1
|
Miller JB, Brandon JA, McKinnon LM, Sabra HW, Lucido CC, Gonzalez Murcia JD, Nations KA, Payne SH, Ebbert MTW, Kauwe JSK, Ridge PG. Ramp sequence may explain synonymous variant association with Alzheimer's disease in the Paired Immunoglobulin-like Type 2 Receptor Alpha ( PILRA ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631528. [PMID: 39829933 PMCID: PMC11741268 DOI: 10.1101/2025.01.06.631528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Synonymous variant NC_000007.14:g.100373690T>C ( rs2405442:T>C ) in the Paired Immunoglobulin-like Type 2 Receptor Alpha ( PILRA ) gene was previously associated with decreased risk for Alzheimer's disease (AD) in genome-wide association studies, but its biological impact is largely unknown. OBJECTIVE We hypothesized that rs2405442:T>C decreases mRNA and protein levels by destroying a ramp of slowly translated codons at the 5' end of PILRA . METHODS We assessed rs2405442:T>C predicted effects on PILRA through quantitative polymerase chain reactions (qPCR) and enzyme-linked immunosorbent assays (ELISA) using Chinese hamster ovary (CHO) cells. RESULTS Both mRNA ( P =1.9184 × 10 -13 ) and protein ( P =0.01296) levels significantly decreased in the mutant versus the wildtype in the direction that we predicted based on destroying a ramp sequence. CONCLUSIONS We show that rs2405442:T>C alone directly impacts PILRA mRNA and protein expression, and ramp sequences may play a role in regulating AD-associated genes without modifying the protein product. Research in Context Systematic review: Genetic variants identified through genome-wide association studies often lack biological support for their association with Alzheimer's disease. Although synonymous variant rs2405442:T>C in PILRA was previously reported as protective against Alzheimer's disease, its effects have generally been attributed to linkage with missense variant, rs1859788:A>G . Interpretation: We show that rs2405442:T>C alone decreases mRNA and protein levels by destroying a ramp of slowly translated codons at the beginning of PILRA . We also show that a ramp sequence is present in PILRA and likely regulates mRNA and protein levels, thus offering a plausible biological mechanism explaining rs2405442:T>C association with Alzheimer's disease independent of rs1859788:A>G . Future directions: We provide the first protocol to evaluate how disease-associated variants impact ramp sequences, which could explain why some genetic variants are reported by genome-wide association studies. Future studies might examine if the ramp sequence could be therapeutically targeted to regulate PILRA expression without changing the protein product.
Collapse
|
2
|
Huang Y, Zhu S, Yao S, Zhai H, Liu C, Han JDJ. Unraveling aging from transcriptomics. Trends Genet 2024:S0168-9525(24)00214-2. [PMID: 39424502 DOI: 10.1016/j.tig.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Research into aging constitutes a pivotal endeavor aimed at elucidating the underlying biological mechanisms governing aging and age-associated diseases, as well as promoting healthy longevity. Recent advances in transcriptomic technologies, such as bulk RNA sequencing (RNA-seq), single-cell transcriptomics, and spatial transcriptomics, have revolutionized our ability to study aging at unprecedented resolution and scale. These technologies present novel opportunities for the discovery of biomarkers, elucidation of molecular pathways, and development of targeted therapeutic strategies for age-related disorders. This review surveys recent breakthroughs in different types of transcripts on aging, such as mRNA, long noncoding (lnc)RNA, tRNA, and miRNA, highlighting key findings and discussing their potential implications for future studies in this field.
Collapse
Affiliation(s)
- Yuanfang Huang
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shouxuan Zhu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuai Yao
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haotian Zhai
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenyang Liu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
3
|
Sun L, Jiao YW, Cui FQ, Liu J, Xu ZY, Sun DL. tRF-Leu reverse breast cancer cells chemoresistance by regulation of BIRC5. Discov Oncol 2024; 15:449. [PMID: 39278863 PMCID: PMC11402887 DOI: 10.1007/s12672-024-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Accumulating studies reported the crucial roles of tRFs in tumorigenesis. However, their further mechanisms and clinical values remains unclear. This study aimed at the further investigation of tRF-Leu in breast cancer chemotherapy resistance. METHODS The high-throughput sequencing was performed and identified the downregulation of tRF-Leu in MCF7/ADR cells. The function of tRF-Leu in breast cancer cells and breast cancer chemotherapy resistance was investigated in vitro and in vivo, including colony formation assay, CCK-8 assay, transwell assay and apoptosis assay. The binding site of tRF-Leu on BIRC5 was verified by dual-luciferase assay. RESULTS tRF-Leu was downregulated in MCF7/ADR cells. Overexpression of tRF-Leu inhibited the migration of breast cancer cells. Furthermore, tRF-Leu could reverse the resistance of MCF7/ADR cells to Adriamycin both in vitro and in vivo. BIRC5 was a target of tRF-Leu, which might be involved in the chemotherapy resistance regulation. CONCLUSION We demonstrated that tRF-Leu could inhibit the chemotherapy resistance of breast cancer by targeting BIRC5. These findings might identify new biomarkers of breast cancer therapy and bring new strategies to reverse chemotherapy resistance.
Collapse
Affiliation(s)
- Li Sun
- Hepatopancreatobiliary Surgery Department, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu-Wen Jiao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fu-Qi Cui
- Department Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jin Liu
- Department Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhong-Ya Xu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Dong-Lin Sun
- Hepatopancreatobiliary Surgery Department, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China.
| |
Collapse
|
4
|
De Masi A, Zanou N, Strotjohann K, Lee D, Lima TI, Li X, Jeon J, Place N, Jung H, Auwerx J. Cyclo His-Pro Attenuates Muscle Degeneration in Murine Myopathy Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305927. [PMID: 38728626 PMCID: PMC11267275 DOI: 10.1002/advs.202305927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/11/2024] [Indexed: 05/12/2024]
Abstract
Among the inherited myopathies, a group of muscular disorders characterized by structural and metabolic impairments in skeletal muscle, Duchenne muscular dystrophy (DMD) stands out for its devastating progression. DMD pathogenesis is driven by the progressive degeneration of muscle fibers, resulting in inflammation and fibrosis that ultimately affect the overall muscle biomechanics. At the opposite end of the spectrum of muscle diseases, age-related sarcopenia is a common condition that affects an increasing proportion of the elderly. Although characterized by different pathological mechanisms, DMD and sarcopenia share the development of progressive muscle weakness and tissue inflammation. Here, the therapeutic effects of Cyclo Histidine-Proline (CHP) against DMD and sarcopenia are evaluated. In the mdx mouse model of DMD, it is shown that CHP restored muscle contractility and force production, accompanied by the reduction of fibrosis and inflammation in skeletal muscle. CHP furthermore prevented the development of cardiomyopathy and fibrosis in the diaphragm, the two leading causes of death for DMD patients. CHP also attenuated muscle atrophy and functional deterioration in a mouse model of age-related sarcopenia. These findings from two different models of muscle dysfunction hence warrant further investigation into the effects of CHP on muscle pathologies in animal models and eventually in patients.
Collapse
Affiliation(s)
- Alessia De Masi
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical SciencesFaculty of Biology‐MedicineUniversity of LausanneLausanne1015Switzerland
| | - Keno Strotjohann
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Dohyun Lee
- R&D CenterNovMetaPharma Co., LtdPohang37668South Korea
| | - Tanes I. Lima
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jongsu Jeon
- R&D CenterNovMetaPharma Co., LtdPohang37668South Korea
| | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical SciencesFaculty of Biology‐MedicineUniversity of LausanneLausanne1015Switzerland
| | - Hoe‐Yune Jung
- R&D CenterNovMetaPharma Co., LtdPohang37668South Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| |
Collapse
|
5
|
Kulis K, Tabury K, Benotmane MA, Polanska J. Transcriptomic Profile of Mouse Brain Ageing in Early Developmental Stages. Brain Sci 2024; 14:581. [PMID: 38928581 PMCID: PMC11201909 DOI: 10.3390/brainsci14060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Ageing is a continuous process that can cause neurodevelopmental changes in the body. Several studies have examined its effects, but few have focused on how time affects biological processes in the early stages of brain development. As studying the changes that occur in the early stages of life is important to prevent age-related neurological and psychiatric disorders, we aim to focus on these changes. The transcriptomic markers of ageing that are common to the analysed brain regions of C57Bl/6J mice were identified after conducting two-way ANOVA tests and effect size analysis on the time courses of gene expression profiles in various mouse brain regions. A total of 16,374 genes (59.9%) significantly changed their expression level, among which 7600 (27.8%) demonstrated tissue-dependent differences only, and 1823 (6.7%) displayed time-dependent and tissue-independent responses. Focusing on genes with at least a large effect size gives the list of potential biomarkers 12,332 (45.1%) and 1670 (6.1%) genes, respectively. There were 305 genes that exhibited similar significant time response trends (independently of the brain region). Samples from an 11-day-old mouse embryo validated the identified early-stage brain ageing markers. The overall functional analysis revealed tRNA and rRNA processing in the mitochondrion and contact activation system (CAS), as well as the kallikrein/kinin system (KKS), together with clotting cascade and defective factor F9 activation being affected by ageing. Most ageing-related pathways were significantly enriched, especially those that are strongly connected to development processes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Kulis
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Application, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (K.T.); (M.A.B.)
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Nuclear Medical Application, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (K.T.); (M.A.B.)
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
6
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Wagner V, Kern F, Hahn O, Schaum N, Ludwig N, Fehlmann T, Engel A, Henn D, Rishik S, Isakova A, Tan M, Sit R, Neff N, Hart M, Meese E, Quake S, Wyss-Coray T, Keller A. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat Biotechnol 2024; 42:109-118. [PMID: 37106037 DOI: 10.1038/s41587-023-01751-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.
Collapse
Affiliation(s)
- Viktoria Wagner
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Dominic Henn
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shusruto Rishik
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Alina Isakova
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michelle Tan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rene Sit
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Norma Neff
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Martin Hart
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
8
|
Venkatesan D, Iyer M, Raj N, Gopalakrishnan AV, Narayanasamy A, Kumar NS, Vellingiri B. Assessment of tRNA Thr and tRNA Gln Variants and Mitochondrial Functionality in Parkinson's Disease (PD) Patients of Tamil Nadu Population. J Mol Neurosci 2023; 73:912-920. [PMID: 37845428 DOI: 10.1007/s12031-023-02154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Parkinson's disease (PD) is speculated with genetic and environmental factors. At molecular level, the mitochondrial impact is stated to be one of the causative reasons for PD. In this study, we investigated the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels along with mitochondrial tRNA alterations among three age categories of PD. By determining the genetic and organellar functionality using molecular techniques, the ROS levels were reported to be high with decreased MMP and ATP in the late-onset age group than in other two age categories. Likewise, the tRNA significancy in tRNAThr and tRNAGln was noticed with C4335T and G15927A mutations in late-onset and early-onset PD groups respectively. Therefore, from the findings, ageing has shown a disruption in tRNA metabolism leading to critical functioning of ATP synthesis and MMP, causing oxidative stress in PD patients. These physiological outcomes show that ageing has a keen role in the divergence of mitochondrial function, thereby proving a correlation with ageing and maintenance of mitochondrial homeostasis in PD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
9
|
Barbosa Pereira PJ, Manso JA, Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr Opin Struct Biol 2023; 80:102607. [PMID: 37178477 DOI: 10.1016/j.sbi.2023.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
From yeast to humans, polyglutamine (polyQ) repeat tracts are found frequently in the proteome and are particularly prominent in the activation domains of transcription factors. PolyQ is a polymorphic motif that modulates functional protein-protein interactions and aberrant self-assembly. Expansion of the polyQ repeated sequences beyond critical physiological repeat length thresholds triggers self-assembly and is linked to severe pathological implications. This review provides an overview of the current knowledge on the structures of polyQ tracts in the soluble and aggregated states and discusses the influence of neighboring regions on polyQ secondary structure, aggregation, and fibril morphologies. The influence of the genetic context of the polyQ-encoding trinucleotides is briefly discussed as a challenge for future endeavors in this field.
Collapse
Affiliation(s)
- Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - José A Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
10
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Garg A, Sanchez AM, Miele M, Schwer B, Shuman S. Cellular responses to long-term phosphate starvation of fission yeast: Maf1 determines fate choice between quiescence and death associated with aberrant tRNA biogenesis. Nucleic Acids Res 2023; 51:3094-3115. [PMID: 36794724 PMCID: PMC10123115 DOI: 10.1093/nar/gkad063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Matthew Miele
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beate Schwer
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| |
Collapse
|
12
|
Elingaard-Larsen LO, Villumsen SO, Justesen L, Thuesen ACB, Kim M, Ali M, Danielsen ER, Legido-Quigley C, van Hall G, Hansen T, Ahluwalia TS, Vaag AA, Brøns C. Circulating Metabolomic and Lipidomic Signatures Identify a Type 2 Diabetes Risk Profile in Low-Birth-Weight Men with Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15071590. [PMID: 37049431 PMCID: PMC10096690 DOI: 10.3390/nu15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
The extent to which increased liver fat content influences differences in circulating metabolites and/or lipids between low-birth-weight (LBW) individuals, at increased risk of type 2 diabetes (T2D), and normal-birth-weight (NBW) controls is unknown. The objective of the study was to perform untargeted serum metabolomics and lipidomics analyses in 26 healthy, non-obese early-middle-aged LBW men, including five men with screen-detected and previously unrecognized non-alcoholic fatty liver disease (NAFLD), compared with 22 age- and BMI-matched NBW men (controls). While four metabolites (out of 65) and fifteen lipids (out of 279) differentiated the 26 LBW men from the 22 NBW controls (p ≤ 0.05), subgroup analyses of the LBW men with and without NAFLD revealed more pronounced differences, with 11 metabolites and 56 lipids differentiating (p ≤ 0.05) the groups. The differences in the LBW men with NAFLD included increased levels of ornithine and tyrosine (PFDR ≤ 0.1), as well as of triglycerides and phosphatidylcholines with shorter carbon-chain lengths and fewer double bonds. Pathway and network analyses demonstrated downregulation of transfer RNA (tRNA) charging, altered urea cycling, insulin resistance, and an increased risk of T2D in the LBW men with NAFLD. Our findings highlight the importance of increased liver fat in the pathogenesis of T2D in LBW individuals.
Collapse
|
13
|
Manouchehri N, Salinas VH, Hussain RZ, Stüve O. Distinctive transcriptomic and epigenomic signatures of bone marrow-derived myeloid cells and microglia in CNS autoimmunity. Proc Natl Acad Sci U S A 2023; 120:e2212696120. [PMID: 36730207 PMCID: PMC9963604 DOI: 10.1073/pnas.2212696120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023] Open
Abstract
In the context of autoimmunity, myeloid cells of the central nervous system (CNS) constitute an ontogenically heterogeneous population that includes yolk sac-derived microglia and infiltrating bone marrow-derived cells (BMC). We previously identified a myeloid cell subset in the brain and spinal cord that expresses the surface markers CD88 and CD317 and is associated with the onset and persistence of clinical disease in the murine model of the human CNS autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). We employed an experimental platform utilizing single-cell transcriptomic and epigenomic profiling of bone marrow-chimeric mice to categorically distinguish BMC from microglia during CNS autoimmunity. Analysis of gene expression and chromosomal accessibility identified CD88+CD317+ myeloid cells in the CNS of EAE mice as originating from BMC and microglia. Interestingly, each cell lineage exhibited overlapping and unique gene expression patterns and transcription factor motifs that allowed their segregation. Our observations will facilitate determining pathogenic contributions of BMC and microglia in CNS autoimmune disease. Ultimately, this agnostic characterization of myeloid cells will be required for devising disease stage-specific and tissue-specific interventions for CNS inflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Navid Manouchehri
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Victor H. Salinas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Neurology Section, Veterans Affairs North Texas Health Care System, Dallas, TX75216
| | - Rehana Z. Hussain
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Neurology Section, Veterans Affairs North Texas Health Care System, Dallas, TX75216
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
14
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
15
|
Midsize noncoding RNAs in cancers: a new division that clarifies the world of noncoding RNA or an unnecessary chaos? Rep Pract Oncol Radiother 2022; 27:1077-1093. [PMID: 36632289 PMCID: PMC9826665 DOI: 10.5603/rpor.a2022.0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022] Open
Abstract
Most of the human genome is made out of noncoding RNAs (ncRNAs). These ncRNAs do not code for proteins but carry a vast number of important functions in human cells such as: modification and processing other RNAs (tRNAs, rRNAs, snRNAs, snoRNAs, miRNAs), help in the synthesis of ribosome proteins, initiation of DNA replication, regulation of transcription, processing of pre-messenger mRNA during its maturation and much more. The ncRNAs also have a significant impact on many events that occur during carcinogenesis in cancer cells, such as: regulation of cell survival, cellular signaling, apoptosis, proliferation or even influencing the metastasis process. The ncRNAs may be divided based on their length, into short and long, where 200 nucleotides is the "magic" border. However, a new division was proposed, suggesting the creation of the additional group called midsize noncoding RNAs, with the length ranging from 50-400 nucleotides. This new group may include: transfer RNA (tRNA), small nuclear RNAs (snRNAs) with 7SK and 7SL, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) and YRNAs. In this review their structure, biogenesis, function and influence on carcinogenesis process will be evaluated. What is more, a question will be answered of whether this new division is a necessity that clears current knowledge or just creates an additional misunderstanding in the ncRNA world?
Collapse
|
16
|
Identification of Prognostic Gene Signatures by Developing a scRNA-Seq-Based Integration Approach to Predict Recurrence and Chemotherapy Benefit in Stage II–III Colorectal Cancer. Int J Mol Sci 2022; 23:ijms232012460. [PMID: 36293319 PMCID: PMC9604003 DOI: 10.3390/ijms232012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022] Open
Abstract
Prospective identification of robust biomarkers related to prognosis and adjuvant chemotherapy has become a necessary and critical step to predict the benefits of adjuvant therapy for patients with stage II–III colorectal cancer (CRC) before clinical treatment. We proposed a single-cell-based prognostic biomarker recognition approach to identify and construct CRC up- and down-regulated prognostic signatures (CUPsig and CDPsig) by integrating scRNA-seq and bulk datasets. We found that most genes in CUPsig and CDPsig were known disease genes, and they had good prognostic abilities in CRC validation datasets. Multivariate analysis confirmed that they were two independent prognostic factors of disease-free survival (DFS). Significantly, CUPsig and CDPsig could effectively predict adjuvant chemotherapy benefits in drug-treated validation datasets. Additionally, they also performed well in patients with CMS4 subtype. Subsequent analysis of drug sensitivity showed that expressions of these two signatures were significantly associated with the sensitivities of CRC cell lines to multiple drugs. In summary, we proposed a novel prognostic biomarker identification approach, which could be used to identify novel prognostic markers for stage II–III CRC patients who will undergo adjuvant chemotherapy and facilitate their further personalized treatments.
Collapse
|
17
|
Hayne CK, Lewis TA, Stanley RE. Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1717. [PMID: 35156311 PMCID: PMC9465713 DOI: 10.1002/wrna.1717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 04/30/2023]
Abstract
The splicing of transfer RNA (tRNA) introns is a critical step of tRNA maturation, for intron-containing tRNAs. In eukaryotes, tRNA splicing is a multi-step process that relies on several RNA processing enzymes to facilitate intron removal and exon ligation. Splicing is initiated by the tRNA splicing endonuclease (TSEN) complex which catalyzes the excision of the intron through its two nuclease subunits. Mutations in all four subunits of the TSEN complex are linked to a family of neurodegenerative and neurodevelopmental diseases known as pontocerebellar hypoplasia (PCH). Recent studies provide molecular insights into the structure, function, and regulation of the eukaryotic TSEN complex and are beginning to illuminate how mutations in the TSEN complex lead to neurodegenerative disease. Using new advancements in the prediction of protein structure, we created a three-dimensional model of the human TSEN complex. We review functions of the TSEN complex beyond tRNA splicing by highlighting recently identified substrates of the eukaryotic TSEN complex and discuss mechanisms for the regulation of tRNA splicing, by enzymes that modify cleaved tRNA exons and introns. Finally, we review recent biochemical and animal models that have worked to address the mechanisms that drive PCH and synthesize these studies with previous studies to try to better understand PCH pathogenesis. This article is categorized under: RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cassandra K Hayne
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Tanae A Lewis
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Robin E Stanley
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Transcriptome Analysis of the Nematodes Caenorhabditis elegans and Litoditis marina in Different Food Environments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diets regulate animal development, reproduction, and lifespan. However, the underlying molecular mechanisms remain elusive. We previously showed that a chemically defined CeMM diet attenuates the development and promotes the longevity of C. elegans, but whether it impacts other nematodes is unknown. Here, we studied the effects of the CeMM diet on the development and longevity of the marine nematode Litoditis marina, which belongs to the same family as C. elegans. We further investigated genome-wide transcriptional responses to the CeMM and OP50 diets for both nematodes, respectively. We observed that the CeMM diet attenuated L. marina development but did not extend its lifespan. Through KEEG enrichment analysis, we found that many of the FOXO DAF-16 signaling and lysosome and xenobiotic metabolism related genes were significantly increased in C. elegans on the CeMM diet, which might contribute to the lifespan extension of C. elegans. Notably, we found that the expression of lysosome and xenobiotic metabolism pathway genes was significantly down-regulated in L. marina on CeMM, which might explain why the CeMM diet could not promote the lifespan of L. marina compared to bacterial feeding. Additionally, the down-regulation of several RNA transcription and protein generation and related processes genes in C. elegans on CeMM might not only be involved in extending longevity, but also contribute to attenuating the development of C. elegans on the CeMM diet, while the down-regulation of unsaturated fatty acids synthesis genes in L. marina might contribute to slow down its growth while on CeMM. This study provided important insights into how different diets regulate development and lifespan, and further genetic analysis of the candidate gene(s) of development and longevity will facilitate exploring the molecular mechanisms underlying how diets regulate animal physiology and health in the context of variable nutritional environments.
Collapse
|
19
|
Zhang WH, Koyuncu S, Vilchez D. Insights Into the Links Between Proteostasis and Aging From C. elegans. FRONTIERS IN AGING 2022; 3:854157. [PMID: 35821832 PMCID: PMC9261386 DOI: 10.3389/fragi.2022.854157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 04/20/2023]
Abstract
Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected network of biological pathways, preventing the accumulation and aggregation of damaged or misfolded proteins. Thus, the proteostasis network is essential to ensure organism longevity and health, while proteostasis failure contributes to the development of aging and age-related diseases that involve protein aggregation. The model organism Caenorhabditis elegans has proved invaluable for the study of proteostasis in the context of aging, longevity and disease, with a number of pivotal discoveries attributable to the use of this organism. In this review, we discuss prominent findings from C. elegans across the many key aspects of the proteostasis network, within the context of aging and disease. These studies collectively highlight numerous promising therapeutic targets, which may 1 day facilitate the development of interventions to delay aging and prevent age-associated diseases.
Collapse
Affiliation(s)
- William Hongyu Zhang
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
20
|
Chen LH, Chang SS, Chang HY, Wu CH, Pan CH, Chang CC, Chan CH, Huang HY. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice. J Cachexia Sarcopenia Muscle 2022; 13:515-531. [PMID: 34766473 PMCID: PMC8818665 DOI: 10.1002/jcsm.12849] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Age-related muscle dysfunctions are common disorders resulting in poor quality of life in the elderly. Probiotic supplementation is a potential strategy for preventing age-related sarcopenia as evidence suggests that probiotics can enhance muscle function via the gut-muscle axis. However, the effects and mechanisms of probiotics in age-related sarcopenia are currently unknown. In this study, we examined the effects of Lactobacillus casei Shirota (LcS), a probiotic previously reported to improve muscle function in young adult mice. METHODS We administered LcS (1 × 108 or 1 × 109 CFU/mouse/day) by oral gavage to senescence-accelerated mouse prone-8 mice for 12 weeks (16- to 28-week-old). Sixteen-week-old and 28-week-old SMAP8 mice were included as non-aged and aged controls, respectively. Muscle condition was evaluated using dual-energy X-ray absorptiometry for muscle mass, holding impulse and grip strength tests for muscle strength, and oxygen consumption rate, gene expressions of mitochondrial biogenesis, and mitochondrial number assays for mitochondria function. Inflammatory cytokines were determined using enzyme-linked immunosorbent assay. Gas chromatography-mass spectrometry was utilized to measure the short-chain fatty acid levels. The gut microbiota was analysed based on the data of 16S rRNA gene sequencing of mouse stool. RESULTS The LcS supplementation reduced age-related declines in muscle mass (>94.6%, P < 0.04), strength (>66% in holding impulse and >96.3% in grip strength, P < 0.05), and mitochondrial function (P < 0.05). The concentration of short-chain fatty acids (acetic, isobutyric, butyric, penic, and hexanoic acid) was recovered by LcS (>65.9% in the mice given high dose of LcS, P < 0.05) in the aged mice, and LcS attenuated age-related increases in inflammation (P < 0.05) and reactive oxygen species (>89.4%, P < 0.001). The high dose of LcS supplementation was also associated with distinct microbiota composition as indicated by the separation of groups in the beta-diversity analysis (P = 0.027). LcS supplementation altered predicted bacterial functions based on the gut microbiota. Apoptosis (P = 0.026), p53 signalling (P = 0.017), and non-homologous end-joining (P = 0.031) were significantly reduced, whereas DNA repair and recombination proteins (P = 0.043), RNA polymerase (P = 0.008), and aminoacyl-tRNA biosynthesis (P = 0.003) were increased. Finally, the genera enriched by high-dose LcS [linear discriminant analysis (LDA) score > 2.0] were positively correlated with healthy muscle and physiological condition (P < 0.05), while the genera enriched in aged control mice (LDA score > 2.0) were negatively associated with healthy muscle and physiological condition (P < 0.05). CONCLUSIONS Lactobacillus casei Shirota represents an active modulator that regulates the onset and progression of age-related muscle impairment potentially via the gut-muscle axis.
Collapse
Affiliation(s)
- Li-Han Chen
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shy-Shin Chang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hung Chan
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Nayeri Rad A, Shams G, Avelar RA, Morowvat MH, Ghasemi Y. Potential senotherapeutic candidates and their combinations derived from transcriptional connectivity and network measures. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|