1
|
Liu Z, Wang G, Ye X, Zhang X, Jiang Y, Han Y, Lu L, Liu Z, Zhang H. Multigenerational toxic effects in Daphnia pulex are induced by environmental concentrations of tire wear particle leachate. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136977. [PMID: 39724716 DOI: 10.1016/j.jhazmat.2024.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Microplastic pollution has emerged as the second most significant scientific issue in environmental science and ecology. Similarly, the biological effects of tire wear particles (TWPs) have garnered considerable research attention; however, studies on chronic TWP leachate toxicity at environmentally relevant concentrations remain sparse. Here, we investigated the effects of TWP leachate at environmentally relevant concentrations (0.3 mg/L and 3 mg/L) on multigenerational and transgenerational Daphnia pulex for 21 days/generation, spanning three generations (F0-F2). Growth and reproductive indices (body length, growth rate, time to first clutch, number of clutches, and total offspring/female) across generations were analyzed. Multigenerational exposure to TWP leachate did not cause D. pulex death, but impaired growth and development, prolonged sexual maturity time, and reduced reproductive capacity. The transgenerational exposure group (3 mg/L) also exhibited some sub-lethal effects, such as delayed reproduction, suggesting a transgenerational impact. Gene transcription analyses and weighted gene co-expression network analysis showed that the most impacted pathways were associated with lysosome function, apoptosis, and glutathione metabolism, indicating that TWP leachate exposure compromised immune defense mechanisms and disrupted APs, CTSB, GST, DUSP1, and ERN1 gene expression. These findings underscore multigenerational toxicity effects and TWP leachate transmission patterns on aquatic organisms at realistic environmental concentrations.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Guanghui Wang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xindi Ye
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Jiang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
2
|
Miura K, Doi T, Umedera K, Nakamura H. Discovery of sp 3-rich diazatricycloundecanes as lysosomotropic autophagy inhibitors. Eur J Med Chem 2024; 280:116923. [PMID: 39378825 DOI: 10.1016/j.ejmech.2024.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
We have discovered lysosomotropic autophagy inhibitors from our compound library of sp3-rich diazatricycloundecane skeletons. Compound 1u was identified as the most potent biological activity for LC3-II protein accumulation through the structure-activity relationships (SARs) for LC3-II protein accumulation and anti-proliferative activity at the three freely available substituents (R1-R3) in the diazatricycloundecane skeleton. Compound 1u inhibited lysosome-dependent degradation without affecting autophagosome formation. Furthermore, compound 1u enlarged lysosomes and raised lysosomal pH similar to lysosomotropic agents such as chloroquine, resulting in inhibiting late-stage autophagy by inducing lysosomal dysfunction. Moreover, compound 1u exhibits excellent drug-like chemical properties, not previously reported for lysosomotropic agents.
Collapse
Affiliation(s)
- Kazuki Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomoya Doi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
3
|
Silva NJ, Anderson S, Mula SA, Escoubas CC, Nakajo H, Molofsky AV. Microglial cathepsin B promotes neuronal efferocytosis during brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626596. [PMID: 39677624 PMCID: PMC11642881 DOI: 10.1101/2024.12.03.626596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Half of all newborn neurons in the developing brain are removed via efferocytosis - the phagocytic clearance of apoptotic cells. Microglia are brain-resident professional phagocytes that play important roles in neural circuit development including as primary effectors of efferocytosis. While the mechanisms through which microglia recognize potential phagocytic cargo are widely studied, the lysosomal mechanisms that are necessary for efficient digestion are less well defined. Here we show that the lysosomal protease cathepsin B promotes microglial efferocytosis of neurons and restricts the accumulation of apoptotic cells during brain development. We show that cathepsin B is microglia-specific and enriched in brain regions where neuronal turnover is high in both zebrafish and mouse. Myeloid-specific cathepsin B knockdown in zebrafish led to dysmorphic microglia containing undigested dead cells, as well as an accumulation of dead cells in surrounding tissue. These effects where phenocopied in mice globally deficient for Ctsb using markers for apoptosis. We also observed behavioral impairments in both models. Live imaging studies in zebrafish revealed deficits in phagolysosomal fusion and acidification, and live imaging of cultured mouse microglia reveal delayed phagocytosis consistent with impairments in digestion and resolution of phagocytosis rather than initial uptake. These data reveal a novel role for microglial cathepsin B in mediating neuronal efferocytosis during typical brain development.
Collapse
|
4
|
Nandhini M, Pitchumani Violet Mary C, Gopinath S, Vijayakumar S. Structure based interaction and molecular dynamics studies of cysteine protease Cathepsin B against curcumin and resveratrol. J Biomol Struct Dyn 2024:1-11. [PMID: 39589216 DOI: 10.1080/07391102.2024.2431658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 11/27/2024]
Abstract
The lysosomal cysteine peptidase Cathepsin B is identified as a pivotal contributor to cancer development. In the pursuit of discovering less toxic inhibitors for Cathepsin B, various organic compounds have undergone thorough investigation and are being studied at the moment in clinical studies for cancer treatment. Notably, curcumin and resveratrol emerge as prominent candidates. However, the precise molecular mechanism underlying the inhibition of Cathepsin B by these compounds remains elusive. To address this gap, we conducted molecular docking and dynamics studies to unravel the interaction dynamics between Cathepsin B and phytochemicals such as curcumin and resveratrol. Remarkably, Molecular docking studies revealed that curcumin and resveratrol exhibit high binding affinities 7.599 and 6.103 kcal/mol, respectively, positioning them as promising inhibitors for Cathepsin B. Further insights from 150 ns of molecular dynamics simulations, incorporating structural analyses encompassing RMSF, RMSD, Rg, SASA, and H-bond analysis, indicate the superior stability of curcumin compared to resveratrol. Additionally, we assessed their drug-likeness properties using the PreADMET web server, and the MM/BPSA method facilitated the calculation of binding energies for the complexes. On targeting Cathepsin B, this research promises to contribute to the development of drugs that inhibit the progression of cancer.
Collapse
Affiliation(s)
- M Nandhini
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - C Pitchumani Violet Mary
- Department of Physics, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - S Gopinath
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Jones-Tabah J, He K, Karpilovsky N, Senkevich K, Deyab G, Pietrantonio I, Goiran T, Cousineau Y, Nikanorova D, Goldsmith T, Del Cid Pellitero E, Chen CXQ, Luo W, You Z, Abdian N, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. Mol Neurodegener 2024; 19:88. [PMID: 39587654 PMCID: PMC11587650 DOI: 10.1186/s13024-024-00779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. METHODS Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines, induced pluripotent stem cell-derived dopaminergic neurons and midbrain organoids and assessed lysosomal activity and the handling of aggregated synuclein fibrils. RESULTS We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. CONCLUSIONS These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Kathy He
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Nathan Karpilovsky
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Konstantin Senkevich
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Ghislaine Deyab
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Isabella Pietrantonio
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Thomas Goiran
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Yuting Cousineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Daria Nikanorova
- Research Department, Bioinformatics Institute, Saint-Petersburg, Russia
| | - Taylor Goldsmith
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Esther Del Cid Pellitero
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Wen Luo
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Zhipeng You
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Jamil Ahmad
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Jennifer A Ruskey
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Farnaz Asayesh
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Dan Spiegelman
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, National Reference Center for Narcolepsy, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec - Université Laval, , Quebec City, G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Institute of the Human Brain of RAS, St. Petersburg, Russia
- First Pavlov State Medical, University of St. Petersburg, Saint-Petersburg, Russia
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Austen Milnerwood
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Ziv Gan-Or
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Edward A Fon
- Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
| |
Collapse
|
6
|
Baldensperger T, Jung T, Heinze T, Schwerdtle T, Höhn A, Grune T. The age pigment lipofuscin causes oxidative stress, lysosomal dysfunction, and pyroptotic cell death. Free Radic Biol Med 2024; 225:871-880. [PMID: 39486751 DOI: 10.1016/j.freeradbiomed.2024.10.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of the age pigment lipofuscin represents a ubiquitous hallmark of the aging process. However, our knowledge about cellular effects of lipofuscin accumulation is potentially flawed, because previous research mainly utilized highly artificial methods of lipofuscin generation. In order to address this tremendous problem, we developed a convenient protocol for isolation of authentic lipofuscin from human and equine cardiac tissue in high purity and quantity. Isolated lipofuscin aggregates contained elevated concentrations of proline and metals such as calcium or iron. The material was readily incorporated by fibroblasts and caused cell death at low concentrations (LC50 = 5.0 μg/mL) via a pyroptosis-like pathway. Lipofuscin boosted mitochondrial ROS production and caused lysosomal dysfunction by lysosomal membrane permeabilization leading to reduced lysosome quantity and impaired cathepsin D activity. In conclusion, this is the first study utilizing authentic lipofuscin to experimentally validate the concept of the lysosomal-mitochondrial axis theory of aging and cell death.
Collapse
Affiliation(s)
- Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Monika, Chander, Kaur P, Raghav N, Sharma PK, Ram S. Synthesis, Biological Evaluation, and Computational Studies of Schiff's Base Derivatives of 4-(4-Amino-5-Mercapto-4H-1,2,4-Triazol-3-Yl)Benzenesulfonamide as Cathepsin B Inhibitors. Chem Biodivers 2024:e202402575. [PMID: 39558188 DOI: 10.1002/cbdv.202402575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
A library of benzenesulfonamide incorporated Schiff's base derivatives of 4-amino-5-mercapto-1,2,4-triazoles 1a-f, 2a-e, and 3a-e has been synthesized and evaluated in-vitro for their inhibition potential against cathepsin B enzyme. All the tested compounds possessed good to excellent anti-cathepsin B activity (40.62%-74.36%) at 10-7 m concentrations in comparison with the curcumin (51.20%) taken as reference. Among all, compound 3c has shown the highest activity exhibiting 74.36% inhibition followed by 3e and 3b (69.99% and 68.36% inhibition, respectively). Molecular docking was performed for the most active compound 3c and the reference compound, curcumin, to know their interactions in the active site of the target enzyme and the results obtained were in agreement with the experimental values. Additionally, DFT calculations were also performed to determine the values of electronic parameters including energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), HOMO-LUMO energy gap, chemical hardness, chemical softness, chemical potential, electronegativity, and electrophilicity index.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Chander
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Prabhjot Kaur
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Sita Ram
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| |
Collapse
|
8
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Zhao W, Zheng X, Jiang F, Liu J, Wang S, Ou J. Safe concentration, unsafe effects: Impact of BPA on antioxidant function in the hepatopancreas and ovarian gene expression in oriental river prawns (Macrobrachium nipponense). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107103. [PMID: 39305710 DOI: 10.1016/j.aquatox.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/12/2024]
Abstract
This study investigated the effects of Bisphenol A (BPA), a common endocrine-disrupting chemical, on the antioxidant enzyme activities in the hepatopancreas and the expression of genes related to ovarian development in oriental river prawns (Macrobrachium nipponense). The 24hLC50 and 48hLC50 values for BPA were 80.59 mg/L and 63.90 mg/L, respectively, with a safe concentration of 12.06 mg/L. Prawns were exposed to low (4.85 mg/L), safe (12.06 mg/L), and high (30.00 mg/L) concentrations of BPA for 10 days to measure enzyme activities, and for 20 days followed by 7 days in BPA-free water to measure gene expression. Short-term exposure (12 h, 1d, 3d) to low concentration BPA did not significantly affect superoxide dismutase (SOD) activity in the hepatopancreas (P > 0.05), but long-term exposure (6d, 10d) significantly reduced SOD activity (P < 0.05). Catalase (CAT) activity showed no significant changes throughout the low concentration exposure period (P > 0.05). At safe and high concentrations, SOD and CAT activities significantly decreased after 12 h of exposure (P < 0.05). BPA affected heat shock protein 90 (HSP90) expression in the ovary, with low concentration BPA significantly upregulating HSP90 after 1 day (P < 0.05), but returning to normal levels after 10 and 20 days. At the safe concentration, HSP90 was significantly upregulated at all three sampling points (1d, 10d, 20d) (P < 0.05), while high concentration exposure led to significant upregulation only on day 10 (P < 0.05). Low concentration BPA had no significant effect on Cathepsin B (CB) and Cathepsin L (CL) gene expression in the ovaries (P > 0.05). However, safe concentration exposure promoted CB expression on days 1, 10, and 20 (P < 0.05), while high concentration exposure significantly increased CB expression on day 1 (P < 0.05), with levels returning to normal on days 10 and 20. CL expression significantly increased after 20 days of exposure to both safe and high concentrations (P < 0.05). Gene expression levels in the ovaries returned to normal after transfer to BPA-free water, with HSP90 and CB normalizing by day 1, and CL by day 7. These results indicate that even safe concentrations of BPA impose stress on the hepatopancreas and increase the expression of HSP90, CB, and CL genes in the ovaries, affecting ovarian development. And, these effects are reversible within a certain period after the removal of BPA.
Collapse
Affiliation(s)
- Weihong Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xirui Zheng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengjuan Jiang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jintao Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shuhao Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiangtao Ou
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
10
|
Li MY, Wu Y, Tang HL, Wang Y, Li B, He YY, Yan GJ, Yang ZM. Embryo-Derived Cathepsin B Promotes Implantation and Decidualization by Activating Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402299. [PMID: 39316370 DOI: 10.1002/advs.202402299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Embryo implantation and decidualization are crucial for a successful pregnancy. How the inflammatory response is regulated during these processes is undefined. Pyroptosis is an inflammatory form of cell death mediated by gasdermin D (GSDMD). Through in vivo, cultured epithelial cells and organoids, it is shown that pyroptosis occurs in epithelial cells at the implantation site. Compared with those on day 4 of pseudopregnancy and delayed implantation, pyroptosis-related protein levels are significantly increased on day 4 of pregnancy and activated implantation, suggesting that blastocysts are involved in regulating pyroptosis. Blastocyst-derived cathepsin B (CTSB) is stimulated by preimplantation estradiol-17β and induces pyroptosis in epithelial cells. Pyroptosis-induced IL-18 secretion from epithelial cells activates a disintegrin and metalloprotease 12 (ADAM12) to process the epiregulin precursor into mature epiregulin. Epiregulin (EREG) enhances in vitro decidualization in mice. Pyroptosis-related proteins are detected in the mid-secretory human endometrium and are elevated in the recurrent implantation failure endometrium. Lipopolysaccharide treatment in pregnant mice causes implantation failure and increases pyroptosis-related protein levels. Therefore, the data suggest that modest pyroptosis is beneficial for embryo implantation and decidualization. Excessive pyroptosis can be harmful and lead to pregnancy failure.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hao-Lan Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
11
|
Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer 2024; 23:226. [PMID: 39385255 PMCID: PMC11463124 DOI: 10.1186/s12943-024-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Compared to other types of tumor vaccines, RNA vaccines have emerged as promising alternatives to conventional vaccine therapy due to their high efficiency, rapid development capability, and potential for low-cost manufacturing and safe drug delivery. RNA vaccines mainly include mRNA, circular RNA (circRNA), and Self-amplifying mRNA(SAM). Different RNA vaccine platforms for different tumors have shown encouraging results in animal and human models. This review comprehensively describes the advances and applications of RNA vaccines in antitumor therapy. Future directions for extending this promising vaccine platform to a wide range of therapeutic uses are also discussed.
Collapse
Affiliation(s)
- Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Wang J, Ding Y, Chong K, Cui M, Cao Z, Tang C, Tian Z, Hu Y, Zhao Y, Jiang S. Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery. Vaccines (Basel) 2024; 12:1148. [PMID: 39460315 PMCID: PMC11510967 DOI: 10.3390/vaccines12101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION The advent of lipid nanoparticles (LNPs) as a delivery platform for mRNA therapeutics has revolutionized the biomedical field, particularly in treating infectious diseases, cancer, genetic disorders, and metabolic diseases. Recent Advances in Therapeutic LNPs: LNPs, composed of ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, facilitate efficient cellular uptake and cytosolic release of mRNA while mitigating degradation by nucleases. However, as synthetic entities, LNPs face challenges that alter their therapeutic efficacy and safety concerns. Toxicity/Reactogenicity/Immunogenicity: This review provides a comprehensive overview of the latest advancements in LNP research, focusing on preclinical safety assessments encompassing toxicity, reactogenicity, and immunogenicity. Summary and Outlook: Additionally, it outlines potential strategies for addressing these challenges and offers insights into future research directions for enhancing the application of LNPs in mRNA therapeutics.
Collapse
Affiliation(s)
- Jialiang Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yaopeng Ding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kellie Chong
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (K.C.)
| | - Meng Cui
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zeyu Cao
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chenjue Tang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhen Tian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuping Hu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (K.C.)
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Jiang M, Zhao D, Zhou Y, Kong W, Xie Z, Xiong Y, Li Y, Zhao S, Kou X, Zhang S, Meng R, Pan Y, Wu Z, Nakanishi H, Zhao J, Li H, Quan Z, Lin L, Qing H, Ni J. Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer's disease through PI3K-Akt signaling. Neuropsychopharmacology 2024:10.1038/s41386-024-01994-0. [PMID: 39304744 DOI: 10.1038/s41386-024-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
The approval of anti-amyloid β (Aβ) monoclonal antibodies (lecanemab) for the treatment of patients with early preclinical stage of Alzheimer's disease (AD) by the Food and Drug Administration, suggests the reliability and importance of brain Aβ clearance for AD therapy. Microglia are the main phagocytes that clear Aβ in the brain, but the underlying regulatory mechanism is unclear. Here, we investigate the critical role of cathepsin B (CatB) in modulating microglial Aβ clearance from mouse brain. Wild-type or CatB-/- mice were injected with Aβ into the hippocampus from 1 to 3 weeks. Mice were evaluated for cognitive change, Aβ metabolism, neuroinflammation. Microglia and neuron cultures were prepared to verify the in vivo results. The statistical analyses were performed by student's t test, one-way ANOVA with a post hoc Tukey's test using the GraphPad Prism software package. CatB deficiency significantly reduces Aβ clearance efficiency and aggravates mouse cognitive decline. Exogenous Aβ markedly increases CatB expression in activated microglia. Transcriptome analysis and in vitro cell culture experiments demonstrate that CatB is associated with gene clusters involved in migration, phagocytosis, and inflammation. In addition, transcriptome analysis and immunoblotting suggest that CatB modulates microglial Aβ clearance via PI3K-AKT activation. Our study unveils a previously unknown role of CatB in promoting microglial functionality during Aβ clearance.
Collapse
Affiliation(s)
- Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dan Zhao
- Department of Implant Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yue Zhou
- Department of Hematology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | | | - Yanhui Li
- Beijing 171 Middle School, Beijing, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueshuai Kou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Simeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Rui Meng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Lin
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
14
|
Cai Z, Xu S, Liu C. Cathepsin B in cardiovascular disease: Underlying mechanisms and therapeutic strategies. J Cell Mol Med 2024; 28:e70064. [PMID: 39248527 PMCID: PMC11382359 DOI: 10.1111/jcmm.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Cathepsin B (CTSB) is a member of the cysteine protease family, primarily responsible for degrading unnecessary organelles and proteins within the acidic milieu of lysosomes to facilitate recycling. Recent research has revealed that CTSB plays a multifaceted role beyond its function as a proteolytic enzyme in lysosomes. Importantly, recent data suggest that CTSB has significant impacts on different cardiac pathological conditions, such as atherosclerosis (AS), myocardial infarction, hypertension, heart failure and cardiomyopathy. Especially in the context of AS, preclinical models and clinical sample imaging data indicate that the cathepsin activity-based probe can reliably image CTSB activity in foam cells and atherosclerotic plaques; concurrently, it allows synchronous diagnostic and therapeutic interventions. However, our knowledge of CTSB in cardiovascular disease is still in the early stage. This paper aims to provide a comprehensive review of the significance of CTSB in cardiovascular physiology and pathology, with the objective of laying a theoretical groundwork for the development of drugs targeting CTSB.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing, P.R. China
| | - Shunyao Xu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, P.R. China
| | - Chen Liu
- Department of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| |
Collapse
|
15
|
Abdollahi M, Castaño JD, Salem JB, Beaudry F. Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay. Neurochem Res 2024; 49:2423-2439. [PMID: 38847909 DOI: 10.1007/s11064-024-04186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024]
Abstract
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Collapse
Affiliation(s)
- Marzieh Abdollahi
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus D Castaño
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Zhu Q, Zhang R, Gu X, Zhao Z, Gao Q, Chen M, Wu Q, Xie T, Sui X. Honokiol enhances the sensitivity of cetuximab in KRAS G13D mutant colorectal cancer through destroying SNX3-retromer complex. Theranostics 2024; 14:5443-5460. [PMID: 39310106 PMCID: PMC11413778 DOI: 10.7150/thno.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale : the proto-oncogene KRAS is frequently mutated in colorectal cancer (CRC), leading to inherent resistance against monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), such as cetuximab. Therefore, addressing the primary resistance and expanding the indications for target therapy have become critical challenges. Methods : the screening of a natural product library against KRAS mutant CRC cells was conducted, leading to the discovery of a small molecule compound that sensitive to the KRASG13D mutation site. The anti-tumor activity of this small molecule compound in combination with cetuximab was evaluated using the KRASG13D mutant CRC models both in vivo and in vitro. This evaluation includes an examination of its effects on cell proliferation, viability, apoptosis, cell cycle progression, and tumor growth. Furthermore, RNA sequencing, western blot analysis, immunofluorescence, real-time quantitative PCR, and pull-down assays were employed to explore the molecular mechanisms underlying the synergistic anti-tumor effect of this small molecule compound in combination with cetuximab. Results : our study screened 882 compounds in KRAS mutant CRC cells and identified honokiol, a small molecule compound that exhibits specific sensitivity to KRASG13D mutant CRC cells. Furthermore, we revealed that the synergistic augmentation of cetuximab's sensitivity in vivo and in vitro models of KRASG13D mutant CRC in combination with honokiol. Mechanistically, honokiol suppresses SNX3-retromer mediated trafficking, thereby impeding lysosomal proteolytic capacity and inhibiting autophagy and macropinocytosis fluxes. Moreover, honokiol inhibits the conversion of RAS GDP to RAS GTP, heightening the susceptibility of KRASG13D CRC mutant cells to cetuximab. Conclusions : honokiol enhances the sensitivity of cetuximab by destroying SNX3 retromer in KRASG13D mutant CRC preclinical model. These findings present a promising strategy for expanding the indications of target therapy in KRAS mutant colorectal cancer patients.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Quan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
17
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
18
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
19
|
Botkin JR, Curtin SJ. Transcriptome analysis of resistant and susceptible Medicago truncatula genotypes in response to spring black stem and leaf spot disease. BMC PLANT BIOLOGY 2024; 24:720. [PMID: 39075348 PMCID: PMC11285230 DOI: 10.1186/s12870-024-05444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Ascochyta blights cause yield losses in all major legume crops. Spring black stem (SBS) and leaf spot disease is a major foliar disease of Medicago truncatula and Medicago sativa (alfalfa) caused by the necrotrophic fungus Ascochyta medicaginicola. This present study sought to identify candidate genes for SBS disease resistance for future functional validation. We employed RNA-seq to profile the transcriptomes of a resistant (HM078) and susceptible (A17) genotype of M. truncatula at 24, 48, and 72 h post inoculation. Preliminary microscopic examination showed reduced pathogen growth on the resistant genotype. In total, 192 and 2,908 differentially expressed genes (DEGs) were observed in the resistant and susceptible genotype, respectively. Functional enrichment analysis revealed the susceptible genotype engaged in processes in the cell periphery and plasma membrane, as well as flavonoid biosynthesis whereas the resistant genotype utilized calcium ion binding, cell wall modifications, and external encapsulating structures. Candidate genes for disease resistance were selected based on the following criteria; among the top ten upregulated or downregulated genes in the resistant genotype, upregulated over time in the resistant genotype, hormone pathway genes, plant disease resistance genes, receptor-like kinases, contrasting expression profiles in QTL for disease resistance, and upregulated genes in enriched pathways. Overall, 22 candidate genes for SBS disease resistance were identified with support from the literature. These genes will be sources for future targeted mutagenesis and candidate gene validation potentially helping to improve disease resistance to this devastating foliar pathogen.
Collapse
Affiliation(s)
- Jacob R Botkin
- Plant Science Research Unit, United States Department of Agriculture, St Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaun J Curtin
- Plant Science Research Unit, United States Department of Agriculture, St Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
20
|
Liu XH, Liu XT, Wu Y, Li SA, Ren KD, Cheng M, Huang B, Yang Y, Liu PP. Broadening Horizons: Exploring the Cathepsin Family as Therapeutic Targets for Alzheimer's Disease. Aging Dis 2024:AD.2024.0456. [PMID: 39122455 DOI: 10.14336/ad.2024.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/02/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is an intricate neurodegenerative disorder characterized by the accumulation of misfolded proteins, including beta-amyloid (Aβ) and tau, leading to cognitive decline. Despite decades of research, the precise mechanisms underlying its onset and progression remain elusive. Cathepsins are a family of lysosomal enzymes that play vital roles in cellular processes, including protein degradation and regulation of immune responses. Emerging evidence suggests that cathepsins may be involved in AD pathogenesis. Cathepsins can influence the activation of microglia and astrocytes, the resident immune cells in the brain. However, cathepsin dysfunction may lead to the accumulation of misfolded proteins, notably Aβ and tau. In addition, dysregulated cathepsin activity may induce an exaggerated immune response, promoting chronic inflammation and neuronal dysfunction in patients with AD. By unraveling the classification, functions, and roles of cathepsins in AD's pathogenesis, this review sheds light on their intricate involvement in this devastating disease. Targeting cathepsin activity could be a promising and novel approach for mitigating the pathological processes that contribute to AD, providing new avenues for its treatment and prevention.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Tong Liu
- Clinical Laboratory, the First Hospital of Yongnian District, Yongnian, Hebei, China
| | - Yue Wu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Cheng
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Pitkänen M, Matilainen O. Milk Fat Globule Membrane-Containing Protein Powder Promotes Fitness in Caenorhabditis elegans. Nutrients 2024; 16:2290. [PMID: 39064733 PMCID: PMC11280102 DOI: 10.3390/nu16142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Milk-derived peptides and milk fat globule membrane (MFGM) have gained interest as health-promoting food ingredients. However, the mechanisms by which these nutraceuticals modulate the function of biological systems often remain unclear. We utilized Caenorhabditis elegans to elucidate how MFGM-containing protein powder (MProPow), previously used in a clinical trial, affect the physiology of this model organism. Our results demonstrate that MProPow does not affect lifespan but promotes the fitness of the animals. Surprisingly, gene expression analysis revealed that MProPow decreases the expression of genes functioning on innate immunity, which also translates into reduced survival on pathogenic bacteria. One of the innate immunity-associated genes showing reduced expression upon MProPow supplementation is cpr-3, the homolog of human cathepsin B. Interestingly, knockdown of cpr-3 enhances fitness, but not in MProPow-treated animals, suggesting that MProPow contributes to fitness by downregulating the expression of this gene. In summary, this research highlights the value of C. elegans in testing the biological activity of food supplements and nutraceuticals. Furthermore, this study should encourage investigations into whether milk-derived peptides and MFGM mediate their beneficial effects through the modulation of cathepsin B expression in humans.
Collapse
Affiliation(s)
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|
22
|
Liu R, Jiang L, Chen Y, Shao J, Chen K, Li X, Lv J, Cai W, Cai H, Zhu Z, Wang C, Zhou K, Huang J, Xiao J, Ni W, Wu C. Ginsenoside-Rh2 Promotes Functional Recovery after Spinal Cord Injury by Enhancing TFEB-Mediated Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14727-14746. [PMID: 38907713 DOI: 10.1021/acs.jafc.4c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Background: Following spinal cord injury (SCI), autophagy plays a positive role in neuronal protection, whereas pyroptosis triggers an inflammatory response. Ginsenoside-Rh2 (GRh2), known for its neuroprotective effects, is considered a promising drug. However, the exact molecular mechanisms underlying these protective effects remain unclear. Aim of the Study: Explore the therapeutic value of GRh2 in SCI and its potential mechanisms of action. Materials and Methods: An SCI mouse model was established, followed by random grouping and drug treatments under different conditions. Subsequently, the functional recovery of SCI mice after GRh2 treatment was assessed using hematoxylin and eosin, Masson's trichrome, and Nissl staining, footprint analysis, Basso Mouse Scale scoring, and inclined plane tests. The expression levels of relevant indicators in the mice were detected using Western blotting, immunofluorescence, and a quantitative polymerase chain reaction. Network pharmacology analysis was used to identify the relevant signaling pathways through which GRh2 exerts its therapeutic effects. Results: GRh2 promoted functional recovery after SCI. GRh2 significantly inhibits pyroptosis by enhancing autophagy in SCI mice. Simultaneously, the neuroprotective effect of GRh2, achieved through the inhibition of pyroptosis, is partially reversed by 3-methyladenine, an autophagy inhibitor. Additionally, the increase in autophagy induced by GRh2 is mediated by the promotion of transcription factor EB (TFEB) nuclear translocation and dephosphorylation. Partial attenuation of the protective effects of GRh2 was observed after TFEB knockdown. Additionally, GRh2 can modulate the activity of TFEB in mice post-SCI through the EGFR-MAPK signaling pathway, and NSC228155 (an EGFR activator) can partially reverse the effect of GRh2 on the EGFR-MAPK signaling pathway. Conclusions: GRh2 improves functional recovery after SCI by upregulating TFEB-mediated autophagic flux and inhibiting pyroptosis, indicating its potential clinical applicability.
Collapse
Affiliation(s)
- Rongjie Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqin Shao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kongbin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxu Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhefan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinfeng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
23
|
Wang Q, Yang F, Duo K, Liu Y, Yu J, Wu Q, Cai Z. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:3882-3898. [PMID: 38038880 DOI: 10.1007/s12035-023-03728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Fan Yang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kun Duo
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Cai
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer Center, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
24
|
Chen H, Wang S, Zhang X, Hua X, Liu M, Wang Y, Wu S, He W. Pharmacological inhibition of RUNX1 reduces infarct size after acute myocardial infarction in rats and underlying mechanism revealed by proteomics implicates repressed cathepsin levels. Funct Integr Genomics 2024; 24:113. [PMID: 38862712 PMCID: PMC11166773 DOI: 10.1007/s10142-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Myocardial infarction (MI) results in prolonged ischemia and the subsequent cell death leads to heart failure which is linked to increased deaths or hospitalizations. New therapeutic targets are urgently needed to prevent cell death and reduce infarct size among patients with MI. Runt-related transcription factor-1 (RUNX1) is a master-regulator transcription factor intensively studied in the hematopoietic field. Recent evidence showed that RUNX1 has a critical role in cardiomyocytes post-MI. The increased RUNX1 expression in the border zone of the infarct heart contributes to decreased cardiac contractile function and can be therapeutically targeted to protect against adverse cardiac remodelling. This study sought to investigate whether pharmacological inhibition of RUNX1 function has an impact on infarct size following MI. In this work we demonstrate that inhibiting RUNX1 with a small molecule inhibitor (Ro5-3335) reduces infarct size in an in vivo rat model of acute MI. Proteomics study using data-independent acquisition method identified increased cathepsin levels in the border zone myocardium following MI, whereas heart samples treated by RUNX1 inhibitor present decreased cathepsin levels. Cathepsins are lysosomal proteases which have been shown to orchestrate multiple cell death pathways. Our data illustrate that inhibition of RUNX1 leads to reduced infarct size which is associated with the suppression of cathepsin expression. This study demonstrates that pharmacologically antagonizing RUNX1 reduces infarct size in a rat model of acute MI and unveils a link between RUNX1 and cathepsin-mediated cell death, suggesting that RUNX1 is a novel therapeutic target that could be exploited clinically to limit infarct size after an acute MI.
Collapse
Affiliation(s)
- Hengshu Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Simiao Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Gallwitz L, Bleibaum F, Voss M, Schweizer M, Spengler K, Winter D, Zöphel F, Müller S, Lichtenthaler S, Damme M, Saftig P. Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis. Cell Mol Life Sci 2024; 81:227. [PMID: 38775843 PMCID: PMC11111660 DOI: 10.1007/s00018-024-05274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.
Collapse
Affiliation(s)
- Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), UKE, Falkenried 94, 20251, Hamburg, Germany
| | - Katharina Spengler
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Frederic Zöphel
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Stephan Müller
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
27
|
Nasirabadi FKR, Doosti A. Dermaseptin B2 bioactive gene's potential for anticancer and anti-proliferative effect is linked to the regulation of the BAX/BBC3/AKT pathway. Med Oncol 2024; 41:162. [PMID: 38767753 DOI: 10.1007/s12032-024-02384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Khak-Rah Nasirabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
28
|
Li J, Song J, Shao L, Zhang X, Wang Z, Li G, Wang J, Zhang J. Acid-assisted self-assembly of pyrene-capped tyrosine ruptures lysosomes to induce cancer cell apoptosis. RSC Adv 2024; 14:15840-15847. [PMID: 38756853 PMCID: PMC11095371 DOI: 10.1039/d4ra01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Induced lysosomal membrane permeabilization (LMP) by peptide self-assembly has emerged as an effective platform for lysosome-targeted cancer therapy. In this study, we shift this strategical paradigm and present an innovative approach to LMP induction through amino acid-based self-assembly. Pyrene-capped tyrosine (Py-Tyr), as a proof-of-concept molecule, is designed with acidity-responsive self-assembly. Under acidic conditions (pH 4), Py-Tyr is protonated with reduced charge repulsion, and self-assembles into micrometer-scaled aggregates, which exceed the biological size of lysosomes. Cell experiments showed that Py-Tyr specifically accumulates in lysosomes and induces lysosome rupture, leading to the release of cathepsin B into the cytoplasm for subsequent apoptosis activation in cancer cells. This study capitalizes on the concept of amino acid assembly for efficient LMP induction, providing a simple and versatile platform for precise and effective therapeutic interventions in cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xianpeng Zhang
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Ziyi Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiansheng Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
29
|
Sellin ML, Hansmann D, Bader R, Jonitz-Heincke A. Influence of metallic particles and TNF on the transcriptional regulation of NLRP3 inflammasome-associated genes in human osteoblasts. Front Immunol 2024; 15:1397432. [PMID: 38751427 PMCID: PMC11094288 DOI: 10.3389/fimmu.2024.1397432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction The release of mature interleukin (IL-) 1β from osteoblasts in response to danger signals is tightly regulated by the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome. These danger signals include wear products resulting from aseptic loosening of joint arthroplasty. However, inflammasome activation requires two different signals: a nuclear factor-kappa B (NF-κB)-activating priming signal and an actual inflammasome-activating signal. Since human osteoblasts react to wear particles via Toll-like receptors (TLR), particles may represent an inflammasome activator that can induce both signals. Methods Temporal gene expression profiles of TLRs and associated intracellular signaling pathways were determined to investigate the period when human osteoblasts take up metallic wear particles after initial contact and initiate a molecular response. For this purpose, human osteoblasts were treated with metallic particles derived from cobalt-chromium alloy (CoCr), lipopolysaccharides (LPS), and tumor necrosis factor-alpha (TNF) alone or in combination for incubation times ranging from one hour to three days. Shortly after adding the particles, their uptake was observed by the change in cell morphology and spectral data. Results Exposure of osteoblasts to particles alone increased NLRP3 inflammasome-associated genes. The response was not significantly enhanced when cells were treated with CoCr + LPS or CoCr + TNF, whereas inflammation markers were induced. Despite an increase in genes related to the NLRP3 inflammasome, the release of IL-1β was unaffected after contact with CoCr particles. Discussion Although CoCr particles affect the expression of NLRP3 inflammasome-associated genes, a single stimulus was not sufficient to prime and activate the inflammasome. TNF was able to prime the NLRP3 inflammasome of human osteoblasts.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | | | | | | |
Collapse
|
30
|
Wang Z, Wang X, Liu Y, Wang X, Meng N, Cong P, Song Y, Xu J, Xue C. Sea Cucumber Plasmalogen Regulates the Lipid Profile in High-Fat Diet Mouse Liver via Lipophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9842-9855. [PMID: 38630981 DOI: 10.1021/acs.jafc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The sea cucumber plasmalogen PlsEtn has been shown to be associated with various chronic diseases related to lipid metabolism. However, the mechanism is unclear. Therefore, the present study used the sea cucumber plasmanylcholine PakCho as a structural contrast to PlsEtn and assessed its effect in 8 week high-fat diet (HFD)-fed mice. The lipidomic approach based on high-resolution mass spectrometry combined with molecular biology techniques was used to evaluate the mechanism of PlsEtn. The results showed that both PlsEtn and PakCho significantly inhibited an increase in mouse body weight and liver total triglyceride and total cholesterol levels caused by HFD. In addition, oil red O staining demonstrated that lipid droplets stored in the liver were degraded. Meanwhile, untargeted lipidomic experiments revealed that total lipids (increased by 42.8 mmol/mg prot; p < 0.05), triglycerides (increased by 38.9 mmol/mg prot; p < 0.01), sphingolipids (increased by 1.5 mmol/mg prot; p < 0.0001), and phospholipids (increased by 2.5 mmol/mg prot; p < 0.05) were all significantly elevated under HFD. PlsEtn resolved lipid metabolism disorders by alleviating the abnormal expression of lipid subclasses. In addition, five lipid molecular species, PE (18:1/20:4), PE (18:1/20:3), PE (18:1/18:3), TG (16:0/16:0/17:0), and TG (15:0/16:0/18:1), were identified as the biomarkers of HFD-induced lipid metabolism disorders. Finally, lipophagy-associated protein expression analysis showed that HFD abnormally activated lipophagy via ULK1 phosphorylation and PlsEtn alleviated lipophagy disorder through lysosomal function promotion. In addition, PlsEtn performed better than PakCho. Taken together, the current study results unraveled the mechanism of PlsEtn in alleviating lipid metabolism disorder and offered a new theoretical foundation for the high-value development of sea cucumber.
Collapse
Affiliation(s)
- Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
- Qingdao Marine Science and Technology Center, Qingdao 266235, China
| |
Collapse
|
31
|
Abstract
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Collapse
Affiliation(s)
- Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Dimitry Ofengeim
- Sanofi, Rare and Neurological Diseases Research, Cambridge, MA, USA.
| |
Collapse
|
32
|
Becker A, Filipp M, Lantz C, Glinton K, Thorp EB. HIF-1α is Required to Differentiate the Neonatal Macrophage Secretome from Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591000. [PMID: 38712137 PMCID: PMC11071477 DOI: 10.1101/2024.04.24.591000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The immune response to stress diverges with age, with neonatal macrophages implicated in tissue regeneration versus tissue scarring and maladaptive inflammation in adults. Integral to the macrophage stress response is the recognition of hypoxia and pathogen-associated molecular patterns (PAMPs), which are often coupled. The age-specific, cell-intrinsic nature of this stress response remains vague. To uncover age-defined divergences in macrophage crosstalk potential after exposure to hypoxia and PAMPs, we interrogated the secreted proteomes of neonatal versus adult macrophages via non-biased mass spectrometry. Through this approach, we newly identified age-specific signatures in the secretomes of neonatal versus adult macrophages in response to hypoxia and the prototypical PAMP, lipopolysaccharide (LPS). Neonatal macrophages polarized to an anti-inflammatory, regenerative phenotype protective against apoptosis and oxidative stress, dependent on hypoxia inducible transcription factor-1α ( HIF-1α). In contrast, adult macrophages adopted a pro-inflammatory, glycolytic phenotypic signature consistent with pathogen killing. Taken together, these data uncover fundamental age and HIF-1α dependent macrophage programs that may be targeted to calibrate the innate immune response during stress and inflammation.
Collapse
|
33
|
Thomas SA, Yong HM, Rule AM, Gour N, Lajoie S. Air Pollution Drives Macrophage Senescence through a Phagolysosome-15-Lipoxygenase Pathway. Immunohorizons 2024; 8:307-316. [PMID: 38625119 PMCID: PMC11066713 DOI: 10.4049/immunohorizons.2300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.
Collapse
Affiliation(s)
- Sarah A. Thomas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Naina Gour
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stephane Lajoie
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Fu Z, Wang D, Zheng C, Xie M, Chen Y, Zhou Y, Huang Y, Song Y, Hong W. Elimination of intracellular Ca 2+ overload by BAPTA‑AM liposome nanoparticles: A promising treatment for acute pancreatitis. Int J Mol Med 2024; 53:34. [PMID: 38390952 PMCID: PMC10903929 DOI: 10.3892/ijmm.2024.5358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2‑bis(2‑aminophenoxy)ethane‑N,N,N',N'‑tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA‑AM), a cell‑permeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models in vitro, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and in vivo, intra‑ductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTA‑AM‑loaded LN (BLN) effectively and rapidly eliminated excessive Ca2+ and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNF‑α, IL‑6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca2+ overload in patients with AP.
Collapse
Affiliation(s)
- Zailin Fu
- Department of Pharmacy, Linping Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310000, P.R. China
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, P.R. China
| | - Dingsheng Wang
- Department of Pharmacy, Linping Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310000, P.R. China
| | - Caiyun Zheng
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, P.R. China
| | - Minghua Xie
- Department of Pharmacy, Linping Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310000, P.R. China
| | - Yifang Chen
- Department of Pharmacy, Linping Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310000, P.R. China
| | - Yi Zhou
- Department of Pharmacy, Linping Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310000, P.R. China
| | - Yan Huang
- Department of Pharmacy, Linping Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310000, P.R. China
| | - Ying Song
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiyong Hong
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
35
|
Stueckle TA, Jensen J, Coyle JP, Derk R, Wagner A, Dinu CZ, Kornberg TG, Friend SA, Dozier A, Agarwal S, Gupta RK, Rojanasakul LW. In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches. Part Fibre Toxicol 2024; 21:16. [PMID: 38509617 PMCID: PMC10956245 DOI: 10.1186/s12989-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Collapse
Affiliation(s)
- Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - Jake Jensen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Jayme P Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Raymond Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alixandra Wagner
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Cerasela Zoica Dinu
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Tiffany G Kornberg
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alan Dozier
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Sushant Agarwal
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Rakesh K Gupta
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| |
Collapse
|
36
|
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del-Cid Pellitero E, Chen CX, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupre N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, HassinBaer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. RESEARCH SQUARE 2024:rs.3.rs-3979098. [PMID: 38562709 PMCID: PMC10984014 DOI: 10.21203/rs.3.rs-3979098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Methods Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. Results We first identified specific non-coding variants in CTSB that drive the association with PD and are linked to changes in brain CTSB expression levels. Using iPSC-derived dopaminergic neurons we then find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. Moreover, in cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. Similarly, in midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition or knockout potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. Conclusions The results of our genetic and functional studies indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
| | - Kathy He
- Montreal Neurological Institute-Hospital
| | | | | | | | | | | | | | | | | | - Wen Luo
- Montreal Neurological Institute-Hospital
| | | | | | | | | | | | | | | | | | - Cheryl Waters
- Columbia University Medical Center: Columbia University Irving Medical Center
| | - Oury Monchi
- Université de Montréal: Universite de Montreal
| | | | | | - Irina Miliukhina
- Institute of the Human Brain RAS: FGBUN Institut mozga celoveka im N P Behterevoj Rossijskoj akademii nauk
| | | | | | | | - Lior Greenbaum
- Sheba Medical Center: Sheba Medical Center at Tel Hashomer
| | | | - Roy N Alcalay
- Tel Aviv Ichilov-Sourasky Medical Center: Tel Aviv Sourasky Medical Center
| | | | | | - Ziv Gan-Or
- Montreal Neurological Institute-Hospital
| | | |
Collapse
|
37
|
Chen Y, Zhang H, Jiang L, Cai W, Kuang J, Geng Y, Xu H, Li Y, Yang L, Cai Y, Wang X, Xiao J, Ni W, Zhou K. DADLE promotes motor function recovery by inhibiting cytosolic phospholipase A 2 mediated lysosomal membrane permeabilization after spinal cord injury. Br J Pharmacol 2024; 181:712-734. [PMID: 37766498 DOI: 10.1111/bph.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiaxuan Kuang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Tanaka H, Ozawa R, Henmi Y, Hosoda M, Karasawa T, Takahashi M, Takahashi H, Iwata H, Kuwayama T, Shirasuna K. Gasdermin D regulates soluble fms-like tyrosine kinase 1 release in macrophages. Reprod Biol 2024; 24:100857. [PMID: 38295720 DOI: 10.1016/j.repbio.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 04/02/2024]
Abstract
Preeclampsia (PE) is a serious complication, and soluble fms-like tyrosine kinase (sFLT1) released from the placenta is one of the causes of PE pathology. Trophoblasts are the primary source of sFLT1; however, monocytes/macrophages exist enough in the placenta can also secrete sFLT1. Sterile inflammatory responses, especially NLRP3 inflammasome and its downstream gasdermin D (GSDMD)-regulated pyroptosis, may be involved in the development of PE pathology. In this study, we investigated whether human monocyte/macrophage cell line THP-1 cells secrete sFLT1 depending on the NLRP3 inflammasome and GSDMD. To differentiate THP-1 monocytes into macrophages, treatment with phorbol 12-myristate 13-acetate (PMA) induced sFLT1 with interleukin (IL)- 1β, but did not induce cell lytic death. IL-1β secretion induced by PMA inhibited by deletion of NLRP3 and inhibitors of NLRP3 and caspase-1, but deletion of NLRP3 and these inhibitors did not affect sFLT1 secretion in THP-1 cells. Both gene deletion and inhibition of GSDMD dramatically decreased IL-1β and sFLT1 secretion from THP-1 cells. Treatment with CA074-ME (a cathepsin B inhibitor) also reduced the secretion of both sFLT1 and IL-1β in THP-1 cells. In conclusion, THP-1 macrophages release sFLT1 in a GSDMD-dependent manner, but not in the NLRP3 inflammasome-dependent manner, and this sFLT1 release may be associated with the non-lytic role of GSDMD. In addition, sFLT1 levels induced by PMA are associated with lysosomal cathepsin B in THP-1 macrophages. We suggest that sFLT1 synthesis regulated by GSDMD are involved in the pathology of PE.
Collapse
Affiliation(s)
- Hazuki Tanaka
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Yuka Henmi
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Manabu Hosoda
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan.
| |
Collapse
|
39
|
Coppola M, Mach L, Gallois P. Plant cathepsin B, a versatile protease. FRONTIERS IN PLANT SCIENCE 2024; 15:1305855. [PMID: 38463572 PMCID: PMC10920296 DOI: 10.3389/fpls.2024.1305855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Abstract
Plant proteases are essential enzymes that play key roles during crucial phases of plant life. Some proteases are mainly involved in general protein turnover and recycle amino acids for protein synthesis. Other proteases are involved in cell signalling, cleave specific substrates and are key players during important genetically controlled molecular processes. Cathepsin B is a cysteine protease that can do both because of its exopeptidase and endopeptidase activities. Animal cathepsin B has been investigated for many years, and much is known about its mode of action and substrate preferences, but much remains to be discovered about this potent protease in plants. Cathepsin B is involved in plant development, germination, senescence, microspore embryogenesis, pathogen defence and responses to abiotic stress, including programmed cell death. This review discusses the structural features, the activity of the enzyme and the differences between the plant and animal forms. We discuss its maturation and subcellular localisation and provide a detailed overview of the involvement of cathepsin B in important plant life processes. A greater understanding of the cell signalling processes involving cathepsin B is needed for applied discoveries in plant biotechnology.
Collapse
Affiliation(s)
- Marianna Coppola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Luo L, Chen H, Xie K, Xiang J, Chen J, Lin Z. Cathepsin B serves as a potential prognostic biomarker and correlates with ferroptosis in rheumatoid arthritis. Int Immunopharmacol 2024; 128:111502. [PMID: 38199197 DOI: 10.1016/j.intimp.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a long-term, systemic, and progressive autoimmune disorder. It has been established that ferroptosis, a type of iron-dependent lipid peroxidation cell death, is closely associated with RA. Fibroblast-like synoviocytes (FLS) are the main drivers of RA joint destruction, and they possess a high concentration of endoplasmic reticulum structure. Therefore, targeting ferroptosis and RA-FLS may be a potential treatment for RA. METHODS Four machine learning algorithms were utilized to detect the essential genes linked to RA, and an XGBoost model was created based on the identified genes. SHAP values were then used to visualize the factors that affect the development and progression of RA, and to analyze the importance of individual features in predicting the outcomes. Moreover, WGCNA and PPI were employed to identify the key genes related to RA, and CIBERSORT was used to analyze the correlation between the chosen genes and immune cells. Finally, the findings were validated through in vitro cell experiments, such as CCK-8 assay, lipid peroxidation assay, iron assay, GSH assay, and Western blot. RESULTS Bioinformatics and machine learning were employed to identify cathepsin B (CTSB) as a potential biomarker for RA. CTSB is highly expressed in RA patients and has been found to have a positive correlation with macrophages M2, neutrophils, and T cell follicular helper cells, and a negative correlation with CD8 T cells, monocytes, Tregs, and CD4 memory T cells. To investigate the effect of CTSB on RA-FLS from RA patients, the CTSB inhibitor CA-074Me was used and it was observed to reduce the proliferation and migration of RA-FLS, as indicated by the accumulation of lipid ROS and ferrous ions, and induce ferroptosis in RA-FLS. CONCLUSIONS This study identified CTSB, a gene associated with ferroptosis, as a potential biomarker for diagnosing and managing RA. Moreover, CA-074Me, a CTSB inhibitor, was observed to cause ferroptosis and reduce the migratory capacity of RA-FLS.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.
| | - Haiqing Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Kangping Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jing Xiang
- Graduate School, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zhiping Lin
- The Orthopedic Department, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| |
Collapse
|
41
|
Sagar S, Gadkari P, Hiwale KM, Jagtap MM, Naseri S. Role of Cathepsin B Expression in Oral Squamous Cell Carcinoma: A Comprehensive Review. Cureus 2024; 16:e54267. [PMID: 38500921 PMCID: PMC10945153 DOI: 10.7759/cureus.54267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
This comprehensive review delves into the intricate landscape of oral squamous cell carcinoma (OSCC) by examining the role of cathepsin B expression in its pathogenesis. OSCC, a prevalent and clinically significant oral malignancy, poses a considerable global health burden, necessitating a thorough exploration of its underlying molecular mechanisms. Cathepsin B, a lysosomal cysteine protease, emerges as a critical player in OSCC, influencing tumour initiation, invasion, and metastasis. The review begins with a brief overview of OSCC, emphasizing its epidemiological and clinical features, followed by exploring the significance of studying cathepsin B expression in this context. In the manuscript, the structure and function of cathepsin B are elucidated, providing a foundation for understanding its aberrant expression in OSCC. Clinical studies revealing correlations with tumour grade and stage, along with prognostic significance, are scrutinized, offering insights into the potential diagnostic and prognostic utility of cathepsin B. The biological functions of cathepsin B in OSCC, including its impact on tumour invasion and modulation of apoptosis, are comprehensively discussed. The Therapeutic Implications section explores targeting cathepsin B as a potential strategy, emphasizing the need for future research to overcome associated challenges. In the Conclusion section, the review synthesizes key findings, delineates implications for future research, and highlights the potential impact of cathepsin B on OSCC diagnosis and treatment, contributing to the ongoing efforts to advance our understanding of this complex malignancy, which is associated with a high mortality rate and improve clinical outcomes.
Collapse
Affiliation(s)
- Shakti Sagar
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pravin Gadkari
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - K M Hiwale
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Miheer M Jagtap
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Suhit Naseri
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
42
|
Thomas SA, Yong HM, Rule AM, Gour N, Lajoie S. Air pollution drives macrophage senescence through a phagolysosome-15-lipoxygenase pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574228. [PMID: 38260346 PMCID: PMC10802326 DOI: 10.1101/2024.01.04.574228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Urban particulate matter (uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extra-pulmonary disorders like heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. While it is known that uPM exposure impairs immune function, this deficit is multi-faceted and incompletely understood, partly due to the use of particulates such as diesel exhaust particle (DEP) as a surrogate for true uPM. uPM was collected from several locations in the USA, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages (BMDMs) were stimulated with uPM or reference particulates (e.g., DEP) to assess senescence-related parameters. We report that uPM-exposed BMDMs adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposures. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptor. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest uPM exposure leads to macrophage senescence, which may contribute to immunopathology.
Collapse
Affiliation(s)
- Sarah A. Thomas
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Naina Gour
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stephane Lajoie
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
44
|
Heber N, Kuhn BJ, Strobel TD, Lohrey C, Krijgsveld J, Hoppe-Seyler K, Hoppe-Seyler F. The impact of cycling hypoxia on the phenotype of HPV-positive cervical cancer cells. J Med Virol 2023; 95:e29280. [PMID: 38054507 DOI: 10.1002/jmv.29280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Cycling hypoxia (cycH) is a prevalent form of tumor hypoxia that is characterized by exposure of tumor cells to recurrent phases of hypoxia and reoxygenation. CycH has been associated with a particularly aggressive cellular phenotype of tumor cells and increased therapy resistance. By performing comparative analyses under normoxia, physoxia, chronic hypoxia, and cycH, we here uncover distinct effects of cycH on the phenotype of human papillomavirus (HPV)-positive cervical cancer cells. We show that-other than under chronic hypoxia-viral E6/E7 oncogene expression is largely maintained under cycH as is the E6/E7-dependent regulation of p53 and retinoblastoma protein. Further, cycH enables HPV-positive cancer cells to evade prosenescent chemotherapy, similar to chronic hypoxia. Moreover, cells under cycH exhibit a particularly pronounced resistance to the proapoptotic effects of Cisplatin. Quantitative proteome analyses reveal that cycH induces a unique proteomic signature in cervical cancer cells, which includes a significant downregulation of luminal lysosomal proteins. These encompass the potentially proapoptotic cathepsins B and cathepsin L, which, however, appear not to affect the response to Cisplatin under any of the O2 conditions tested. Rather, we show that the proapoptotic Caspase 8/BH3-interacting domain death agonist (BID) cascade plays a pivotal role for the efficiency of Cisplatin-induced apoptosis in HPV-positive cancer cells under all investigated O2 conditions. In addition, we provide evidence that BID activation by Cisplatin is impaired under cycH, which could contribute to the high resistance to the proapoptotic effects of Cisplatin. Collectively, this study provides the first insights into the profound phenotypic alterations induced by cycH in HPV-positive cancer cells, with implications for their therapeutic susceptibility.
Collapse
Affiliation(s)
- Nora Heber
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bianca J Kuhn
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias D Strobel
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Balamkundu S, Liu CF. Lysosomal-Cleavable Peptide Linkers in Antibody-Drug Conjugates. Biomedicines 2023; 11:3080. [PMID: 38002080 PMCID: PMC10669454 DOI: 10.3390/biomedicines11113080] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-drug Conjugates (ADCs) are a powerful therapeutic modality for cancer treatment. ADCs are multi-functional biologics in which a disease-targeting antibody is conjugated to an effector payload molecule via a linker. The success of currently used ADCs has been largely attributed to the development of linker systems, which allow for the targeted release of cytocidal payload drugs inside cancer cells. Many lysosomal proteases are over expressed in human cancers. They can effectively cleave a variety of peptide sequences, which can be exploited for the design of ADC linker systems. As a well-established linker, valine-citrulline-p-aminobenzyl carbamate (ValCitPABC) is used in many ADCs that are already approved or under preclinical and clinical development. Although ValCitPABC and related linkers are readily cleaved by cathepsins in the lysosome while remaining reasonably stable in human plasma, many studies have shown that they are susceptible to carboxylesterase 1C (Ces1C) in mouse and rat plasma, which hinders the preclinical evaluation of ADCs. Furthermore, neutropenia and thrombocytopenia, two of the most commonly observed dose-limiting adverse effects of ADCs, are believed to result from the premature hydrolysis of ValCitPABC by human neutrophil elastase. In addition to ValCitPABC, the GGFG tetrapeptidyl-aminomethoxy linker is also cathepsin-cleavable and is used in the highly successful ADC drug, DS8201a. In addition to cathepsin-cleavable linkers, there is also growing interest in legumain-sensitive linkers for ADC development. Increasing plasma stability while maintaining lysosomal cleavability of ADC linkers is an objective of intensive current research. This review reports recent advances in the design and structure-activity relationship studies of various peptide/peptidomimetic linkers in this field.
Collapse
Affiliation(s)
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
46
|
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del Cid Pellitero E, Chen CXQ, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566693. [PMID: 38014143 PMCID: PMC10680785 DOI: 10.1101/2023.11.11.566693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Kathy He
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Konstantin Senkevich
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Nathan Karpilovsky
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Ghislaine Deyab
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Yuting Cousineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Daria Nikanorova
- Research Department, Bioinformatics Institute, Saint-Petersburg, Russia
| | - Taylor Goldsmith
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Esther Del Cid Pellitero
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Wen Luo
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Zhipeng You
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Isabella Pietrantonio
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Thomas Goiran
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Jamil Ahmad
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Jennifer A Ruskey
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Farnaz Asayesh
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Dan Spiegelman
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec - Université Laval, Quebec City, G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Institute of the Human Brain of RAS, St. Petersburg, Russia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Austen Milnerwood
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Ziv Gan-Or
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
47
|
Wu AYT, Sekar P, Huang DY, Hsu SH, Chan CM, Lin WW. Spatiotemporal roles of AMPK in PARP-1- and autophagy-dependent retinal pigment epithelial cell death caused by UVA. J Biomed Sci 2023; 30:91. [PMID: 37936170 PMCID: PMC10629085 DOI: 10.1186/s12929-023-00978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.
Collapse
Affiliation(s)
- Anthony Yan-Tang Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
48
|
Sheu ML, Pan LY, Yang CN, Sheehan J, Pan LY, You WC, Wang CC, Chen HS, Pan HC. Neuronal Death Caused by HMGB1-Evoked via Inflammasomes from Thrombin-Activated Microglia Cells. Int J Mol Sci 2023; 24:12664. [PMID: 37628850 PMCID: PMC10454604 DOI: 10.3390/ijms241612664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Microglial cells are a macrophage-like cell type residing within the CNS. These cells evoke pro-inflammatory responses following thrombin-induced brain damage. Inflammasomes, which are large caspase-1-activating protein complexes, play a critical role in mediating the extracellular release of HMGB1 in activated immune cells. The exact role of inflammasomes in microglia activated by thrombin remains unclear, particularly as it relates to the downstream functions of HMGB1. After receiving microinjections of thrombin, Sprague Dawley rats of 200 to 250 gm were studied in terms of behaviors and immunohistochemical staining. Primary culture of microglia cells and BV-2 cells were used for the assessment of signal pathways. In a water maze test and novel object recognition analysis, microinjections of thrombin impaired rats' short-term and long-term memory, and such detrimental effects were alleviated by injecting anti-HMGB-1 antibodies. After thrombin microinjections, the increased oxidative stress of neurons was aggravated by HMGB1 injections but attenuated by anti-HMGB-1 antibodies. Such responses occurred in parallel with the volume of activated microglia cells, as well as their expressions of HMGB-1, IL-1β, IL-18, and caspase-I. In primary microglia cells and BV-2 cell lines, thrombin also induced NO release and mRNA expressions of iNOS, IL-1β, IL-18, and activated caspase-I. HMGB-1 aggravated these responses, which were abolished by anti-HMGB-1 antibodies. In conclusion, thrombin induced microglia activation through triggering inflammasomes to release HMGB1, contributing to neuronal death. Such an action was counteracted by the anti-HMGB-1 antibodies. The refinement of HMGB-1 modulated the neuro-inflammatory response, which was attenuated in thrombin-associated neurodegenerative disorder.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Liang-Yi Pan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA;
| | - Liang-Yu Pan
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 40210, Taiwan;
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan;
| | - Hong-Shiu Chen
- Department of Neurosurgery, Tungs’ Taichung Metro-Harbor Hospital, Taichung 40210, Taiwan;
| | - Hung-Chuan Pan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40210, Taiwan
| |
Collapse
|
49
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
50
|
Egorova VS, Kolesova EP, Lopus M, Yan N, Parodi A, Zamyatnin AA. Smart Delivery Systems Responsive to Cathepsin B Activity for Cancer Treatment. Pharmaceutics 2023; 15:1848. [PMID: 37514035 PMCID: PMC10386206 DOI: 10.3390/pharmaceutics15071848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. However, aberrant overexpression of cathepsin B and its enzymatic activity is associated with different pathological conditions, including cancer. Cathepsin B overexpression in tumor tissues makes this enzyme an important target for smart delivery systems, responsive to the activity of this enzyme. The generation of technologies which therapeutic effect is activated as a result of cathepsin B cleavage provides an opportunity for tumor-targeted therapy and controlled drug release. In this review, we summarized different technologies designed to improve current cancer treatments responsive to the activity of this enzyme that were shown to play a key role in disease progression and response to the treatment.
Collapse
Affiliation(s)
- Vera S Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Ekaterina P Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|