1
|
Li X, Li L, Tian J, Su R, Sun J, Li Y, Wang L, Zhou H, Sha S, Xiao J, Dong H, Huo C, Hu Y, Yang H. SREBP2-dependent lipid droplet formation enhances viral replication and deteriorates lung injury in mice following IAV infection. Emerg Microbes Infect 2025; 14:2470371. [PMID: 39968754 PMCID: PMC11873989 DOI: 10.1080/22221751.2025.2470371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/20/2025]
Abstract
Influenza A virus (IAV) is a significant zoonotic pathogen that poses a considerable challenge to public health due to its continuous mutations. Lipid droplets (LDs) have been shown to play an important role in the process of several viral infections. However, their role in IAV infection remains unclear. Here, we found that IAV infection altered the lipid metabolism and increased the content of LDs in the lungs of mice. In vitro, IAV infection also mediated the formation of LDs in A549 cells. Besides, inhibition of the formation of lipid droplets can significantly suppress IAV replication and the release of inflammatory factors, indicating that LDs could facilitate the virus replication and inflammatory response. Furthermore, we discovered that IAV infection could activate the SREBP2, a crucial lipid-regulating transcription factor that regulates the expressions of downstream proteins named HMGCR and HMGCS. HMGCR and HMGCS involved in the process of cholesterol synthesis, which further promoted the formation of LDs. Additionally, the use of fatostatin that specifically inhibits the maturation of SREBP2 was able to significantly suppress the viral replication of H5N1 in cells and effectively ameliorated IAV-induced lung injury in mice, which eventually promoted the survival rate of infected mice. Taken together, we demonstrate the essential roles of lipid metabolism and LD formation in IAV replication and pathogenesis, which may better facilitate the advancement of new strategies against IAV infection, especially the highly pathogenic H5N1 virus.
Collapse
Affiliation(s)
- Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lu Li
- Infectious Disease Department, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jiali Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yuli Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lige Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hongye Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Shuhan Sha
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People’s Republic of China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Caiyun Huo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Lee J, Kang Y, Lee H, Saravanakumar G, Park SA, Ahn S, Kim WJ. Amplifying glioblastoma immunotherapy: T cell shielding through Nitric oxide/reactive oxygen species scavenging nanoparticles Potentiates anti-PD-1. Biomaterials 2025; 315:122904. [PMID: 39490061 DOI: 10.1016/j.biomaterials.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Despite the success of immune checkpoint blockade (ICB) therapy in various cancers, its efficacy faces challenges in glioblastoma (GBM) due to the immunosuppressive cold-tumor microenvironment. The scarcity of tumor-infiltrating T cells and the suppression of T cell activity significantly limit therapeutic outcomes in GBM. Nitric oxide (NO) and reactive oxygen species (ROS) from tumor-associated myeloid cells (TAMCs) are key contributors to T cell suppression, reducing ICB therapy effectiveness. In this study, we developed NO-ROS scavenging micelles that effectively scavenge both NO and ROS, protecting T cells from their exhausting effects. This leads to a significant increase in T cell infiltration and activation. Moreover, when combined with αPD-1, the survival rate increases to 40 % up to 120 days, enhancing therapeutic efficacy compared to αPD-1 alone. This approach not only protects T cells from the inhibitory effects of NO and ROS but also has the potential to reshape the tumor microenvironment, overcoming T cell suppression in cold tumors.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; OmniaMed Co., Ltd, Pohang, 37666, Republic of Korea.
| |
Collapse
|
3
|
Varlamova EG. Roles of selenium-containing glutathione peroxidases and thioredoxin reductases in the regulation of processes associated with glioblastoma progression. Arch Biochem Biophys 2025; 766:110344. [PMID: 39956249 DOI: 10.1016/j.abb.2025.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Glioblastoma remains the most common and aggressive primary tumor of the central nervous system in adults. Current treatment options include standard surgical resection combined with radiation/chemotherapy, but such protocol most likely only delays the inevitable. Therefore, the problem of finding therapeutic targets to prevent the occurrence and development of this severe oncological disease is currently acute. It is known that the functions of selenoproteins in the regulation of carcinogenesis processes are not unambiguous. Either they exhibit cytotoxic activity on cancer cells, or cytoprotective. A special place in the progression of oncological diseases of various etiologies is occupied by proteins of the thioredoxin and glutathione systems. These are two cellular antioxidant systems that regulate redox homeostasis, counteracting the increased production of reactive oxygen species in cells. The review reflects the latest data on the role of key enzymes of these redox systems in the regulation of processes associated with the progression of glioblastoma. A thorough consideration of these issues will expand fundamental knowledge about the functions of selenium-containing thioredoxin reductases and glutathione peroxidases in the therapy of glioblastomas and provide an understanding of the prospects for the treatment of this aggressive oncological disease.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", St. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
4
|
Peng X, Yang R, Wang C, Peng W, Zhao Z, Shi S, Cai Q, He B, Wang L, Yu F, Wang X, Tao Y. The YTHDF3-DT/miR-301a-3p /INHBA axis attenuates autophagy-dependent ferroptosis in lung adenocarcinoma. Cancer Lett 2025; 613:217503. [PMID: 39892700 DOI: 10.1016/j.canlet.2025.217503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
YTHDF3-DT, a long non-coding RNA (lncRNA) significantly upregulated in lung adenocarcinoma (LUAD), is associated with poor patient prognosis and plays critical roles in LUAD progression. Clinical data and in vitro analyses revealed that YTHDF3-DT expression correlates with worse overall survival and increased lymph node metastasis in LUAD patients. Functional studies demonstrated that YTHDF3-DT activates the TGF-β and PI3K/Akt/mTOR signaling pathways via INHBA, a key target influenced by YTHDF3-DT. Mechanistically, YTHDF3-DT stabilizes INHBA mRNA by acting as a competing endogenous RNA (ceRNA) for miR-301a-3p, forming a YTHDF3-DT/miR-301a-3p/INHBA axis. This axis regulates ferroptosis in an autophagy-dependent manner in LUAD cells, with YTHDF3-DT promoting cell survival by altering autophagic activity and mitigating ferroptosis-induced cell death. In vivo experiments further validated the role of YTHDF3-DT in tumor growth and ferroptosis regulation, highlighting its potential as a therapeutic target in LUAD. Our data contribute toward a significant mechanistic understanding of the molecules involved in the crosstalk between ferroptosis and autophagy, providing potential therapeutic targets to complement the existing therapies for overcoming the developed resistance in patients with LUAD.
Collapse
Affiliation(s)
- Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Rui Yang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Christopher Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China; Department of Pathology, Xiangya Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, 410008, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
5
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
6
|
Li J, Zhang M, Sun Q, Li X, Du F, Cheng Y, Li S, Zhang J. CENPF interaction with PLA2G4A promotes glioma growth by modulating mTORC1 and NF-κB pathways. Cancer Cell Int 2025; 25:73. [PMID: 40025532 PMCID: PMC11871623 DOI: 10.1186/s12935-025-03700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor of the central nervous system, and due to the limited effectiveness of traditional single-target therapies, there is an urgent need for new therapeutic targets. Centromere protein F (CENPF) belongs to the centromere protein family and is mainly involved in the regulation of the cell cycle. CENPF has recently been found to play a key role in tumorigenesis and tumor progression, but its role in gliomas has not been well studied. METHODS The expression level and clinical information of CENPF were obtained by analyzing the TCGA, CGGA and GEO databases. Immunohistochemistry and western blot analysis were used to quantitatively detect the expression of CENPF in glioma tissues and cell lines. Gene set enrichment analysis (GSEA) of TCGA and GSE16011 datasets was used to explore the molecular mechanism of the CENPF. CENPF-interacting proteins were detected by molecular docking and co-immunoprecipitation (Co-IP). After silencing CENPF, CCK-8 assay, Transwell assay and flow cytometry were used to detect changes in cell proliferation, invasion, cell cycle and apoptosis, and Western blot was used to detect changes in signaling pathway protein levels. RESULTS Bioinformatics analysis showed that CENPF was generally highly expressed in gliomas and was associated with poor prognosis. This result was confirmed in glioma samples from our hospital. Multivariate Cox regression analysis showed that CENPF was an independent prognostic marker for gliomas. Western blot analysis in vitro showed that CENPF was overexpressed in the U251 and LN229 cell lines; therefore, these two cell lines were selected for subsequent experiments. GSEA analysis showed that CENPF was mainly involved in the G2/M phase-mediated cell cycle and P53 signaling pathway. Flow cytometry analysis confirmed that silencing CENPF induced G2/M phase arrest and increased apoptosis in glioma cells. Subsequent experiments confirmed that CENPF influences the epithelial-mesenchymal transition (EMT) process through the mTORC1 signaling pathway. Molecular docking and Co-IP assay revealed that CENPF exerts its effects by interacting with PLA2G4A promoting the downstream signaling pathway. Finally, we found that silencing CENPF combined with a PLA2G4A inhibitor (AACOCF3) induced glioma cell apoptosis and exhibited anti-glioma effects. CONCLUSIONS This study found that CENPF plays a key role in promoting tumorigenesis through its interaction with PLA2G4A. This study provides a theoretical foundation for advancing multi-targeted therapies in glioma and for developing strategies to overcome tumor drug resistance.
Collapse
Affiliation(s)
- Junhong Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Moxuan Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Qiang Sun
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Xinglan Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Fei Du
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Yanhao Cheng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Shuzhi Li
- Department of Neurosurgery, Gaomi Traditional Chinese Medicine Hospital, Weifang, Shandong Province, 261500, China.
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
7
|
Li S, Yuan H, Li L, Li Q, Lin P, Li K. Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants (Basel) 2025; 14:201. [PMID: 40002387 PMCID: PMC11851681 DOI: 10.3390/antiox14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is a common event involved in cancer pathophysiology, frequently accompanied by unique lipid metabolic reprogramming phenomena. Oxidative stress is caused mainly by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant system in cancer cells. Emerging evidence has reported that oxidative stress regulates the expression and activity of lipid metabolism-related enzymes, leading to the alteration of cellular lipid metabolism; this involves a significant increase in fatty acid synthesis and a shift in the way in which lipids are taken up and utilized. The dysregulation of lipid metabolism provides abundant intermediates to synthesize biological macromolecules for the rapid proliferation of cancer cells; moreover, it contributes to the maintenance of intracellular redox homeostasis by producing a variety of reducing agents. Moreover, lipid derivatives and metabolites play critical roles in signal transduction within cancer cells and in the tumor microenvironment that evades immune destruction and facilitates tumor invasion and metastasis. These findings suggest a close relationship between oxidative stress and lipid metabolism during the malignant progression of cancers. This review focuses on the crosstalk between the redox system and lipid metabolic reprogramming, which provides an in-depth insight into the modulation of ROS on lipid metabolic reprogramming in cancers and discusses potential strategies for targeting lipid metabolism for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| |
Collapse
|
8
|
He Y, Jiang J, Ou L, Chen Y, Abudukeremu A, Chen G, Zhong W, Jiang Z, Nuermaimaiti N, Guan Y. Impaired RelA signaling and lipid metabolism dysregulation in hepatocytes: driving forces in the progression of metabolic dysfunction-associated steatotic liver disease. Cell Death Discov 2025; 11:49. [PMID: 39910053 PMCID: PMC11799324 DOI: 10.1038/s41420-025-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
RelA, also known as nuclear factor kappa B p65, plays a crucial role in the pathogenesis of various liver diseases. However, the specific role of RelA in hepatocytes during the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) is not well understood. This study explored the relationship between impaired RelA signaling and lipid metabolism disorders in hepatocytes, and how they synergistically contribute to the advancement of MASLD. We assessed the changes, regulatory relationships, and impacts of RelA signaling and lipid metabolism remodeling on disease progression both in vitro and in vivo. During MASLD, there was a decrease in the expression of RelA and hepatocyte nuclear factor 1 alpha (HNF1α), with both factors showing mutual enhancement of each other's expression under normal conditions. This synergistic effect was absent during hepatocyte steatosis. RelA or HNF1α depletion in hepatocytes intensified MASLD symptoms, whereas overexpression of RELA or treatment with necrostatin-1 (a necroptosis inhibitor) or Z-VAD (a caspase inhibitor) significantly mitigated these effects. Mechanistically, during hepatic steatosis, altered lipid profiles exhibited lipotoxicity, inducing hepatocyte apoptosis and necroptosis, whereas endoplasmic reticulum (ER) stress triggered lipid remodeling processes similar to those observed in MASLD. RelA signaling upregulated the expression of activating transcription factor 4 and glucose-regulated protein 78, thereby alleviating ER stress. Impaired RelA signaling remodeled the ER stress response and lipid metabolism, and enhanced lipid accumulation and lipid toxicity. In conclusion, impaired RelA signaling and disrupted lipid metabolism form a detrimental feedback loop in hepatocytes that promotes MASLD progression. Lipid accumulation suppresses RelA signaling, remodeling the ER stress response and exacerbating lipid metabolism disorder, ultimately leading to hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yihuai He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jinlian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lili Ou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunfen Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Aikedaimu Abudukeremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guimei Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Weiwei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen, Hubei, China
| | - Zhigang Jiang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nuerbiye Nuermaimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.
- Xinjiang Second Medical College, Karamay, Xinjiang, China.
| |
Collapse
|
9
|
An W, Zhang K, Li G, Zheng S, Cao Y, Liu J. Hypericin mediated photodynamic therapy induces ferroptosis via inhibiting the AKT/mTORC1/GPX4 axis in cholangiocarcinoma. Transl Oncol 2025; 52:102234. [PMID: 39674093 PMCID: PMC11700288 DOI: 10.1016/j.tranon.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Cholangiocarcinoma remains a challenging primary hepatobiliary malignancy with dismal prognosis. Photodynamic therapy (PDT),a less invasive treatment, has been found to inhibit the proliferation and induce ferroptosis, apoptosis and necrosis in other tumor cells in recent years. Regrettably, the role and exact molecule mechanism of PDT is still incompletely clear in cholangiocarcinoma cells. Ferroptosis is a novel regulated cell death(RCD), which is controlled by glutathione peroxidase4(GPX4) with the characteristics of iron dependent and excessive intracellular accumulation of lipid peroxides. This novel form of RCD has attracted great attention as a potential new target in clinical oncology during recent years. In this study, we observed that hypericin mediated PDT(HY-PDT) could significantly inhibit the proliferation of the cholangiocarcinoma cells and suppress migration and the epithelial mesenchymal transition (EMT) as well. Then, we conducted transcriptome sequencing and bioinformatics analysis and observed that HY-PDT was most likely involved in ferroptosis, apoptosis, the EMT process and AKT/mTORC1 signaling pathways in cholangiocarcinoma cells. Next, a series of in vitro and in vivo experiments were performed to confirm that HY-PDT could trigger cholangiocarcinoma cells ferroptosis through inhibiting the expression of GPX4 protein. In terms of molecular mechanism, we found that HY-PDT induced ferroptosis by decreasing GPX4 expression via suppression of the AKT/mTORC1 signaling pathway. In addition, we also found that HY-PDT inhibit cholangiocarcinoma cells migration and the EMT process by inhibiting the AKT/mTORC1 pathway. Our study illustrated a new mechanism of action for HY-PDT and might throw light on the individualized precision therapy for cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Wei An
- Department of Hepatobiliary surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China; Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Kai Zhang
- Department of Hepatobiliary surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China
| | - Guangbing Li
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunzhen Zheng
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yukun Cao
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Jun Liu
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
10
|
Codenotti S, Asperti M, Poli M, Lorenzi L, Pietrantoni A, Cassandri M, Marampon F, Fanzani A. Synthetic inhibition of SREBP2 and the mevalonate pathway blocks rhabdomyosarcoma tumor growth in vitro and in vivo and promotes chemosensitization. Mol Metab 2025; 92:102085. [PMID: 39706565 PMCID: PMC11750561 DOI: 10.1016/j.molmet.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of targeting the mevalonate pathway (MVP) in rhabdomyosarcoma (RMS), a soft tissue tumor with a prevalence in young people. METHODS In silico analyses of RNA datasets were performed to correlate MVP with RMS patient survival. The sensitivity of RMS cell lines to MVP inhibitors was assessed in vitro by analysis of cell growth (crystal violet and clonogenic assays), cell migration (wound healing assay), cell survival (neutral red assay), and oxidative stress (ROS assay). The effects of MVP inhibitors were tested in vivo by analyzing RMS xenografts grown in NOD/SCID mice. Quantification of protein targets was performed using immunoblotting or immunohistochemistry analyses. RESULTS In silico analysis showed upregulation of sterol regulatory element-binding protein 2 (SREBP2) and MVP genes, including 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), farnesyl-diphosphate synthase (FDPS), squalene epoxidase (SQLE), which correlated with worse overall patient survival. Targeting of MVP in human RD and RH30 lines by inhibitors of SREBP2 (fatostatin), HMGCR (lovastatin and simvastatin), and FDPS (zoledronic acid) resulted in impaired cell growth, migration, and viability, and increased oxidative cell death in combination with actinomycin D. Conversely, cholesterol (CHO) supplementation enhanced cell growth and migration. Fatostatin and lovastatin produced rapid attenuation of Erk1/2 and Akt1 signaling in RMS lines, and oral administration of lovastatin reduced tumor mass growth of xenografted RD cells in NOD/SCID mice. Finally, we found that forced Akt1 activation in RD cells was sufficient to drive SREBP2, HMGCR and SQLE protein expression, promoting increased susceptibility to MVP inhibitors. CONCLUSIONS These data suggest that the Akt1, SREBP2 and MVP axis is critical for RMS tumor growth, migration, and oxidative stress protection primarily through maintaining adequate CHO levels that enable proper intracellular signaling. Therefore, stimulating CHO depletion via SREBP2 and MVP inhibition may represent a viable option to improve the combination therapy protocol, especially in pAkt1-positive RMS.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Alberto Pietrantoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomic Pathology, "Sapienza" University of Rome, 00161, Rome, Italy
| | | | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
11
|
Chen XP, Yang ZT, Yang SX, Li EM, Xie L. PAK2 as a therapeutic target in cancer: Mechanisms, challenges, and future perspectives. Biochim Biophys Acta Rev Cancer 2025; 1880:189246. [PMID: 39694422 DOI: 10.1016/j.bbcan.2024.189246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
P21-activated kinases (PAKs) are crucial regulators within cellular signaling pathways and have been implicated in a range of human diseases, including cancer. Among the PAK family, PAK2 is widely expressed across various tissues and has emerged as a significant driver of cancer progression. However, systematic studies on PAK2 remain limited. This review provides a comprehensive overview of PAK2's role in cancer, focusing on its involvement in processes such as angiogenesis, metastasis, cell survival, metabolism, immune response, and drug resistance. We also explore its function in key cancer signaling pathways and the potential of small-molecule inhibitors targeting PAK2 for therapeutic purposes. Despite promising preclinical data, no PAK2 inhibitors have reached clinical practice, underscoring challenges related to their specificity and therapeutic application. This review highlights the biological significance of PAK2 in cancer and its interactions with critical signaling pathways, offering valuable insights for future research. We also discuss the major obstacles in developing PAK inhibitors and propose strategies to overcome these barriers, paving the way for their clinical translation.
Collapse
Affiliation(s)
- Xin-Pan Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zi-Tao Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shang-Xin Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; The Laboratory for Cancer Molecular Biology, Shantou Academy Medical Sciences, Shantou 515041, Guangdong, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515041, Guangdong, China.
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
12
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
13
|
Cai Y, Lu S, Zhu C, Kang T, Liu Z, Huang R, Zhao Y, Chen S. Targeting NFE2L2/GPX4 signaling pathway: Therapeutic potential of arsenic sulfide-induced ferroptosis in combating rhabdomyosarcoma. Int Immunopharmacol 2024; 143:113614. [PMID: 39547014 DOI: 10.1016/j.intimp.2024.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Yu Cai
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Shumin Lu
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Chuanying Zhu
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Zhiyi Liu
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yawei Zhao
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Dong C, Huoshen W, Bai Y, Liu J, Li B, Guan Y, Luo P. Uncovering the molecular networks of ferroptosis in the pathogenesis of type 2 diabetes and its complications: a multi-omics investigation. Mol Med 2024; 30:268. [PMID: 39716081 DOI: 10.1186/s10020-024-01045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Diabetes is a multi-factorial disorder and related complications constitute one of the principal causes of global mortality and disability. The role of ferroptosis in diabetes and its complications is intricate and significant. This study endeavors to disclose the role of ferroptosis in the aforementioned diseases from multiple perspectives through multi-omics. METHODS We performed genetic correlation analyses via the Linkage Disequilibrium Score and High-Definition Likelihood approaches for type 2 diabetes (T2D) and its complications. The data concerning the expression of ferroptosis-related genes (FRGs) were obtained from the meta-analysis of studies on gene expression and protein abundance. Mendelian randomization analyses and cross-validation were implemented using the discovery cohort, replication cohort, and imaging genomics cohort of T2D and its complications. Moreover, we conducted colocalization analyses on T2D and tissue-specific single-cell RNA sequencing investigations on the complications to complement the results. RESULTS Genetic association analysis indicated that the selected datasets could be incorporated into a secondary analysis of T2D complications. In the primary analysis, six FRGs (CDKN1A, ENO3, FURIN, RARRES2, TYRO3, and YTHDC2) were found to be positively associated with T2D risk. Conversely, eight FRGs (ARNTL, CAMKK2, CTSB, FADS2, KDM5A, MEG3, SREBF1, and STAT3) were inversely associated with T2D risk. The 14 FRGs were included in the secondary analysis. Within the FRGs, which received full support from both the discovery and replication cohorts, and were further validated by imaging genomics, higher levels of CDKN1A were positively associated with DKD risk. Higher levels of CAMKK2 and KDM5A were associated with a decreased risk of DKD. For DCM, higher levels of CTSB were positively associated with DCM risk. And genetically predicted higher levels of ARNTL and SREBF1 were associated with a decreased risk of NAFLD. Finally, we validated the tissue-specific expression of each complication with scRNA-seq datasets. CONCLUSIONS This study identified FRGs in relation to T2D and its complications, which may enhance the understanding of the pathogenic mechanisms of their development. Meanwhile, it offers cross-validation for imaging genomics and further indicates the direction for non-invasive diagnosis.
Collapse
Affiliation(s)
- Changqing Dong
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Wuda Huoshen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Bing Li
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Yucan Guan
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Ping Luo
- Department of Nephrology, National Key Laboratory of Diabetes, The Second Hospital of Jilin University, No. 991 Yatai Street, Nanguan District, Changchun, Jilin, China.
| |
Collapse
|
15
|
Carlos A, Mendes M, Cruz MT, Pais A, Vitorino C. Ferroptosis driven by nanoparticles for tackling glioblastoma. Cancer Lett 2024; 611:217392. [PMID: 39681210 DOI: 10.1016/j.canlet.2024.217392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and drug-resistant brain tumor. There are no effective treatment options for GBM, which usually leads to relapses that cause patients to die a few months later. Ferroptosis, a newly discovered mechanism of regulated cell death, has been identified as a tumor suppressor in solid tumors and represents an alternative to apoptosis resistance. This mechanism of cell death is characterized by iron overload, which is responsible for generating reactive oxygen species (ROS) in the cell. Understanding the ferroptosis pathway and its key regulators can be used to develop rational delivery systems that specifically target these regulators in GBM cells and promote cell death. This review conducted a systematic literature search to better understand the potential of ferroptosis as a target for developing nanoparticles to tackle GBM. The mechanisms of action, design parameters, efficacy, and safety concerns of 16 nanoparticles were evaluated, demonstrating the potential of combining ferroptosis inducers with nanocarriers to promote a selective delivery to the tumor microenvironment.
Collapse
Affiliation(s)
- Ana Carlos
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neurosciences and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
16
|
Luo R, Zhang Y, Wang H, Xu B, Qu J, Duan S, Liu R, Liu J, Li S, Li X. Radix Rehmanniae Praeparata extracts ameliorate hepatic ischemia-reperfusion injury by restoring lipid metabolism in hepatocytes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118702. [PMID: 39168395 DOI: 10.1016/j.jep.2024.118702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic ischemia/reperfusion injury (HIRI) is a common occurrence during or after liver surgery, representing a major cause for postoperative complications or increased morbidity and mortality in liver diseases. Rehmanniae Radix Praeparata (RRP) is a traditional Chinese medicine frequently used and has garnered extensive attention for its therapeutic potential treating cardiovascular and hepatic ailments. Recent studies have indicated the possibility of RRP in regulating lipid accumulation and apoptosis in hepatocytes. AIM OF THE STUDY This study aimed to investigate the specific mechanisms by which RRP may impede the progression of HIRI through the regulation of lipid metabolism. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) was used to identify the major components of RRP water extract. C57BL/6J mice were orally given RRP at doses of 2.5 g/kg, 5 g/kg, and 10 g/kg for a duration of 7 days before undergoing HIRI surgery. Furthermore, we established a lipid-loaded in vitro model by exposing hepatocytes to oleic acid and palmitic acid (OAPA). The anti-HIRI effect of RRP was determined through transcriptomics and various molecular biology experiments. RESULTS After identifying active ingredients in RRP, we observed that RRP exerted lipid-lowering and hepatoprotective effects on HIRI mice and OAPA-treated hepatocytes. RRP activated AMP-activated protein kinase (AMPK) and inhibited mammalian target of rapamycin (mTOR), which further on the one hand, inhibited the cleavage and activation of sterol regulatory element binding protein 2 (SREBP2) by limiting the movement of SREBPs cleavage-activating protein (SCAP)-SREBP2 complex with the help of endoplasmic reticulum lipid raft-associated protein 1 (ERLIN1) and insulin-induced gene 1 (INSIG1), and on the other hand, promoted liver X receptor α (LXRα) nuclear transportation and subsequent cholesterol efflux. Meanwhile, the anti-lipotoxic effect of RRP can be partly reversed by an LXRα inhibitor but largely blocked by the application of compound C, an AMPK inhibitor. CONCLUSION Our study elucidated that RRP served as a potential AMPK activator to alleviate HIRI by blocking SREBP2 activation and cholesterol synthesis, while also activating LXRα to facilitate cholesterol efflux. These findings shed new light on the potential therapeutic use of RRP for improving HIRI.
Collapse
Affiliation(s)
- Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuwen Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
17
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
18
|
Cao R, Feng Z, Mo J, Wu J, Li J, Li W, Wang Z, Ma Q, Wu Z, Zhou C. Pharmacological inhibition of SREBP1 suppresses pancreatic cancer growth via inducing GPX4-mediated ferroptosis. Cell Signal 2024; 124:111381. [PMID: 39243918 DOI: 10.1016/j.cellsig.2024.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Pancreatic cancer (PC) is highly malignancy with poor survival. Ferroptosis offers a novel therapeutic target for cancer treatment and glutathione peroxidase 4 (GPX4) shields tumor cells from ferroptosis damage. Although Sterol regulatory element-binding protein 1 (SREBP1) has been implicated in the development of pancreatic cancer, its underlying mechanisms remain unclear. This research aims to explore the role of SREBP1 in ferroptosis by using its inhibitor Fatostatin. In this study, Fatostatin was found to inhibit the proliferation and clonogenicity of pancreatic cancer cell lines. This was accompanied by a reduction in intracellular lipid synthesis, increased iron accumulation, elevated levels of reactive oxygen species (ROS), and accumulation of malondialdehyde (MDA). The JASPAR database shows that there is a binding site of the SREBP1 on the promoter region of GPX4. What's more, it was verified that SREBP1 can transcriptionally regulate GPX4 by CHIP. In vivo experiments further revealed that Fatostatin could suppress the growth of subcutaneous tumors in nude mice. In conclusion, our study suggests that Fatostatin may inhibit pancreatic cancer cell proliferation by inducing ferroptosis through the SREBP1/GPX4 pathway. These findings shed light on the therapeutic potential of Fatostatin and lay the groundwork for future investigations into its mechanism of action in pancreatic cancer.
Collapse
Affiliation(s)
- Ruiqi Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhengyuan Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiaoxing Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Pancreas Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
19
|
Huang YQ, Huang ZW, Zhang XJ. Targeting nuclear factor erythroid 2-related factor 2-regulated ferroptosis to treat nervous system diseases. World J Clin Cases 2024; 12:6655-6659. [PMID: 39600481 PMCID: PMC11514344 DOI: 10.12998/wjcc.v12.i33.6655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
By critically examining the work, we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2 (NRF2) in nervous system diseases. We also proposed suggestions for future bibliometric studies, including the integration of multiple websites, analytical tools, and analytical approaches, The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases. Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases. Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems. In particular, nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
Collapse
Affiliation(s)
- Ye-Qi Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong Province, China
| | - Zheng-Wei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong Province, China
| | - Xue-Juan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
20
|
Gotorbe C, Segui F, Echavidre W, Durivault J, Blanchard T, Vial V, Pagnuzzi-Boncompagni M, Villeneuve R, Amblard R, Garnier N, Ortholan C, Serrano B, Picco V, Pouysségur J, Vucetic M, Montemagno C. Exploiting Integrin-αVβ3 to Enhance Radiotherapy Efficacy in Medulloblastoma via Ferroptosis. Curr Oncol 2024; 31:7390-7402. [PMID: 39590175 PMCID: PMC11592711 DOI: 10.3390/curroncol31110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Medulloblastoma, a malignant pediatric brain tumor, has a poor prognosis upon relapse, highlighting a critical clinical need. Our previous research linked medulloblastoma cell radioresistance to integrin-αvβ3 expression. β3-depleted (β3_KO) medulloblastoma cells exhibit lipid hydroxyperoxide accumulation after radiotherapy, indicating ferroptosis, a regulated cell death induced by ROS and inhibited by antioxidants such as cysteine, glutathione (GSH), and glutathione peroxidase 4 (GPx4). However, the link between αvβ3 expression, ferroptosis inhibition, and sensitivity to radiotherapy remains unclear. We showed that irradiated β3_KO medulloblastoma cells primarily die by ferroptosis, with β3-subunit expression correlating with radiotherapy sensitivity and anti-ferroptotic protein levels. Our findings suggest that integrin-αvβ3 signaling boosts oxidative stress resilience via mTORC1. Thus, targeting integrin-αvβ3 could enhance radiotherapy efficacy in medulloblastoma by inducing ferroptotic cell death.
Collapse
Affiliation(s)
- Célia Gotorbe
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Fabien Segui
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Jérôme Durivault
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Thays Blanchard
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Valérie Vial
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Marina Pagnuzzi-Boncompagni
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Rémy Villeneuve
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Régis Amblard
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Nicolas Garnier
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Cécile Ortholan
- Radiotherapy Department, Princess Grace Hospital, 98000 Monaco, Monaco;
| | - Benjamin Serrano
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Jacques Pouysségur
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
- CNRS, INSERM, Centre A. Lacassagne, Institute for Research on Cancer & Aging (IRCAN), University Côte d’Azur, 06107 Nice, France
| | - Milica Vucetic
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| |
Collapse
|
21
|
Liu X, Ye L, Ding Y, Gong W, Qian H, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Role of PI3K/AKT signaling pathway involved in self-renewing and maintaining biological properties of chicken primordial germ cells. Poult Sci 2024; 103:104140. [PMID: 39173217 PMCID: PMC11379996 DOI: 10.1016/j.psj.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Avian primordial germ cells (PGCs) are important culture cells for the production of transgenic chickens and preservation of the genetic resources of endangered species; however, culturing these cells in vitro proves challenging. Although the proliferation of chicken PGCs is dependent on insulin, the underlying molecular mechanisms remain unclear. In the present study, we explored the expression of the PI3K/AKT signaling pathway in PGCs, investigated its effects on PGC self-renewal and biological properties, and identified the underlying mechanisms. Our findings indicated that although supplementation with the PI3K/AKT activator IGF-1 failed to promote proliferation under the assessed culture conditions, the PI3K/AKT inhibitor LY294002 resulted in retarded cell proliferation and reduced expression of germ cell-related markers. We further demonstrated that inhibition of PI3K/AKT regulates the cell cycle and promotes apoptosis in PGCs by activating the expression of BAX and inhibiting that of Bcl-2. These findings indicated that the PI3K/AKT pathway is required for cell renewal, apoptosis, and maintenance of the reproductive potential in chicken PGCs. This study aimed to provide a theoretical basis for the optimization and improvement of a culture system for chicken PGCs and provide insights into the self-renewal of vertebrate PGCs as well as potential evolutionary changes in this unique cell population.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
22
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
23
|
Su M, Luo J, Chen W, Li X, Ye D, Zeng X, Fu G, Xie W, Liang Y. SPC25 Activates the Warburg Effect to Inhibit Ferroptosis in Prostate Cancer Cells. Am J Mens Health 2024; 18:15579883241297880. [PMID: 39558547 PMCID: PMC11574883 DOI: 10.1177/15579883241297880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
SPC25 is associated with unfavorable outcomes in various cancers, but its role in prostate cancer (PRAD) is unclear. More research is needed on glycolysis and ferroptosis targets in PRAD. Bioinformatics tools were used to analyze SPC25 expression disparities. Gene set enrichment analysis (GSEA) identified pathways enriched by SPC25 and its correlation with glycolytic proteins. SPC25 mRNA transcriptional activity was analyzed by quantitative polymerase chain reaction (qPCR), while protein levels of SPC25, glycolytic markers, and ferroptosis markers were assessed using Western blot. CCK-8 was used to evaluate the effects of SPC25 on cell survival. Ferroptosis levels were measured by flow cytometry and assays for Fe2+ and malondialdehyde (MDA) content. Glycolytic capacity was assessed using glucose uptake assays, lactate tests, and a Seahorse XF analyzer. In PRAD tissues and cells, SPC25 was notably upregulated and correlated with adverse outcomes. It enhanced cancer cell vitality. GSEA showed SPC25's strong association with ferroptosis and glycolytic pathways, while Pearson correlation analysis indicated a positive relationship between SPC25 and glycolytic proteins. Overexpression of SPC25 in cell lines noticeably curbed the accumulation of lipid reactive oxygen species, MDA formation, and Fe2+ content, while it augmented the protein expression of ferroptosis markers. SPC25 stimulated an increase in cellular extracellular acidification rate, glucose uptake, and lactate secretion, while it dampened oxygen consumption rate, and this effect could be counteracted by 2-deoxy-d-glucose (2-DG). Conversely, 2-DG mitigated the ferroptosis indicators that were diminished by SPC25 downregulation, including the reduction of ferroptosis marker protein expression. By upregulating glycolysis in PRAD cells, SPC25 suppresses the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Mingqiang Su
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Jingxian Luo
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Wei Chen
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Xianyong Li
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Dayong Ye
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Xiaofu Zeng
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Guangqing Fu
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| | - Weiwei Xie
- Department of Urology, Heyuan People's Hospital, Heyuan, China
| | - Yong Liang
- Department of Urology, Zigong Fourth People's Hospital, Zigong, China
| |
Collapse
|
24
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Yeon Kim S, Tang M, Lu T, Chih SY, Li W. Ferroptosis in glioma therapy: advancements in sensitizing strategies and the complex tumor-promoting roles. Brain Res 2024; 1840:149045. [PMID: 38821335 PMCID: PMC11323215 DOI: 10.1016/j.brainres.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic regulated cell death, is induced by the accumulation of lipid peroxides on cellular membranes. Over the past decade, ferroptosis has emerged as a crucial process implicated in various physiological and pathological systems. Positioned as an alternative modality of cell death, ferroptosis holds promise for eliminating cancer cells that have developed resistance to apoptosis induced by conventional therapeutics. This has led to a growing interest in leveraging ferroptosis for cancer therapy across diverse malignancies. Gliomas are tumors arising from glial or precursor cells, with glioblastoma (GBM) being the most common malignant primary brain tumor that is associated with a dismal prognosis. This review provides a summary of recent advancements in the exploration of ferroptosis-sensitizing methods, with a specific focus on their potential application in enhancing the treatment of gliomas. In addition to summarizing the therapeutic potential, this review also discusses the intricate interplay of ferroptosis and its potential tumor-promoting roles within gliomas. Recognizing these dual roles is essential, as they could potentially complicate the therapeutic benefits of ferroptosis. Exploring strategies aimed at circumventing these tumor-promoting roles could enhance the overall therapeutic efficacy of ferroptosis in the context of glioma treatment.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
26
|
Huang G, Cai Y, Ren M, Zhang X, Fu Y, Cheng R, Wang Y, Miao M, Zhu L, Yan T. Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy. J Adv Res 2024:S2090-1232(24)00429-6. [PMID: 39353532 DOI: 10.1016/j.jare.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the primary cause of breast cancer-induced death in women. Literature has confirmed the benefits of Salidroside (Sal) in treating TNBC. However, the study about potential therapeutic targets and mechanisms of Sal-anchored TNBC remains limited. OBJECTIVE This study was designed to explore the main targets and potential mechanisms of Sal against TNBC. METHODS Network pharmacology, bioinformatics, and machine learning algorithm strategies were integrated to examine the role, potential targets, and mechanisms of the Sal act in TNBC. MDA-MB-231 cells and tumor-bearing nude mice were chosen for in vitro and in vivo experimentation. Cell viability and cytotoxicity were determined using CCK-8, LDH test, and Calcein-AM/PI staining. Antioxidant defense, lipid peroxidation, and iron metabolism were explored using glutathione, glutathione peroxidase, malondialdehyde (MDA), C11-BODIPY 581/591 probe, and FerroOrange dye. Glutathione peroxidase 4 (GPX4) or stearoyl-CoA desaturase 1 (SCD1) overexpression or nuclear receptor co-activator 4 (NCOA4) deficiency was performed to demonstrate the mechanism of Sal on TNBC. RESULTS The prediction results confirmed that 22 ferroptosis-related genes were identified in Sal and TNBC, revealing that the potential mechanism of the Sal act on TNBC was linked with ferroptosis. Besides, these genes were mainly involved in the mTOR, PI3K/AKT, and autophagy signaling pathway by functional enrichment analysis. The in vitro validation results confirmed that Sal inhibited TNBC cell proliferation by modulating ferroptosis via elevation of intracellular Fe2+ and lipid peroxidation. Mechanistically, Sal sensitized TNBC cells to ferroptosis by inhibiting the PI3K/AKT/mTOR axis, thereby suppressing SCD1-mediated lipogenesis of monounsaturated fatty acids to induce lipid peroxidation, additionally facilitating NCOA4-mediated ferritinophagy to increase intracellular Fe2+ content. The GPX4 or SCD1 overexpression or NCOA4 deficiency results further supported our mechanistic studies. In vivo experimentation confirmed that Sal is vital for slowing down tumor growth by inducing ferroptosis. CONCLUSIONS Overall, this study elucidates TNBC pathogenesis closely linked to ferroptosis and identifies potential biomarkers in TNBC. Meanwhile, the study elucidates that Sal sensitizes TNBC to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy, regulated by PI3K/AKT/mTOR signaling pathways. Our findings provide a theoretical basis for applying Sal to treat TNBC.
Collapse
Affiliation(s)
- Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yawen Cai
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Xiaoyu Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yu Fu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Run Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yingdi Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Mingxing Miao
- National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Lingpeng Zhu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
27
|
Ren X, Wen Y, Yuan M, Li C, Zhang J, Li S, Zhang X, Wang L, Wang S. Cerebroprotein hydrolysate-I ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via the p53/SAT1/ALOX15 signalling pathway. Eur J Pharmacol 2024; 979:176820. [PMID: 39032765 DOI: 10.1016/j.ejphar.2024.176820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ferroptosis, an iron-dependent lipid peroxidation-driven cell death pathway, has been linked to the development of Alzheimer's disease (AD). However, the role of ferroptosis in the pathogenesis of AD remains unclear. Cerebroprotein hydrolysate-I (CH-I) is a mixture of peptides with neurotrophic effects that improves cognitive deficits and reduces amyloid burden. The present study investigated the ferroptosis-induced signalling pathways and the neuroprotective effects of CH-I in the brains of AD transgenic mice. Seven-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with intraperitoneal injections of CH-I and saline for 28 days. The Morris water maze test was used to assess cognitive function. CH-I significantly improved cognitive deficits and attenuated beta-amyloid (Aβ) aggregation and tau phosphorylation in the hippocampus of APP/PS1 mice. RNA sequencing revealed that multiple genes and pathways, including ferroptosis-related pathways, were involved in the neuroprotective effects of CH-I. The increased levels of lipid peroxidation, ferrous ions, reactive oxygen species (ROS), and altered expression of ferroptosis-related genes (recombinant solute carrier family 7, member 11 (SLC7A11), spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutathione peroxidase 4 (GPX4)) were significantly alleviated after CH-I treatment. Quantitative real-time PCR and western blotting were performed to investigate the expression of key ferroptosis-related genes and the p53/SAT1/arachidonic acid 15-lipoxygenase (ALOX15) signalling pathway. The p53/SAT1/ALOX15 signalling pathway was found to be involved in mediating ferroptosis, and the activation of this pathway was significantly suppressed in AD by CH-I. CH-I demonstrated neuroprotective effects against AD by attenuating ferroptosis and the p53/SAT1/ALOX15 signalling pathway, thus providing new targets for AD treatment.
Collapse
Affiliation(s)
- Xin Ren
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mu Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Chang Li
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Jiejie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Siyu Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liang Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
28
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
29
|
Lee J, Roh JL. Cholesterol-ferroptosis nexus: Unveiling novel cancer therapeutic avenues. Cancer Lett 2024; 597:217046. [PMID: 38852702 DOI: 10.1016/j.canlet.2024.217046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis, a novel form of regulated cell death characterized by iron-mediated lipid peroxidation, holds immense potential in cancer therapeutics due to its role in tumor progression and resistance. This review predominantly explores the intricate relationship between ferroptosis and cholesterol metabolism pathways, mainly focusing on the cholesterol biosynthesis pathway. This review highlights the therapeutic implications of targeting cholesterol metabolism pathways for cancer treatment by delving into the mechanisms underlying ferroptosis regulation. Strategies such as inhibiting HMG-CoA reductase and suppressing squalene synthesis offer promising avenues for inducing ferroptosis in cancer cells. Moreover, insights into targeting the 7-dehydrocholesterol pathway provide novel perspectives on modulating ferroptosis susceptibility and managing ferroptosis-associated diseases. Understanding the interplay between ferroptosis and cholesterol metabolism pathways underscores the potential of lipid metabolism modulation as an innovative therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
30
|
Zhou P, Wang C, Wan G, Zheng W, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions. J Org Chem 2024; 89:10953-10964. [PMID: 39016014 DOI: 10.1021/acs.joc.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Guibin Wan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Weining Zheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
31
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
32
|
Chen S, Li Z, Xiao Y, Zhou Z, Zhan Q, Yu L. Rutin targets AKT to inhibit ferroptosis in ventilator-induced lung injury. Phytother Res 2024; 38:3401-3416. [PMID: 38666397 DOI: 10.1002/ptr.8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 07/12/2024]
Abstract
Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhaobin Zhou
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Yu
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Wang S, Zhang Y, Zhang D, Meng J, Che N, Zhao X, Liu T. PTGER3 knockdown inhibits the vulnerability of triple-negative breast cancer to ferroptosis. Cancer Sci 2024; 115:2067-2081. [PMID: 38566528 PMCID: PMC11145128 DOI: 10.1111/cas.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Song Wang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Yueyao Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Dan Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Jie Meng
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Na Che
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Xiulan Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Tieju Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
34
|
Wang Y, Zhou X, Yao L, Hu Q, Liu H, Zhao G, Wang K, Zeng J, Sun M, Lv C. Capsaicin Enhanced the Efficacy of Photodynamic Therapy Against Osteosarcoma via a Pro-Death Strategy by Inducing Ferroptosis and Alleviating Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306916. [PMID: 38221813 DOI: 10.1002/smll.202306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Ferroptosis, a novel form of nonapoptotic cell death, can effectively enhance photodynamic therapy (PDT) performance by disrupting intracellular redox homeostasis and promoting apoptosis. However, the extremely hypoxic tumor microenvironment (TME) together with highly expressed hypoxia-inducible factor-1α (HIF-1α) presents a considerable challenge for clinical PDT against osteosarcoma (OS). Hence, an innovative nanoplatform that enhances antitumor PDT by inducing ferroptosis and alleviating hypoxia is fabricated. Capsaicin (CAP) is widely reported to specifically activate transient receptor potential vanilloid 1 (TRPV1) channel, trigger an increase in intracellular Ca2+ concentration, which is closely linked with ferroptosis, and participate in decreased oxygen consumption by inhibiting HIF-1α in tumor cells, potentiating PDT antitumor efficiency. Thus, CAP and the photosensitizer IR780 are coencapsulated into highly biocompatible human serum albumin (HSA) to construct a nanoplatform (CI@HSA NPs) for synergistic tumor treatment under near-infrared (NIR) irradiation. Furthermore, the potential underlying signaling pathways of the combination therapy are investigated. CI@HSA NPs achieve real-time dynamic distribution monitoring and exhibit excellent antitumor efficacy with superior biosafety in vivo. Overall, this work highlights a promising NIR imaging-guided "pro-death" strategy to overcome the limitations of PDT for OS by promoting ferroptosis and alleviating hypoxia, providing inspiration and support for future innovative tumor therapy approaches.
Collapse
Affiliation(s)
- Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Xueru Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China
| | - Li Yao
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Jun Zeng
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Mingwei Sun
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Chuanzhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
35
|
Huan R, Zhang J, Yue J, Yang S, Han G, Cheng Y, Tan Y. Orexin-A mediates glioblastoma proliferation inhibition by increasing ferroptosis triggered by unstable iron pools and GPX4 depletion. J Cell Mol Med 2024; 28:e18318. [PMID: 38685674 PMCID: PMC11058333 DOI: 10.1111/jcmm.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.
Collapse
Affiliation(s)
- Rengzheng Huan
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiqin Zhang
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Jianhe Yue
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Sha Yang
- Department of biomedical sciencesMedical College of Guizhou UniversityGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
36
|
Zhang W, Dong J, Xu J, Qian Y, Chen D, Fan Z, Yang H, Xiang J, Xue X, Luo X, Jiang Y, Wang Y, Huang Z. Columbianadin suppresses glioblastoma progression by inhibiting the PI3K-Akt signaling pathway. Biochem Pharmacol 2024; 223:116112. [PMID: 38458331 DOI: 10.1016/j.bcp.2024.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Glioblastoma (GBM) is the most common malignant glioma among brain tumors with low survival rate and high recurrence rate. Columbianadin (CBN) has pharmacological properties such as anti-inflammatory, analgesic, thrombogenesis-inhibiting and anti-tumor effects. However, it remains unknown that the effect of CBN on GBM cells and its underlying molecular mechanisms. In the present study, we found that CBN inhibited the growth and proliferation of GBM cells in a dose-dependent manner. Subsequently, we found that CBN arrested the cell cycle in G0/G1 phase and induced the apoptosis of GBM cells. In addition, CBN also inhibited the migration and invasion of GBM cells. Mechanistically, we chose network pharmacology approach by screening intersecting genes through targets of CBN in anti-GBM, performing PPI network construction followed by GO analysis and KEGG analysis to screen potential candidate signaling pathway, and found that phosphatidylinositol 3-kinase/Protein Kinase-B (PI3K/Akt) signaling pathway was a potential target signaling pathway of CBN in anti-GBM. As expected, CBN treatment indeed inhibited the PI3K/Akt signaling pathway in GBM cells. Furthermore, YS-49, an agonist of PI3K/Akt signaling, partially restored the anti-GBM effect of CBN. Finally, we found that CBN inhibited GBM growth in an orthotopic mouse model of GBM through inhibiting PI3K/Akt signaling pathway. Together, these results suggest that CBN has an anti-GBM effect by suppressing PI3K/Akt signaling pathway, and is a promising drug for treating GBM effectively.
Collapse
Affiliation(s)
- Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hao Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianglei Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
37
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
38
|
Cao W, He Y, Lan J, Luo S, Sun B, Xiao C, Yu W, Zeng Z, Lei S. FOXP3 promote the progression of glioblastoma via inhibiting ferroptosis mediated by linc00857/miR-1290/GPX4 axis. Cell Death Dis 2024; 15:239. [PMID: 38561331 PMCID: PMC10984987 DOI: 10.1038/s41419-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Ya He
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Jinzhi Lan
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shipeng Luo
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Chaolun Xiao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, China
| | - Zhirui Zeng
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Shan Lei
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| |
Collapse
|
39
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
40
|
Su H, Peng C, Liu Y. Regulation of ferroptosis by PI3K/Akt signaling pathway: a promising therapeutic axis in cancer. Front Cell Dev Biol 2024; 12:1372330. [PMID: 38562143 PMCID: PMC10982379 DOI: 10.3389/fcell.2024.1372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The global challenge posed by cancer, marked by rising incidence and mortality rates, underscores the urgency for innovative therapeutic approaches. The PI3K/Akt signaling pathway, frequently amplified in various cancers, is central in regulating essential cellular processes. Its dysregulation, often stemming from genetic mutations, significantly contributes to cancer initiation, progression, and resistance to therapy. Concurrently, ferroptosis, a recently discovered form of regulated cell death characterized by iron-dependent processes and lipid reactive oxygen species buildup, holds implications for diseases, including cancer. Exploring the interplay between the dysregulated PI3K/Akt pathway and ferroptosis unveils potential insights into the molecular mechanisms driving or inhibiting ferroptotic processes in cancer cells. Evidence suggests that inhibiting the PI3K/Akt pathway may sensitize cancer cells to ferroptosis induction, offering a promising strategy to overcome drug resistance. This review aims to provide a comprehensive exploration of this interplay, shedding light on the potential for disrupting the PI3K/Akt pathway to enhance ferroptosis as an alternative route for inducing cell death and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xinyi, China
| | - Chao Peng
- Xingyi People’s Hospital, Xinyi, China
| | - Yang Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Zhao S, Wang D, Zhou Q, Wang B, Tong Z, Tian H, Li J, Zhang Y. Nanozyme-based inulin@nanogold for adhesive and antibacterial agent with enhanced biosafety. Int J Biol Macromol 2024; 262:129207. [PMID: 38185305 DOI: 10.1016/j.ijbiomac.2024.129207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Nanozymes with oxidase or peroxidase-mimicking activity have emerged as a promising alternative for disinfecting resistant pathogens. However, further research and clinical applications of nanozymes are hampered by their low in vivo biosafety and biocompatibility. In this study, inulin-confined gold nanoparticles (IN@AuNP) are synthesized as an antibacterial agent via a straightforward in situ reduction of Au3+ ions by the hydroxyl groups in inulin. The IN@AuNP exhibits both peroxidase-mimicking and oxidase-mimicking catalytic activities, of which the maximum reaction velocity (Vmax) for H2O2 is 2.66 times higher than that of horseradish peroxidase. IN@AuNP can catalyze the production of reactive oxygen species (ROS), resulting in effective antibacterial behavior against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Abundant hydroxyl groups retained in inulin endow the nanozyme with high adhesion to bacteria, reducing the distance between the captured bacteria and ROS, achieving an antibacterial ratio of 100 % within 1 h. Importantly, due to the natural biosafety and non-absorption of the dietary fiber inulin, as well as the inability of inulin-trapped AuNP to diffuse, the IN@AuNP exhibits high biosafety and biocompatibility under physiological conditions. This work is expected to open a new avenue for nanozymes with great clinical application value.
Collapse
Affiliation(s)
- Shiwen Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China
| | - Danyang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China
| | | | - Beibei Wang
- Xi'an Aerospace Chemical Propulsion Co., Ltd., Xi'an 710025, China
| | - Zhao Tong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China.
| | - Yuhuan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China.
| |
Collapse
|
42
|
Liu Y, Cai JY, Liu Y, Zhang L, Guo RB, Li XT, Ma LY, Kong L. Borneol-modified docetaxel plus tetrandrine micelles for treatment of drug-resistant brain glioma. Drug Dev Ind Pharm 2024; 50:135-149. [PMID: 38235554 DOI: 10.1080/03639045.2024.2302886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Glioma is the most common and deadly primary malignant tumor in adults. Treatment outcomes are ungratified due to the presence of blood-brain barrier (BBB), glioma stem cells (GSCs) and multidrug resistance (MDR). Docetaxel (DTX) is considered as a potential drug for the treatment of brain tumor, but its effectiveness is limited by its low bioavailability and drug resistance. Tetrandrine (TET) reverses the resistance of tumor cells to chemotherapy drugs. Borneol (BO) modified in micelles has been shown to promote DTX plus TET to cross the BBB, allowing the drug to better act on tumors. Therefore, we constructed BO-modified DTX plus TET micelles to inhibit chemotherapeutic drug resistance. SIGNIFICANCE Provide a new treatment method for drug-resistant brain gliomas. METHODS In this study, BO-modified DTX plus TET micelles were prepared by thin film dispersion method, their physicochemical properties were characterized. Its targeting ability was investigated. The therapeutic effect on GSCs was investigated by in vivo and in vitro experiments. RESULTS The BO-modified DTX plus TET micelles were successfully constructed by thin film dispersion method, and the micelles showed good stability. The results showed that targeting micelles increased bEnd.3 uptake and helped drugs cross the BBB in vitro. And we also found that targeting micelles could inhibit cell proliferation, promote cell apoptosis and inhibit the expression of drug-resistant protein, thus provide a new treatment method for GSCs in vitro and in vivo. CONCLUSIONS BO-modified DTX plus TET micelles may provide a new treatment method for drug-resistant brain gliomas.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Jia-Yu Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, PR China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| |
Collapse
|
43
|
Darwish A, Pammer M, Gallyas F, Vígh L, Balogi Z, Juhász K. Emerging Lipid Targets in Glioblastoma. Cancers (Basel) 2024; 16:397. [PMID: 38254886 PMCID: PMC10814456 DOI: 10.3390/cancers16020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Milán Pammer
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Gallyas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Vígh
- Institute of Biochemistry, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
44
|
Zhang G, Mi W, Wang C, Li J, Zhang Y, Liu N, Jiang M, Jia G, Wang F, Yang G, Zhang L, Wang J, Fu Y, Zhang Y. Targeting AKT induced Ferroptosis through FTO/YTHDF2-dependent GPX4 m6A methylation up-regulating and degradating in colorectal cancer. Cell Death Discov 2023; 9:457. [PMID: 38102129 PMCID: PMC10724184 DOI: 10.1038/s41420-023-01746-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Ferroptosis is a new type of iron-dependent programmed cell death induced by lipid peroxidation. However, the underlying mechanisms and function in tumor therapy still remain undisclosed especially in post-transcription regulation. Here, we found that targeting AKT significantly induced GPX4 dependent ferroptosis and suppressed colorectal cancer growth both in vitro and in vivo. During this process, demethylase FTO was downregulated, which increased the m6A methylation level of GPX4, subsequently recognized by YTHDF2 and degraded. Prediction results showed that there are three potential methylated sites (193/647/766), and 193 site was identified as the right one, which was demethylated by FTO and read by YTHDF2. In parallel, AKT inhibition caused the accumulation of ROS which had a negative feedback on GPX4 expression. In addition, protective autophagy was initiated by MK2206 stimulation, while blocking autophagy further increased ferroptosis and markedly enhanced the anti-tumor activity of MK2206. In a word, inhibiting AKT activated ferroptosis through FTO/YTHDF2/GPX4 axis to suppress colon cancer progression, which raised FTO/GPX4 as potential biomarkers and targets in colorectal cancer therapy.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Wunan Mi
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chuyue Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Nannan Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Meimei Jiang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Guiyun Jia
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
45
|
Guo S, Xiong W, Zhu J, Feng J, Zhou R, Fan Q, Zhang Q, Li Z, Yang J, Zhou H, Yi P, Feng Y, Yang S, Qiu X, Xu Y, Shen Z. A STING pathway-activatable contrast agent for MRI-guided tumor immunoferroptosis synergistic therapy. Biomaterials 2023; 302:122300. [PMID: 37659110 DOI: 10.1016/j.biomaterials.2023.122300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The immunotherapy efficiency of stimulator of interferon genes (STING)-activatable drugs (e.g., 7-ethyl-10-hydroxycamptothecin, SN38) is limited by their non-specificity to tumor cells and the slow excretion of the DNA-containing exosomes from the treated cancer cells. The efficacy of tumor ferroptosis therapy is always limited by the elimination of lipid peroxides (LPO) by the pathways of glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH) and ferroptosis suppressor protein 1(FSP1). To solve these problems, in this study, we developed a STING pathway-activatable contrast agent (i.e., FeGd-HN@TA-Fe2+-SN38 nanoparticles) for magnetic resonance imaging (MRI)-guided tumor immunoferroptosis synergistic therapy. The remarkable in vivo MRI performance of FeGd-HN@TA-Fe2+-SN38 is attributed to its high accumulation at tumor location, the high relaxivities of FeGd-HN core, and the pH-sensitive TA-Fe2+-SN38 layer. The effectiveness and biosafety of the immunoferroptosis synergistic therapy induced by FeGd-HN@TA-Fe2+-SN38 are demonstrated by the in vivo investigations on the 4T1 tumor-bearing mice. The mechanisms of in vivo immunoferroptosis synergistic therapy by FeGd-HN@TA-Fe2+-SN38 are demonstrated by measurements of in vivo ROS, LPO, GPX4 and SLC7A11 levels, the intratumor matured DCs and CD8+ T cells, the protein expresion of STING and IRF-3, and the secretion of IFN-β and IFN-γ.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Ruilong Zhou
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Qianqian Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
46
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
47
|
Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules 2023; 28:4643. [PMID: 37375197 DOI: 10.3390/molecules28124643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 μM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yumei Li
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|