1
|
Xie X, Chen X, Wang C, Sun L, Yu W, Lv Z, Tian S, Yao X, Wang F, Ding D, Chen J, Liu J. PARN Maintains RNA Stability to Regulate Insulin Maturation and GSIS in Pancreatic β Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407774. [PMID: 39297407 PMCID: PMC11558150 DOI: 10.1002/advs.202407774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Indexed: 11/14/2024]
Abstract
Diabetes, a metabolic disorder characterized by hyperglycemia, underscores the importance of normal pancreatic β-cell development and function in maintaining glucose homeostasis. Poly(A)-specific ribonuclease (PARN) serves as the principal regulator of messenger RNA (mRNA) stability, yet its specific role in pancreatic β cells remains unclear. This study utilizes mice with targeted PARN deficiency in β cells to elucidate this role. Notably, Parn conditional knockout mice present unaltered β-cell development and insulin sensitivity but reduced glucose-stimulated insulin secretion (GSIS). The observed outcomes are corroborated in NIT-1 cells. Furthermore, transcriptomic analyses reveal aberrant mRNA expression of genes crucial for insulin secretion in PARN-deficient β cells. Insights from linear amplification of complementary DNA ends and sequencing and coimmunoprecipitation experiments reveal an interaction between PARN and polypyrimidine tract-binding protein 1 (PTBP1), regulating the RNA stability of solute carrier family 30, member 8 (Slc30a8) and carbohydrate sulfotransferase 3 (Chst3). Interference with either PARN or PTBP1 disrupts this stability. These data indicate that PARN deficiency hampers GSIS and insulin maturation by destabilizing Slc30a8 and Chst3 RNAs. These findings provide compelling evidence indicating that PARN is a potential therapeutic target for enhancing insulin maturation and secretion.
Collapse
Affiliation(s)
- Xiaomei Xie
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
- College of Food and BioengineeringFujian Polytechnic Normal UniversityLongjiang StreetFuqingFujian310300China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100190China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Fengchao Wang
- National Institute of Biological SciencesBeijing102206China
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijing102206China
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal MedicineClinical and Translational Research CenterShanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100190China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
2
|
Yu Q, Wu T, Xu W, Wei J, Zhao A, Wang M, Li M, Chi G. PTBP1 as a potential regulator of disease. Mol Cell Biochem 2024; 479:2875-2894. [PMID: 38129625 DOI: 10.1007/s11010-023-04905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.
Collapse
Affiliation(s)
- Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tongtong Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Rao Z, Ao G, Zhang Y, Jiang Z, Li L, Hua Z. HNRNP I promotes IRAK1 degradation to reduce podocyte apoptosis and inflammatory response alleviating renal injury in diabetic nephropathy. Immunobiology 2024; 229:152835. [PMID: 38986278 DOI: 10.1016/j.imbio.2024.152835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Podocytes maintain renal filtration integrity when the glomerular filtration barrier (GFB) is integrated. Impairment or attrition of podocytes, leading to compromised GFB permeability, constitutes the primary etiology of proteinuria and is a hallmark pathological feature of diabetic nephropathy (DN). This study centers on Heterogeneous Nuclear Ribonucleoprotein I (HNRNP I), an RNA-binding protein, delineating its role in facilitating DN-induced renal damage by modulating podocyte health. Comparative analyses in renal biopsy specimens from DN patients and high-glucose-challenged podocyte models in vitro revealed a marked downregulation of HNRNP I expression relative to normal renal tissues and podocytes. In vitro assays demonstrated that high-glucose conditions precipitated a significant reduction in podocyte viability and an escalation in markers indicative of apoptosis. Conversely, HNRNP I overexpression was found to restore podocyte viability and attenuate apoptotic indices. IRAK1, a gene encoding a protein integral to inflammatory signaling, was shown to interact with HNRNP I, which promotes IRAK1 degradation. This interaction culminates in suppressing the PI3K/AKT/mTOR signaling pathway, thereby diminishing podocyte apoptosis and mitigating renal damage in DN. This investigation unveils the mechanistic role of HNRNP I in DN for the first time, potentially informing novel therapeutic strategies for DN renal impairment.
Collapse
Affiliation(s)
- Zichen Rao
- Department of Endocrinology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Geriletu Ao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Yiming Zhang
- Department of Endocrinology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Zhifen Jiang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Liping Li
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China
| | - Zhidan Hua
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang Province, China.
| |
Collapse
|
4
|
Li R, Dai J, He Z, Gu S. Changes of LncRNAs during the Process of Antioxidants Antagonize Cadmium-Induced Oxidative Damage in Islet β Cells. Cell Biochem Biophys 2024; 82:827-837. [PMID: 38400990 DOI: 10.1007/s12013-024-01234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Long non-coding RNAs (LncRNAs) play important regulatory roles in oxidative damage. Resveratrol, curcumin, and cyanidin are phytogenic antioxidants widely existing in nature and they have been proved to antagonize certain heavy metal-induced oxidative damage in cells. However, can they antagonize oxidative damage induced by cadmium in islet β cells? Are their mechanisms of antagonizing oxidative damage related to LncRNAs? In this study, we first detected the cell viability of each group by CCK8 assay. Next, reactive oxygen species (ROS) were detected by the fluorescent probe. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) were detected according to the instructions of corresponding kits. At last, the levels of LncRNAs were detected by fluorescence quantitative real-time polymerase chain reaction (qPCR). The results showed that resveratrol, curcumin and cyanidin were able to reverse the reduction of cell viability induced by cadmium (CdSO4). Further determination revealed that SOD activities of the resveratrol+CdSO4, curcumin+CdSO4, and cyanidin+CdSO4 treatment groups increased significantly, and ROS levels and MDA contents dramatically decreased when compared with single CdSO4-treated group. More importantly, the levels of three CdSO4-elevated LncRNAs (NONMMUT029382, ENSMUST00000162103, ENSMUST00000117235) were all decreased and levels of three CdSO4-inhibited LncRNAs (NONMMUT036805, NONMMUT014565, NONMMUT065427) were increased after the pretreatment of resveratrol, curcumin and cyanidin. In summary, resveratrol, curcumin and cyanidin may effectly reverse the cadmium-induced oxidative damage and suggest that phytogenic antioxidants may prevent cells from cadmium-induced oxidative damage through changing the levels of LncRNAs.
Collapse
Affiliation(s)
- Rongxian Li
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Jiao Dai
- Qujing Medical College, Qujing, Yunnan, China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| |
Collapse
|
5
|
González-Blanco C, Iglesias-Fortes S, Lockwood ÁC, Figaredo C, Vitulli D, Guillén C. The Role of Extracellular Vesicles in Metabolic Diseases. Biomedicines 2024; 12:992. [PMID: 38790954 PMCID: PMC11117504 DOI: 10.3390/biomedicines12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Extracellular vesicles represent a group of structures with the capacity to communicate with different cells and organs. This complex network of interactions can regulate multiple physiological processes in the organism. Very importantly, these processes can be altered during the appearance of different diseases including cancer, metabolic diseases, etc. In addition, these extracellular vesicles can transport different cargoes, altering the initiation of the disease, driving the progression, or even accelerating the pathogenesis. Then, we have explored the implication of these structures in different alterations such as pancreatic cancer, and in different metabolic alterations such as diabetes and its complications and non-alcoholic fatty liver disease. Finally, we have explored in more detail the communication between the liver and the pancreas. In summary, extracellular vesicles represent a very efficient system for the communication among different tissues and permit an efficient system as biomarkers of the disease, as well as being involved in the extracellular-vesicle-mediated transport of molecules, serving as a potential therapy for different diseases.
Collapse
Affiliation(s)
- Carlos González-Blanco
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; (C.G.-B.); (Á.C.L.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
- IdISSC, 28040 Madrid, Spain
- Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, 28001 Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
| | - Ángela Cristina Lockwood
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; (C.G.-B.); (Á.C.L.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
- Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, 28001 Madrid, Spain
| | - César Figaredo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
| | - Daniela Vitulli
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
| | - Carlos Guillén
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28040 Madrid, Spain; (C.G.-B.); (Á.C.L.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-F.); (C.F.); (D.V.)
- IdISSC, 28040 Madrid, Spain
- Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, 28001 Madrid, Spain
| |
Collapse
|
6
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
7
|
Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang K, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes. Front Endocrinol (Lausanne) 2023; 14:1170237. [PMID: 37305058 PMCID: PMC10248434 DOI: 10.3389/fendo.2023.1170237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of β-cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it's also involved in pathological changes including autoimmune response, insulin resistance and β-cell failure associated with DM. In addition, EVs may serve as biomarkers and therapeutic agents that respectively reflect the status and improve function and viability of pancreatic islets. In this review, we provide an overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of pancreatic islet under physiological and diabetic conditions, and summarize the emerging applications of EVs in the diagnosis and treatment of DM. A better understanding of EVs-mediated intercellular and interorgan communication of pancreatic islets will broaden and enrich our knowledge of physiological homeostasis maintenance as well as the development, diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Junlun Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Tingrui Han
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaoting Chen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|