochemistry, we investigated the relationship between the lipid metabolism-related gene ELOVL6 with both the International Neuroblastoma Staging System classification of NB and survival rate. Finally, we explored the effect of high ELOVL6 expression on the immune microenvironment in NB using flow cytometry. We identified an eight-gene signature comprising metabolism-related genes in NB: ELOVL6, OSBPL9, RPL27A, HSD17B3, ACHE, AKR1C1, PIK3R1, and EPHX2. This panel effectively predicted disease-free survival, and was validated using an internal dataset from GSE49710 and two external datasets from the TARGET and MTAB databases. Moreover, our findings confirmed that ELOVL6 fosters an immunosuppressive microenvironment and contributes to the malignant progression in NB. The eight-gene signature is significant in predicting the prognosis of NB, effectively classifying patients into high- and low-risk groups. This classification may guide the development of innovative treatment strategies for these patients. Notably, the signature gene ELOVL6 markedly encourages an immunosuppressive microenvironment and malignant progression in NB.
Collapse
Affiliation(s)
- Xin Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Chao Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
- National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport HospitalTianjin, China
| | - Yiping Zou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Weishuai Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Yongjie Xie
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| | - Chao Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Tianjin’s Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Immunology and BiotherapyTianjin, China
| |
Collapse
|
37
|
Li SY, Zhao N, Wei D, Pu N, Hao XN, Huang JM, Peng GH, Tao Y. Ferroptosis in the ageing retina: A malevolent fire of diabetic retinopathy. Ageing Res Rev 2024; 93:102142. [PMID: 38030091 DOI: 10.1016/j.arr.2023.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Ageing retina is prone to ferroptosis due to the iron accumulation and impaired efficiency of intracellular antioxidant defense system. Ferroptosis acts as a cell death modality that is characterized by the iron-dependent accumulation of lipid peroxidation. Ferroptosis is distinctively different from other types of regulated cell death (RCD) at the morphological, biochemical, and genetic levels. Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Its prevalence and severity increase progressively with age. Recent reports have shown that ferroptosis is implicated in the pathophysiology of DR. Under hyperglycemia condition, the endothelial cell and retinal pigment epithelium (RPE) cell will undergo ferroptosis, which contributes to the increased vascular permeability and the disrupted blood retinal barrier (BRB). The underlying etiology of DR can be attributed to the impaired BRB integrity and subsequent damages of the neurovascular units. In the absence of timely intervention, the compromised BRB can ultimately cause profound visual impairments. In particular, the ageing retina is vulnerable to ferroptosis, and hyperglycemia will accelerate the progression of this pathological process. In this article, we discuss the contributory role of ferroptosis in DR pathogenesis, and summarize recent therapeutic trials that targeting the ferroptosis. Further study on the ferroptosis mediated damage would enrich our knowledge of DR pathology, and promote the development of clinical treatment for this degenerative retinopathy.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Na Zhao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Dong Wei
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ning Pu
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xiao-Na Hao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jie-Min Huang
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Guang-Hua Peng
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Ye Tao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation. School of Basic Medical Sciences, College of medicine, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
38
|
Ma J, Zhang J, Ou Z, Ren Y, Wu K, Zhang Y, Chen S, Wang Z. Chronic noise exposure induces Alzheimer's disease-like neuropathology and cognitive impairment via ferroptosis in rat hippocampus. Environ Health Prev Med 2024; 29:50. [PMID: 39343514 PMCID: PMC11446637 DOI: 10.1265/ehpm.24-00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Chronic noise exposure poses a remarkable public health concern, drawing attention to its impacts on the brain. Ferroptosis is involved in several brain-related diseases. However, the role of ferroptosis in the effects of chronic noise on the brain remains elusive. This study aimed to investigate the effects of chronic noise exposure on the brain and elucidate the underlying mechanisms. METHODS A chronic noise-induced cognitive impairment model in rats was constructed and validated. The pathological state and ferroptosis level of the rat hippocampus were determined using Western blotting and immunohistochemistry. Bioinformatics was employed to investigate the interrelationship between chronic noise exposure and genes. Genetic relationships were analyzed using Mendelian randomization (MR) analysis. Cytoscape was employed for the prediction of upstream molecular and drug targets. RESULTS In vivo experiments revealed that chronic noise exposure could induce Alzheimer's disease (AD)-like neuropathological changes in rat hippocampus and cognitive impairment. Moreover, protein markers indicative of ferroptosis and levels of lipid peroxidation were quantified to elucidate underlying mechanisms. Thereafter, oxidative stress- and ferroptosis-related differentially expressed genes (DEGs) underwent functional enrichment and PPI network analyses. Additionally, 8 genes with diagnostic significance were identified. In MR analysis, retinoic acid receptor responder 2 (Rarres2) gene exhibited a negative genetic relationship with AD. CONCLUSIONS Chronic noise exposure could induce AD-like neuropathological changes and cognitive impairment via ferroptosis. The results of MR analysis indicated that Rarres2 gene may act as a protective factor in AD. This gene may be upstream of ferroptosis and serve as a target for the prevention and treatment of chronic noise-induced cognitive impairment.
Collapse
Affiliation(s)
- Jialao Ma
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Yixian Ren
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Kangyong Wu
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Yifan Zhang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Siran Chen
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
| | - Zhi Wang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| |
Collapse
|
39
|
Tatar M, Tüfekci KK. An investigation of the distributions of ferroptosis and necroptosis mediators in the maternal-fetal interface at different days of rat pregnancy. Anat Histol Embryol 2024; 53:e12991. [PMID: 37921037 DOI: 10.1111/ahe.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Ferroptosis and necroptosis are recognized as playing major roles in the regulation of various physiological processes. However, the physiological role of the cell death mediated by these two pathways in the developmental process has not yet been clearly established. This study investigated ferroptosis and necroptosis signalling pathways in maternal-fetal tissue in the different gestational days (GD) of rat pregnancy using immunohistochemical and western blot methods in order to fill this gap. Twenty-four female Wistar albino rats were mated and divided into three groups. Maternal-fetal tissue samples were collected on GD 5, 12 and 19 of pregnancy. Expression and total protein levels of the markers glutathione peroxidase-4, soluble transporter family 7 member 11, transferrin receptor, receptor-interacting serine/threonine-protein kinase 1, receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like protein were investigated on both the maternal and fetal surfaces of the placenta using immunohistochemical and western blot methods. The results showed varying levels of protein expression of both ferroptosis and necroptosis mediators in the GD 5, 12 and 19 of pregnancy. Immunohistochemical analyses revealed that these mediators were located on both the maternal (decidua and metrial gland) and fetal surfaces (labyrinth zone, yolk sac and basal zone) and that their expression levels changed in the different GD. The findings revealed the existence of important ferroptosis and necroptosis pathway mediators in rat maternal-fetal tissue. These results may provide a molecular framework for a better understanding of the communication between the placenta, decidua and fetus during the developmental process.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
40
|
Le J, Pan G, Zhang C, Chen Y, Tiwari AK, Qin JJ. Targeting ferroptosis in gastric cancer: Strategies and opportunities. Immunol Rev 2024; 321:228-245. [PMID: 37903748 DOI: 10.1111/imr.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Jiahan Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Che Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
41
|
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L, Zhi K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed Pharmacother 2023; 169:115892. [PMID: 37976895 DOI: 10.1016/j.biopha.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death, mainly manifested by the production of reactive oxygen species and accumulation of lipid peroxides. It is distinct from other forms of cell death with regard to morphology and biochemistry, particularly in disrupting mitochondrial function. Mitochondria are essential compartments where the organism generates energy and are closely associated with the fate of ferroptosis. Currently, researchers focus on the potential value of ferroptosis and mitochondria for overcoming drug sensitivity and assisting in cancer therapy. In this review, we summarize the main mechanisms of ferroptosis (the GPX4-realated pathway, FSP1-related pathway, and iron metabolism pathway) and the functions and regulating pathways of mitochondria (the TCA cycle, oxidative phosphorylation, mitochondrial regulation of iron ions, and mtDNA) in ferroptosis. We believe that exploring the role of mitochondria in ferroptosis will help us understand the potential regulatory mechanisms of ferroptosis in cancer and help us find new therapeutic targets.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoqing Zhou
- Department of the Stomatology, Jining NO.1 People' hospital, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
42
|
Valenti GE, Roveri A, Venerando R, Menichini P, Monti P, Tasso B, Traverso N, Domenicotti C, Marengo B. PTC596-Induced BMI-1 Inhibition Fights Neuroblastoma Multidrug Resistance by Inducing Ferroptosis. Antioxidants (Basel) 2023; 13:3. [PMID: 38275623 PMCID: PMC10812464 DOI: 10.3390/antiox13010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Neuroblastoma (NB) is a paediatric cancer with noteworthy heterogeneity ranging from spontaneous regression to high-risk forms that are characterised by cancer relapse and the acquisition of drug resistance. The most-used anticancer drugs exert their cytotoxic effect by inducing oxidative stress, and long-term therapy has been demonstrated to cause chemoresistance by enhancing the antioxidant response of NB cells. Taking advantage of an in vitro model of multidrug-resistant (MDR) NB cells, characterised by high levels of glutathione (GSH), the overexpression of the oncoprotein BMI-1, and the presence of a mutant P53 protein, we investigated a new potential strategy to fight chemoresistance. Our results show that PTC596, an inhibitor of BMI-1, exerted a high cytotoxic effect on MDR NB cells, while PRIMA-1MET, a compound able to reactivate mutant P53, had no effect on the viability of MDR cells. Furthermore, both PTC596 and PRIMA-1MET markedly reduced the expression of epithelial-mesenchymal transition proteins and limited the clonogenic potential and the cancer stemness of MDR cells. Of particular interest is the observation that PTC596, alone or in combination with PRIMA-1MET and etoposide, significantly reduced GSH levels, increased peroxide production, stimulated lipid peroxidation, and induced ferroptosis. Therefore, these findings suggest that PTC596, by inhibiting BMI-1 and triggering ferroptosis, could be a promising approach to fight chemoresistance.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (A.R.); (R.V.)
| | - Rina Venerando
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (A.R.); (R.V.)
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (P.M.); (P.M.)
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (P.M.); (P.M.)
| | - Bruno Tasso
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Nicola Traverso
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| |
Collapse
|
43
|
Huang R, Wu J, Ma Y, Kang K. Molecular Mechanisms of Ferroptosis and Its Role in Viral Pathogenesis. Viruses 2023; 15:2373. [PMID: 38140616 PMCID: PMC10747891 DOI: 10.3390/v15122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a novelty form of regulated cell death, and it is mainly characterized by iron accumulation and lipid peroxidation in the cells. Its underlying mechanism is related to the amino acid, iron, and lipid metabolisms. During viral infection, pathogenic microorganisms have evolved to interfere with ferroptosis, and ferroptosis is often manipulated by viruses to regulate host cell servicing for viral reproduction. Therefore, this review provides a comprehensive overview of the mechanisms underlying ferroptosis, elucidates the intricate signaling pathways involved, and explores the pivotal role of ferroptosis in the pathogenesis of viral infections. By enhancing our understanding of ferroptosis, novel therapeutic strategies can be devised to effectively prevent and treat diseases associated with this process. Furthermore, unraveling the developmental mechanisms through which viral infections exploit ferroptosis will facilitate development of innovative antiviral agents.
Collapse
Affiliation(s)
- Riwei Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Yaodan Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Kai Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| |
Collapse
|
44
|
Zhou J, Lin X, Liao S, Li G, Tang J, Luo J, Zhang C, Wu S, Xu L, Li H. Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro. Mol Med Rep 2023; 28:236. [PMID: 37937619 PMCID: PMC10668077 DOI: 10.3892/mmr.2023.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
Ferroptosis is driven by iron‑dependent accumulation of lipid hydroperoxides, and hemolytic hyperbilirubinemia causes accumulation of unconjugated bilirubin and iron. The present study aimed to assess the role of ferroptosis in hemolytic hyperbilirubinemia‑induced brain damage (HHIBD). Rats were randomly divided into the control, phenylhydrazine (PHZ) and deferoxamine (DFO) + PHZ groups, with 12 rats in each group. Ferroptosis‑associated biochemical and protein indicators were measured in the brain tissue of rats. We also performed tandem mass tag‑labeled proteomic analysis. The levels of iron and malondialdehyde were significantly higher and levels of glutathione (GSH) and superoxide dismutase activity significantly lower in the brain tissues of the PHZ group compared with those in the control group. HHIBD also resulted in significant increases in the expression of the ferroptosis‑related proteins acyl‑CoA synthetase long‑chain family member 4, ferritin heavy chain 1 and transferrin receptor and divalent metal transporter 1, as well as a significant reduction in the expression of ferroptosis suppressor protein 1. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that the differentially expressed proteins of rat brain tissues between the control and PHZ groups were significantly involved in ferroptosis, GSH metabolism and fatty acid biosynthesis pathways. Pretreatment with DFO induced antioxidant activity and alleviated lipid peroxidation‑mediated HHIBD. In addition, PC12 cells treated with ferric ammonium citrate showed shrinking mitochondria, high mitochondrial membrane density, and increased lipid reactive oxygen species and intracellular ferrous iron, which were antagonized by pretreatment with ferrostatin‑1 or DFO, which was reversed by pretreatment with ferrostatin‑1 or DFO. The present study demonstrated that ferroptosis is involved in HHIBD and provided novel insights into candidate proteins that are potentially involved in ferroptosis in the brain during hemolytic hyperbilirubinemia.
Collapse
Affiliation(s)
- Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Department of Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Sining Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Jinying Luo
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- The Key Laboratory of Environment and Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Liangpu Xu
- Department of Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- The Key Laboratory of Environment and Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
45
|
Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol 2023; 33:1062-1076. [PMID: 37230924 DOI: 10.1016/j.tcb.2023.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
As cancer cells develop resistance to apoptosis, non-apoptotic cell death modalities, such as ferroptosis, have emerged as promising strategies to combat therapy-resistant cancers. Cells that develop resistance to conventional therapies or metastatic cancer cells have been shown to have increased sensitivity to ferroptosis. Therefore, targeting the regulatory elements of ferroptosis in cancer could offer novel therapeutic opportunities. In this review, we first provide an overview of the known ferroptosis regulatory networks and discuss recent findings on how they contribute to cancer plasticity. We then expand into the critical role of selenium metabolism in regulating ferroptosis. Finally, we highlight specific cases where induction of ferroptosis could be used to sensitize cancer cells to this form of cell death.
Collapse
Affiliation(s)
- Ancély Ferreira Dos Santos
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thamara Nishida Xavier da Silva
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
46
|
Yu L, Wang YF, Xiao J, Shen QQ, Chi SS, Gao YL, Lin DZ, Ding J, Fang YF, Chen Y. Dysregulation of iron homeostasis by TfR-1 renders EZH2 wild type diffuse large B-cell lymphoma resistance to EZH2 inhibition. Acta Pharmacol Sin 2023; 44:2113-2124. [PMID: 37225847 PMCID: PMC10545686 DOI: 10.1038/s41401-023-01097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/22/2023] [Indexed: 05/26/2023] Open
Abstract
EZH2 has been regarded as an efficient target for diffuse large B-cell lymphoma (DLBCL), but the clinical benefits of EZH2 inhibitors (EZH2i) are limited. To date, only EPZ-6438 has been approved by FDA for the treatment of follicular lymphoma and epithelioid sarcoma. We have discovered a novel EZH1/2 inhibitor HH2853 with a better antitumor effect than EPZ-6438 in preclinical studies. In this study we explored the molecular mechanism underlying the primary resistance to EZH2 inhibitors and sought for combination therapy strategy to overcome it. By analyzing EPZ-6438 and HH2853 response profiling, we found that EZH2 inhibition increased intracellular iron through upregulation of transferrin receptor 1 (TfR-1), ultimately triggered resistance to EZH2i in DLBCL cells. We demonstrated that H3K27ac gain by EZH2i enhanced c-Myc transcription, which contributed to TfR-1 overexpression in insensitive U-2932 and WILL-2 cells. On the other hand, EZH2i impaired the occurrence of ferroptosis by upregulating the heat shock protein family A (Hsp70) member 5 (HSPA5) and stabilizing glutathione peroxidase 4 (GPX4), a ferroptosis suppressor; co-treatment with ferroptosis inducer erastin effectively overrode the resistance of DLBCL to EZH2i in vitro and in vivo. Altogether, this study reveals iron-dependent resistance evoked by EZH2i in DLBCL cells, and suggests that combination with ferroptosis inducer may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Lei Yu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ya-Fang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Xiao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qian-Qian Shen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuai-Shuai Chi
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Lei Gao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong-Ze Lin
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yan-Fen Fang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
47
|
Hendricks JM, Doubravsky CE, Wehri E, Li Z, Roberts MA, Deol KK, Lange M, Lasheras-Otero I, Momper JD, Dixon SJ, Bersuker K, Schaletzky J, Olzmann JA. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem Biol 2023; 30:1090-1103.e7. [PMID: 37178691 PMCID: PMC10524360 DOI: 10.1016/j.chembiol.2023.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Ferroptosis is a regulated form of cell death associated with the iron-dependent accumulation of phospholipid hydroperoxides. Inducing ferroptosis is a promising approach to treat therapy-resistant cancer. Ferroptosis suppressor protein 1 (FSP1) promotes ferroptosis resistance in cancer by generating the antioxidant form of coenzyme Q10 (CoQ). Despite the important role of FSP1, few molecular tools exist that target the CoQ-FSP1 pathway. Through a series of chemical screens, we identify several structurally diverse FSP1 inhibitors. The most potent of these compounds, ferroptosis sensitizer 1 (FSEN1), is an uncompetitive inhibitor that acts selectively through on-target inhibition of FSP1 to sensitize cancer cells to ferroptosis. Furthermore, a synthetic lethality screen reveals that FSEN1 synergizes with endoperoxide-containing ferroptosis inducers, including dihydroartemisinin, to trigger ferroptosis. These results provide new tools that catalyze the exploration of FSP1 as a therapeutic target and highlight the value of combinatorial therapeutic regimes targeting FSP1 and additional ferroptosis defense pathways.
Collapse
Affiliation(s)
- Joseph M Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cody E Doubravsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eddie Wehri
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhipeng Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa A Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirandeep K Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kirill Bersuker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Xu T, Cui J, Xu R, Cao J, Guo MY. Microplastics induced inflammation and apoptosis via ferroptosis and the NF-κB pathway in carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106659. [PMID: 37586228 DOI: 10.1016/j.aquatox.2023.106659] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Microplastics (MPs), a new class of pollutant that threatens aquatic biodiversity, are becoming increasingly prevalent around the world. Fish growth may be severely inhibited by microplastics, resulting in severe mortality. Exposure to microplastics increases the likelihood of intestinal injuries, but the underlying mechanisms remain equivocal. The objective of this study was to investigate the potential toxic mechanisms underlying microplastic-induced intestinal injury in fish and to assist researchers in identifying novel therapeutic targets. In this study, a model of carp exposed to microplastics was established successfully. Histological observation showed that exposure to polyethylene microplastics caused damage to the intestinal mucosal surface and a significant increase in goblet cells, which aggregated on the surface of the mucosa. The mucosal layer was observed to fall off. Lymphocytes in the intestinal wall proliferated and aggregated. TUNEL staining showed that apoptosis occurred in the group exposed to microplastics. The qPCR results showed that the expression of Ferroptosis apoptotic factors COX-2 and ACSL4 was upregulated, while the expression of TFRC, FIH1, SLC7A11, and GPX4 was downregulated. The NF-κB pathway (p-p65, IκBα), inflammatory cytokines (TNF-α, IL-8, IL-6) and apoptosis genes (Bax, Caspase3) were upregulated. Semi-quantitative detection of related proteins by Western blotting was consistent with the gene expression results. In addition, the ELISA assay showed that lipid peroxidation and inflammatory cytokines (TNF-α, IL-1β, IL-6) were increased in the microplastic exposed group. To conclude, lipid peroxidation induced by microplastics activates the NF-κB pathway and causes ferroptosis, ultimately resulting in intestinal damage and cellular apoptosis.
Collapse
Affiliation(s)
- Tianchao Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jie Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
49
|
Alborzinia H, Chen Z, Yildiz U, Freitas FP, Vogel FCE, Varga JP, Batani J, Bartenhagen C, Schmitz W, Büchel G, Michalke B, Zheng J, Meierjohann S, Girardi E, Espinet E, Flórez AF, dos Santos AF, Aroua N, Cheytan T, Haenlin J, Schlicker L, Xavier da Silva TN, Przybylla A, Zeisberger P, Superti‐Furga G, Eilers M, Conrad M, Fabiano M, Schweizer U, Fischer M, Schulze A, Trumpp A, Friedmann Angeli JP. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med 2023; 15:e18014. [PMID: 37435859 PMCID: PMC10405063 DOI: 10.15252/emmm.202318014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Ferroptosis has emerged as an attractive strategy in cancer therapy. Understanding the operational networks regulating ferroptosis may unravel vulnerabilities that could be harnessed for therapeutic benefit. Using CRISPR-activation screens in ferroptosis hypersensitive cells, we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis. Genetic deletion of LRP8 leads to ferroptosis as a result of an insufficient supply of selenocysteine, which is required for the translation of the antiferroptotic selenoprotein GPX4. This dependency is caused by low expression of alternative selenium uptake pathways such as system Xc- . The identification of LRP8 as a specific vulnerability of MYCN-amplified neuroblastoma cells was confirmed in constitutive and inducible LRP8 knockout orthotopic xenografts. These findings disclose a yet-unaccounted mechanism of selective ferroptosis induction that might be explored as a therapeutic strategy for high-risk neuroblastoma and potentially other MYCN-amplified entities.
Collapse
Affiliation(s)
- Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Zhiyi Chen
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Umut Yildiz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Molecular Biology Laboratory, Genome Biology UnitHeidelbergGermany
| | - Florencio Porto Freitas
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Felix C E Vogel
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Julianna Patricia Varga
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Molecular Biology OrganizationHeidelbergGermany
| | - Jasmin Batani
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical FacultyUniversity of CologneCologneGermany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Gabriele Büchel
- Mildred Scheel Early Career CenterUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistryHelmholtz Center München (HMGU)NeuherbergGermany
| | - Jashuo Zheng
- Institute of Metabolism and Cell DeathHelmholtz Zentrum München (HMGU)NeuherbergGermany
| | | | - Enrico Girardi
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Solgate GmbHKlosterneuburgAustria
| | - Elisa Espinet
- Anatomy Unit, Department of Pathology and Experimental Therapy, School of MedicineUniversity of Barcelona (UB), L'Hospitalet de LlobregatBarcelonaSpain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell)Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| | - Andrés F Flórez
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMAUSA
| | - Ancely Ferreira dos Santos
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Nesrine Aroua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tasneem Cheytan
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Julie Haenlin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Lisa Schlicker
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Thamara N Xavier da Silva
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Petra Zeisberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Giulio Superti‐Furga
- CeMM‐Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Marcus Conrad
- Institute of Metabolism and Cell DeathHelmholtz Zentrum München (HMGU)NeuherbergGermany
| | - Marietta Fabiano
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - Matthias Fischer
- Center for Molecular Medicine Cologne (CMMC) and Department of Experimental Pediatric Oncology, University Children's Hospital, Medical FacultyUniversity of CologneCologneGermany
| | - Almut Schulze
- Division of Tumor Metabolism and MicroenvironmentGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM GmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum (RVZ), Center for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| |
Collapse
|
50
|
Hu J, Song F, Kang W, Xia F, Song Z, Wang Y, Li J, Zhao Q. Integrative analysis of multi-omics data for discovery of ferroptosis-related gene signature predicting immune activity in neuroblastoma. Front Pharmacol 2023; 14:1162563. [PMID: 37521469 PMCID: PMC10373597 DOI: 10.3389/fphar.2023.1162563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy for neuroblastoma remains unsatisfactory due to heterogeneity and weak immunogenicity. Exploring powerful signatures for the evaluation of immunotherapy outcomes remain the primary purpose. We constructed a ferroptosis-related gene (FRG) signature by least absolute shrinkage and selection operator and Cox regression, identified 10 independent prognostic FRGs in a training cohort (GSE62564), and then verified them in an external validation cohort (TCGA). Associated with clinical factors, the signature accurately predicts overall survival of 3, 5, and 10 years. An independent prognostic nomogram, which included FRG risk, age, stage of the International Neuroblastoma Staging System, and an MYCN status, was constructed. The area under the curves showed satisfactory prognostic predicting performance. Through bulk RNA-seq and proteomics data, we revealed the relationship between hub genes and the key onco-promoter MYCN gene and then validated the results in MYCN-amplified and MYCN-non-amplified cell lines with qRT-PCR. The FRG signature significantly divided patients into high- and low-risk groups, and the differentially expressed genes between the two groups were enriched in immune actions, autophagy, and carcinogenesis behaviors. The low-risk group embodied higher positive immune component infiltration and a higher expression of immune checkpoints with a more favorable immune cytolytic activity (CYT). We verified the predictive power of this signature with data from melanoma patients undergoing immunotherapy, and the predictive power was satisfactory. Gene mutations were closely related to the signature and prognosis. AURKA and PRKAA2 were revealed to be nodal hub FRGs in the signature, and both were shown to have significantly different expressions between the INSS stage IV and other stages after immunohistochemical validation. With single-cell RNA-seq analysis, we found that genes related to T cells were enriched in TNFA signaling and interferon-γ hallmark. In conclusion, we constructed a ferroptosis-related gene signature that can predict the outcomes and work in evaluating the effects of immunotherapy.
Collapse
Affiliation(s)
- Jiajian Hu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjuan Kang
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fantong Xia
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zi’an Song
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang Wang
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jie Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|