1
|
Ghosal J, Sinchana VK, Chakrabarty S. Ferroptosis meets microRNAs: A new frontier in anti-cancer therapy. Free Radic Biol Med 2025; 226:266-278. [PMID: 39547521 DOI: 10.1016/j.freeradbiomed.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Ferroptosis is an iron-dependent lipid peroxidation-mediated cell death. It is distinct from other types of cellular death and is recognized as a potential target for cancer therapy. This review discusses the mechanisms of ferroptosis, including its induction and inhibition pathways, its role in lipid metabolism, and its connection to various signaling pathways. We also explored the relationship between microRNAs and ferroptosis, highlighting the potential role of miRNAs targeting genes involved in ferroptosis. Role of miRNAs in metabolic reprogramming during carcinogenesis is well documented. We have discussed the role of miRNAs regulating expression of genes involved in iron metabolism, lipid metabolism, and redox metabolism which are associated with regulation of ferroptosis. In conclusion, we addressed various opportunities and challenges identified in ferroptosis research and its clinical implementation stressing the necessity of customized treatment plans based on each patient's unique vulnerability to the disease. Our article provides a complete overview of microRNAs and ferroptosis, with possible implications for cancer therapy.
Collapse
Affiliation(s)
- Joydeep Ghosal
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - V K Sinchana
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Ma D, Du H, Huang Y, Pan A, Gan L. Study of the effect of azithromycin on airway remodeling in asthma via the SAPK/JNK pathway. J Cardiothorac Surg 2024; 19:687. [PMID: 39736750 DOI: 10.1186/s13019-024-03193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/01/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Asthma is a prevalent status attributing to lower respiratory tract chronic inflammation. Azithromycin (AZM) is known to be effective against asthma. Thus, this study delved into the mechanism of AZM repressing airway remodeling (AR) via the SAPK/JNK pathway in asthma. METHODS Simulated asthmatic AR mouse model was developed by induction with ovalbumin (OVA) and intervened with AZM or dexamethasone (DEX) and anisomycin (JNK activator). Pathological changes in mouse lung tissues and AR were assessed by HE and Masson staining. The numbers of inflammatory cells, macrophages, eosinophils, neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) were detected by Diff-Quik staining. Inflammatory factor levels (IL-6, TNF-α, IL-4) in BALF, and Collagen I, Collagen III, SAPK/JNK and p-SAPK/JNK protein levels in lung tissues were measured by ELISA and Western blot. RESULTS The OVA-led asthmatic mouse model was successfully established. Relative to the OVA group, AZM and DEX treatment improved pulmonary smooth muscle thickening and bronchial epithelial fibrosis, reduced inflammatory cells, macrophages, eosinophils, neutrophils and lymphocytes in BALF, inhibited inflammatory factor TNF-α, IL-6, and IL-4 levels in BALF, and down-regulated Collagen I, Collagen III, and p-SAPK/JNK protein levels in lung tissues, with no prominent difference between the two regimens. JNK activator partially reversed the protective effect of AZM against OVA-induced asthma in mice. CONCLUSION AZM alleviated airway inflammation by inhibiting the SAPK/JNK pathway, thereby repressing AR in asthmatic mice. This study provided partial theoretical basis for clarifying asthma pathogenesis and new ideas for treating asthma.
Collapse
Affiliation(s)
- Dannv Ma
- Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009.
| | - Huaqing Du
- Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009
| | - Yi Huang
- Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009
| | - Aiwu Pan
- Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009
| | - Lu Gan
- Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009
| |
Collapse
|
3
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
5
|
Xu Y, Wang S, Xiong J, Zheng P, Zhang H, Chen S, Ma Q, Shen J, Velkov T, Dai C, Jiang H. Fe 3O 4-Incorporated Metal-Organic Framework for Chemo/Ferroptosis Synergistic Anti-Tumor via the Enhanced Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303839. [PMID: 38334034 DOI: 10.1002/adhm.202303839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Metal-organic framework (MOF)-based drug delivery nanomaterials for cancer therapy have attracted increasing attention in recent years. Here, an enhanced chemodynamic anti-tumor therapy strategy by promoting the Fenton reaction by using core-shell zeolitic imidazolate framework-8 (ZIF-8)@Fe3O4 as a therapeutic platform is proposed. Carboxymethyl cellulose (CMC) is used as a stabilizer of Fe3O4, which is then decorated on the surface of ZIF-8 via the electrostatic interaction and serves as an efficient Fenton reaction trigger. Meanwhile, the pH-responsive ZIF-8 scaffold acts as a container to encapsulate the chemotherapeutic drug doxorubicin (DOX). The obtained DOX-ZIF-8@Fe3O4/CMC (DZFC) nanoparticles concomitantly accelerate DOX release and generate more hydroxyl radicals by targeting the lysosomes in cancer cells. In vitro and in vivo studies verify that the DZFC nanoparticles trigger glutathione peroxidase 4 (GPX4)-dependent ferroptosis via the activation of the c-Jun N-terminal kinases (JNK) signaling pathway, following to achieve the chemo/ferroptosis synergistic anti-tumor efficacy. No marked toxic effects are detected during DZFC treatment in a tumor-bearing mouse model. This composite nanoparticle remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theragnostic nanomedicines.
Collapse
Affiliation(s)
- Yuliang Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Jincheng Xiong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Pimiao Zheng
- Department of Animal Pharmacy, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| | - Huixia Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Shiqi Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Qiang Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Victoria, 3800, Australia
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
6
|
Chuang YT, Yen CY, Chien TM, Chang FR, Tsai YH, Wu KC, Tang JY, Chang HW. Ferroptosis-Regulated Natural Products and miRNAs and Their Potential Targeting to Ferroptosis and Exosome Biogenesis. Int J Mol Sci 2024; 25:6083. [PMID: 38892270 PMCID: PMC11173094 DOI: 10.3390/ijms25116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan;
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
9
|
Liu S, Yue M, Lu Y, Wang Y, Luo S, Liu X, Jiang J. Advancing the frontiers of colorectal cancer treatment: harnessing ferroptosis regulation. Apoptosis 2024; 29:86-102. [PMID: 37752371 DOI: 10.1007/s10495-023-01891-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
In recent years, colorectal cancer incidence and mortality have increased significantly due to poor lifestyle choices. Despite the development of various treatments, their effectiveness against advanced/metastatic colorectal cancer remains unsatisfactory due to drug resistance. However, ferroptosis, a novel iron-dependent cell death process induced by lipid peroxidation and elevated reactive oxygen species (ROS) levels along with reduced activity of the glutathione peroxidase 4 (GPX4) antioxidant enzyme system, shows promise as a therapeutic target for colorectal cancer. This review aims to delve into the regulatory mechanisms of ferroptosis in colorectal cancer, providing valuable insights into potential therapeutic approaches. By targeting ferroptosis, new avenues can be explored for innovative therapies to combat colorectal cancer more effectively. In addition, understanding the molecular pathways involved in ferroptosis may help identify biomarkers for prognosis and treatment response, paving the way for personalized medicine approaches. Furthermore, exploring the interplay between ferroptosis and other cellular processes can uncover combination therapies that enhance treatment efficacy. Investigating the tumor microenvironment's role in regulating ferroptosis may offer strategies to sensitize cancer cells to cell death induction, leading to improved outcomes. Overall, ferroptosis presents a promising avenue for advancing the treatment of colorectal cancer and improving patient outcomes.
Collapse
Affiliation(s)
- Siyue Liu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ming Yue
- Department of Pharmacy, Tongji Medical College, the Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ying Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaoliu Liu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
10
|
Zhao L, Miao H, Quan M, Wang S, Zhang Y, Zhou H, Zhang X, Lin Z, Piao J. β-Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact 2024; 389:110866. [PMID: 38218311 DOI: 10.1016/j.cbi.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
β-Lapachone is a natural product that can promote ROS generation and ultimately triggers tumor cells death by inducing DNA damage. Recent studies have indicated that the targeting of ferroptosis or iron metabolism is a feasible strategy for treating cancer. In this study, bulk RNA-seq analysis suggested that β-Lapachone might induce ferroptosis in CRC cells. We further tested this hypothesis using a xenograft model of human colorectal cancer as an animal model and in SW620 and DLD-1 of CRC cell lines. Western blot was used to determine the key proteins of ferroptosis (SLC7A11, GPX4), autophagy (LC3B, P62, ATG7), ferritinophagy (NCOA4, FTH1, TFRC), and JNK pathway (p-JNK, JNK, p-c-Jun, c-Jun). The levels of MDA, GSH/GSSG, lipid ROS, and intracellular ferrous iron were determined after β-Lapachone treatment, and inhibitors of various pathways, including NAC, Ferrostatin-1, DFO, 3-MA, and SP600125 were utilized to explore the molecular mechanism underlying β-Lapachone-mediated ferroptosis. As the result, we identified that β-Lapachone inhibited cell proliferation and induced apoptosis, autophagy, and ROS generation. In addition, β-Lapachone induced ferroptosis as demonstrated by intra-cellular iron overload, increased levels of lipid ROS and MDA. Mechanistically, JNK signaling pathway was involved in β-Lapachone-induced xCT/GPX4-mediated ferroptosis and NCOA4-mediated ferritinophagy in CRC cells. In vivo experiments in nude mice demonstrated that β-Lapachone significantly inhibited CRC growth and induced ferroptosis and NCOA4-mediated ferritinophagy. These findings not only identify a novel role for β-Lapachone in ferroptosis but also indicate that β-Lapachone may be a valuable candidate for the research and development of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Hui Miao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Mingqi Quan
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Shuhao Wang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Yu Zhang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Houkun Zhou
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Zhenhua Lin
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Junjie Piao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China.
| |
Collapse
|
11
|
Estêvão D, da Cruz-Ribeiro M, Cardoso AP, Costa ÂM, Oliveira MJ, Duarte TL, da Cruz TB. Iron metabolism in colorectal cancer: a balancing act. Cell Oncol (Dordr) 2023; 46:1545-1558. [PMID: 37273145 DOI: 10.1007/s13402-023-00828-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second deadliest malignancy worldwide. Current dietary habits are associated with increased levels of iron and heme, both of which increase the risk of developing CRC. The harmful effects of iron overload are related to the induction of iron-mediated pro-tumorigenic pathways, including carcinogenesis and hyperproliferation. On the other hand, iron deficiency may also promote CRC development and progression by contributing to genome instability, therapy resistance, and diminished immune responses. In addition to the relevance of systemic iron levels, iron-regulatory mechanisms in the tumor microenvironment are also believed to play a significant role in CRC and to influence disease outcome. Furthermore, CRC cells are more prone to escape iron-dependent cell death (ferroptosis) than non-malignant cells due to the constitutive activation of antioxidant genes expression. There is wide evidence that inhibition of ferroptosis may contribute to the resistance of CRC to established chemotherapeutic regimens. As such, ferroptosis inducers represent promising therapeutic drugs for CRC. CONCLUSIONS AND PERSPECTIVES This review addresses the complex role of iron in CRC, particularly in what concerns the consequences of iron excess or deprivation in tumor development and progression. We also dissect the regulation of cellular iron metabolism in the CRC microenvironment and emphasize the role of hypoxia and of oxidative stress (e.g. ferroptosis) in CRC. Finally, we underline some iron-related players as potential therapeutic targets against CRC malignancy.
Collapse
Affiliation(s)
- Diogo Estêvão
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Miguel da Cruz-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana P Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Ângela M Costa
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP - Faculty of Medicine, Pathology Department, University of Porto, Porto, Portugal
| | - Tiago L Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Tânia B da Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Meng X, Peng X, Ouyang W, Li H, Na R, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Zhuang G, Tang H, Peng Z. Musashi-2 Deficiency Triggers Colorectal Cancer Ferroptosis by Downregulating the MAPK Signaling Cascade to Inhibit HSPB1 Phosphorylation. Biol Proced Online 2023; 25:32. [PMID: 38041016 PMCID: PMC10691036 DOI: 10.1186/s12575-023-00222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Musashi-2 (MSI2) is a critical RNA-binding protein (RBP) whose ectopic expression drives the pathogenesis of various cancers. Accumulating evidence suggests that inducing ferroptosis of tumor cells can inhibit their malignant biological behavior as a promising therapeutic approach. However, it is unclear whether MSI2 regulates cell death in colorectal cancer (CRC), especially the underlying mechanisms and biological effects in CRC ferroptosis remain elusive. METHODS Experimental methods including qRT‒PCR, immunofluorescence, flow cytometry, western blot, co-immunoprecipitation, CCK-8, colony formation assay, in vitro cell transwell migration and invasion assays, in vivo xenograft tumor experiments, liver and lung CRC metastasis models, CAC mice models, transmission electron microscopy, immunohistochemistry, histopathology, 4D label-free proteomics sequencing, bioinformatic and database analysis were used in this study. RESULTS Here, we investigated that MSI2 was upregulated in CRC and positively correlated with ferroptosis inhibitor molecules. MSI2 deficiency suppressed CRC malignancy by inhibiting cell proliferation, viability, migration and invasion in vitro and in vivo; and MSI2 deficiency triggered CRC ferroptosis by changing the intracellular redox state (ROS levels and lipid peroxidation), erastin induced cell mortality and viability, iron homeostasis (intracellular total irons and ferrous irons), reduced glutathione (GSH) levels and mitochondrial injury. Mechanistically, through 4D-lable free proteomics analysis on SW620 stable cell lines, we demonstrated that MSI2 directly interacted with p-ERK and MSI2 knockdown downregulated the p-ERK/p38/MAPK axis signaling pathway, which further repressed MAPKAPK2 and HPSB1 phosphorylation, leading to decreased expression of PCNA and Ki67 and increased expression of ACSL4 in cancer cells. Furthermore, HSPB1 could rescue the phenotypes of MSI2 deficiency on CRC ferroptosis in vitro and in vivo. CONCLUSIONS This study indicates that MSI2 deficiency suppresses the growth and survival of CRC cells and promotes ferroptosis by inactivating the MAPK signaling pathway to inhibit HSPB1 phosphorylation, which leads to downregulation of PCNA and Ki67 and upregulation of ACSL4 in cancer cells and subsequently induces redox imbalance, iron accumulation and mitochondrial shrinkage, ultimately triggering ferroptosis. Therefore, targeted inhibition of MSI2/MAPK/HSPB1 axis to promote ferroptosis might be a potential treatment strategy for CRC.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Peng
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Wang
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.
- Department of General Surgery, Organ Transplantation Clinical Medical Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
13
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
14
|
Cheng X, Zhao F, Ke B, Chen D, Liu F. Harnessing Ferroptosis to Overcome Drug Resistance in Colorectal Cancer: Promising Therapeutic Approaches. Cancers (Basel) 2023; 15:5209. [PMID: 37958383 PMCID: PMC10649072 DOI: 10.3390/cancers15215209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Drug resistance remains a significant challenge in the treatment of colorectal cancer (CRC). In recent years, the emerging field of ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation, has offered new insights and potential therapeutic strategies for overcoming drug resistance in CRC. This review examines the role of ferroptosis in CRC and its impact on drug resistance. It highlights the distinctive features and advantages of ferroptosis compared to other cell death pathways, such as apoptosis and necrosis. Furthermore, the review discusses current research advances in the field, including novel treatment approaches that target ferroptosis. These approaches involve the use of ferroptosis inducers, interventions in iron metabolism and lipid peroxidation, and combination therapies to enhance the efficacy of ferroptosis. The review also explores the potential of immunotherapy in modulating ferroptosis as a therapeutic strategy. Additionally, it evaluates the strengths and limitations of targeting ferroptosis, such as its selectivity, low side effects, and potential to overcome resistance, as well as challenges related to treatment specificity and drug development. Looking to the future, this review discusses the prospects of ferroptosis-based therapies in CRC, emphasizing the importance of further research to elucidate the interaction between ferroptosis and drug resistance. It proposes future directions for more effective treatment strategies, including the development of new therapeutic approaches, combination therapies, and integration with emerging fields such as precision medicine. In conclusion, harnessing ferroptosis represents a promising avenue for overcoming drug resistance in CRC. Continued research efforts in this field are crucial for optimizing therapeutic outcomes and providing hope for CRC patients.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| | - Feng Zhao
- Department of Radiation Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, China;
| | - Bingxin Ke
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; (B.K.); (D.C.)
| |
Collapse
|
15
|
Zhang Q, Fan X, Zhang X, Ju S. Ferroptosis in tumors and its relationship to other programmed cell death: role of non-coding RNAs. J Transl Med 2023; 21:514. [PMID: 37516888 PMCID: PMC10387214 DOI: 10.1186/s12967-023-04370-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Programmed cell death (PCD) plays an important role in many aspects of individual development, maintenance of body homeostasis and pathological processes. Ferroptosis is a novel form of PCD characterized by the accumulation of iron-dependent lipid peroxides resulting in lethal cell damage. It contributes to tumor progression in an apoptosis-independent manner. In recent years, an increasing number of non-coding RNAs (ncRNAs) have been demonstrated to mediate the biological process of ferroptosis, hence impacting carcinogenesis, progression, drug resistance, and prognosis. However, the clear regulatory mechanism for this phenomenon remains poorly understood. Moreover, ferroptosis does not usually exist independently. Its interaction with PCD, like apoptosis, necroptosis, autophagy, pyroptosis, and cuproptosis, to destroy cells appears to exist. Furthermore, ncRNA seems to be involved. Here, we review the mechanisms by which ferroptosis occurs, dissect its relationship with other forms of death, summarize the key regulatory roles played by ncRNAs, raise relevant questions and predict possible barriers to its application in the clinic, offering new ideas for targeted tumour therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Medical School of Nantong University, Nantong University, Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinfeng Fan
- Medical School of Nantong University, Nantong University, Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinyu Zhang
- Medical School of Nantong University, Nantong University, Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Department of Medical School of Nantong University, No.19, Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Medical School of Nantong University, Nantong University, Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
Jiang Z, Zhou J, Deng J, Li L, Wang R, Han Y, Zhou J, Tao R, Peng L, Wang D, Huang T, Yu Y, Zhou Z, Li J, Ousmane D, Wang J. Emerging roles of ferroptosis-related miRNAs in tumor metastasis. Cell Death Discov 2023; 9:193. [PMID: 37369681 DOI: 10.1038/s41420-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a novel mode of cell death dependent on iron and reactive oxygen species, has been extensively explored during malignant tumors metastasis. Ferroptosis can interact with multiple components of the tumor microenvironment to regulate metastasis. These interactions generally include the following aspects: (1) Epithelial-mesenchymal transformation, which can help cancer cells increase their sensitivity to ferroptosis while they have multiple mechanisms to fight against it; (2) Disorder of iron metabolism in cancer stem cells which maintains their stem characteristics; (3) Polarization of M0 macrophages to M2. (4) The paradoxical effects of iron metabolism and CD8 + T cells induced by ferroptosis (5) Regulation of angiogenesis. In addition, ferroptosis can be regulated by miRNAs through the reprogramming of various intracellular metabolism processes, including the regulation of the glutathione- glutathione peroxidase 4 pathway, glutamic acid/cystine transport, iron metabolism, lipid metabolism, and oxidative stress. Therefore, there are many potential interactions between ferroptosis-related miRNAs and tumor metastasis, including interaction with cancer cells and immune cells, regulating cytokines, and angiogenesis. This review focuses on the role of ferroptosis-related miRNA in tumor metastasis, aiming to help readers understand their relationship and provide a new perspective on the potential treatment strategies of malignant tumors.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Deng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Luohong Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Ruifeng Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junyu Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Rui Tao
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yupei Yu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Jinghe Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China.
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Li Q, Li K, Guo Q, Yang T. CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:981-989. [PMID: 36840697 DOI: 10.1002/tox.23670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/18/2023]
Abstract
Ferroptosis is an emerging programmed cell death and plays essential roles in tumorigenesis, including colorectal cancer (CRC). The present study intended to disclose the role of a novel oncogene circular RNA (circRNA) circSTIL in CRC phenotypes, especially ferroptosis. The expression of circSTIL was measured in CRC tissues and cells. Then, the impacts of circSTIL expression on the proliferation and ferroptosis of CRC cells were examined by loss-of-function assays in vitro. Bioinformatics, luciferase reporter assay and cell rescue assay were further performed to reveal the ceRNA-associated mechanism of circSTIL. CircSTIL was significantly upregulated in CRC. Cell proliferation was suppressed while ferroptosis was induced with the silencing of circSTIL in CRC cells. Interestingly, circSTIL competed with miR-431 for solute carrier family 7 member 11 (SLC7A11) binding. Additionally, miR-431 suppression or SLC7A11 overexpression overturned circSTIL silencing-mediated cell phenotypes in CRC cells. CircSTIL promotes CRC cell proliferation and suppresses ferroptosis in vitro via miR-431/SLC7A11 signaling, revealing the pathogenesis of CRC, and providing potential therapeutic targets of CRC.
Collapse
Affiliation(s)
- Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Kaimin Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Qinying Guo
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Tao Yang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
18
|
Lee J, Roh JL. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett 2023; 559:216119. [PMID: 36893895 DOI: 10.1016/j.canlet.2023.216119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Cancer metabolic alterations have been emphasized to protect cancer cells from cell death. The metabolic reprogramming toward a mesenchymal state makes cancer cells resistant to therapy but vulnerable to ferroptosis induction. Ferroptosis is a new form of regulated cell death based on the iron-dependent accumulation of excessive lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the core regulator of ferroptosis by detoxifying cellular lipid peroxidation using glutathione as a cofactor. GPX4 synthesis requires selenium incorporation into the selenoprotein through isopentenylation and selenocysteine tRNA maturation. GPX4 synthesis and expression can be regulated by multiple levels of its transcription, translation, posttranslational modifications, and epigenetic modifications. Targeting GPX4 in cancer may be a promising strategy for effectively inducing ferroptosis and killing therapy-resistant cancer. Several pharmacological therapeutics targeting GPX4 have been developed constantly to activate ferroptosis induction in cancer. The potential therapeutic index of GPX4 inhibitors remains to be tested with thorough examinations of their safety and adverse effects in vivo and clinical trials. Many papers have been published continuously in recent years, requiring state-of-the-art updates in targeting GPX4 in cancer. Herein, we summarize targeting the GPX4 pathway in human cancer, which leads to implications of ferroptosis induction for tackling cancer resilience.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
19
|
Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: From mechanisms to implications. Cancer Lett 2023; 561:216147. [PMID: 36965540 DOI: 10.1016/j.canlet.2023.216147] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Ferroptosis is a form of regulated cell death that is initiated by excessive lipid peroxidation that results in plasma membrane damage and the release of damage-associated molecular patterns. In recent years, ferroptosis has gained significant attention in cancer research due to its unique mechanism compared to other forms of regulated cell death, especially caspase-dependent apoptotic cell death. Gastrointestinal (GI) cancer encompasses malignancies that arise in the digestive tract, including the stomach, intestines, pancreas, colon, liver, rectum, anus, and biliary system. These cancers are a global health concern, with high incidence and mortality rates. Despite advances in medical treatments, drug resistance caused by defects in apoptotic pathways remains a persistent challenge in the management of GI cancer. Hence, exploring the role of ferroptosis in GI cancers may lead to more efficacious treatment strategies. In this review, we provide a comprehensive overview of the core mechanism of ferroptosis and discuss its function, regulation, and implications in the context of GI cancers.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
21
|
Yang L, Zhang Y, Zhang Y, Fan Z. Mechanism and application of ferroptosis in colorectal cancer. Biomed Pharmacother 2023; 158:114102. [PMID: 36528917 DOI: 10.1016/j.biopha.2022.114102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world. CRC has high morbidity and mortality rates and it is a serious threat to human health. Ferroptosis is a unique form of iron-dependent oxidative cell death that is usually accompanied by iron accumulation and lipid peroxidation. Ferroptosis has attracted worldwide attention since it was first proposed. It plays an important role in the development of a variety of diseases, such as tumors, ischemia/reperfusion injury, nervous system diseases, and kidney damage, and it may serve as a new therapeutic target. This article reviews the mechanism of ferroptosis and the possibility to target ferroptosis pathways in CRC, providing new ideas for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Liu Yang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian, China
| | - Yewei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyi Zhang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China; Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, The Third People's Hospital of Dalian, Dalian, China.
| |
Collapse
|
22
|
Xia Z, Quan Y. Effect of tumor microenvironment on ferroptosis: inhibition or promotion. Front Oncol 2023; 13:1155511. [PMID: 37213276 PMCID: PMC10196176 DOI: 10.3389/fonc.2023.1155511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Ferroptosis is a type of lipid peroxidation-induced, iron-dependent programmed cell death. Emerging evidence suggests that ferroptosis is intimately connected to tumorigenesis, development, treatment and plays a major role in tumor immune regulation. This study focused on the connection between ferroptosis and immune regulation, which may offer a theoretical basis for targeting ferroptosis and tumor immunotherapy.
Collapse
Affiliation(s)
- Zhengzhen Xia
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Quan
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Oncology Medical Center, The First People’s Hospital of Zhaoqing, Zhaoqing, Guangdong, China
- *Correspondence: Yi Quan,
| |
Collapse
|
23
|
Liu X, Tuerxun H, Li Y, Li Y, He Y, Zhao Y. Ferroptosis: Reviewing CRC with the Third Eye. J Inflamm Res 2022; 15:6801-6812. [PMID: 36575747 PMCID: PMC9790162 DOI: 10.2147/jir.s389290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) has been one of the most common cancers and maintains the second-highest incidence and mortality rates among all cancers. The high risk of recurrence and metastasis and poor survival are still huge challenges in CRC therapy, in which the discovery of ferroptosis provides a novel perspective. It has been ten years since a unique type of regulated cell death driven by iron accumulation and lipid peroxidation was proposed and named ferroptosis. During the past decade, there have been multiple pieces of evidence suggesting that ferroptosis participates in the pathophysiological processes during disease progression. In this review, we describe ferroptosis as an imbalance of oxidant systems and anti-oxidants which results in lipid peroxidation, membrane damage, and finally cell death. We elaborate on the mechanisms of ferroptosis and systematically summarize recent studies on the regulatory pathways of ferroptosis in CRC from various perspectives, ranging from encoding genes, noncoding RNAs to regulatory proteins. Finally, we discuss the potential therapeutic role of ferroptosis in CRC treatments.
Collapse
Affiliation(s)
- Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yaping Li
- Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuanyuan He
- Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China,Correspondence: Yuguang Zhao, Cancer Center, the First Hospital of Jilin University, Changchun, People’s Republic of China, Email
| |
Collapse
|
24
|
Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 2022; 13:977062. [PMID: 36408273 PMCID: PMC9672467 DOI: 10.3389/fphar.2022.977062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/21/2022] [Indexed: 07/20/2023] Open
Abstract
Malignant tumor is a major killer that seriously endangers human health. At present, the methods of treating tumors include surgical resection, chemotherapy, radiotherapy and immunotherapy. However, the survival rate of patients is still very low due to the complicated mechanism of tumor occurrence and development and high recurrence rate. Individualized treatment will be the main direction of tumor treatment in the future. Because only by understanding the molecular mechanism of tumor development and differentially expressed genes can we carry out accurate treatment and improve the therapeutic effect. MicroRNA (miRNA) is a kind of small non coding RNA, which regulates gene expression at mRNA level and plays a key role in tumor regulation. Ferroptosis is a kind of programmed death caused by iron dependent lipid peroxidation, which is different from apoptosis, necrosis and other cell death modes. Now it has been found that ferroptosis plays an important role in the occurrence and development of tumors and drug resistance. More and more studies have found that miRNAs can regulate tumor development and drug resistance through ferroptosis. Therefore, in this review, the mechanism of ferroptosis is briefly outlined, and the relationship between miRNAs and ferroptosis in tumors is reviewed.
Collapse
Affiliation(s)
- Shang-Ming Dai
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
25
|
Guo L, Zhang Q, Liu Y. The role of microRNAs in ferroptosis. Front Mol Biosci 2022; 9:1003045. [PMID: 36310600 PMCID: PMC9596748 DOI: 10.3389/fmolb.2022.1003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Ferroptosis is a newly discovered type of programmed cell death, which is closely related to the imbalance of iron metabolism and oxidative stress. Ferroptosis has become an important research topic in the fields of cardiomyopathy, tumors, neuronal injury disorders, and ischemia perfusion disorders. As an important part of non-coding RNA, microRNAs regulate various metabolic pathways in the human body at the post-transcriptional level and play a crucial role in the occurrence and development of many diseases. The present review introduces the mechanisms of ferroptosis and describes the relevant pathways by which microRNAs affect cardiomyopathy, tumors, neuronal injury disorders and ischemia perfusion disorders through regulating ferroptosis. In addition, it provides important insights into ferroptosis-related microRNAs, aiming to uncover new methods for treatment of the above diseases, and discusses new ideas for the implementation of possible microRNA-based ferroptosis-targeted therapies in the future.
Collapse
Affiliation(s)
- Liqing Guo
- Department of Otolaryngology, The Second Affiliated Hospital of Nanchang University, NanChang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Qingkun Zhang
- Department of Otolaryngology, The Second Affiliated Hospital of Nanchang University, NanChang, China
| | - Yuehui Liu
- Department of Otolaryngology, The Second Affiliated Hospital of Nanchang University, NanChang, China
- *Correspondence: Yuehui Liu,
| |
Collapse
|
26
|
Hu Y, Liu J, Yu J, Yang F, Zhang M, Liu Y, Ma S, Zhou X, Wang J, Han Y. Identification and validation a costimulatory molecule gene signature to predict the prognosis and immunotherapy response for hepatocellular carcinoma. Cancer Cell Int 2022; 22:97. [PMID: 35193632 PMCID: PMC8864933 DOI: 10.1186/s12935-022-02514-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Costimulatory molecules have been proven to be the foundation of immunotherapy. However, the potential roles of costimulatory molecule genes (CMGs) in HCC remain unclear. Our study is aimed to develop a costimulatory molecule-related gene signature that could evaluate the prognosis of HCC patients. METHODS Based on The Cancer Gene Atlas (TCGA) database, univariate Cox regression analysis was applied in CMGs to identify prognosis-related CMGs. Consensus clustering analysis was performed to stratify HCC patients into different subtypes and compared them in OS. Subsequently, the LASSO Cox regression analysis was performed to construct the CMGs-related prognostic signature and Kaplan-Meier survival curves as well as ROC curve were used to validate the predictive capability. Then we explored the correlations of the risk signature with tumor-infiltrating immune cells, tumor mutation burden (TMB) and response to immunotherapy. The expression levels of prognosis-related CMGs were validated based on qRT-PCR and Human Protein Atlas (HPA) databases. RESULTS All HCC patients were classified into two clusters based on 11 CMGs with prognosis values and cluster 2 correlated with a poorer prognosis. Next, a prognostic signature of six CMGs was constructed, which was an independent risk factor for HCC patients. Patients with low-risk score were associated with better prognosis. The correlation analysis showed that the risk signature could predict the infiltration of immune cells and immune status of the immune microenvironment in HCC. The qRT-PCR and immunohistochemical results indicated six CMGs with differential expression in HCC tissues and normal tissues. CONCLUSION In conclusion, our CMGs-related risk signature could be used as a prediction tool in survival assessment and immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yinan Hu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiahao Yu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fangfang Yang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yansheng Liu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuoyi Ma
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Zhou
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jingbo Wang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ying Han
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|