1
|
Tian JL, Huang CW, Eslami F, Mannino MP, Mai RL, Hart GW. Regulation of Primary Cilium Length by O-GlcNAc during Neuronal Development in a Human Neuron Model. Cells 2023; 12:1520. [PMID: 37296641 PMCID: PMC10252524 DOI: 10.3390/cells12111520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The primary cilium plays critical roles in the homeostasis and development of neurons. Recent studies demonstrate that cilium length is regulated by the metabolic state of cells, as dictated by processes such as glucose flux and O-GlcNAcylation (OGN). The study of cilium length regulation during neuron development, however, has been an area left largely unexplored. This project aims to elucidate the roles of O-GlcNAc in neuronal development through its regulation of the primary cilium. Here, we present findings suggesting that OGN levels negatively regulate cilium length on differentiated cortical neurons derived from human-induced pluripotent stem cells. In neurons, cilium length increased significantly during maturation (after day 35), while OGN levels began to drop. Long-term perturbation of OGN via drugs, which inhibit or promote its cycling, during neuron development also have varying effects. Diminishing OGN levels increases cilium length until day 25, when neural stem cells expand and undergo early neurogenesis, before causing cell cycle exit defects and multinucleation. Elevating OGN levels induces greater primary cilia assembly but ultimately results in the development of premature neurons, which have higher insulin sensitivity. These results indicate that OGN levels and primary cilium length are jointly critical in proper neuron development and function. Understanding the interplays between these two nutrient sensors, O-GlcNAc and the primary cilium, during neuron development is important in paving connections between dysfunctional nutrient-sensing and early neurological disorders.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Farzad Eslami
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Michael Philip Mannino
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rebecca Lee Mai
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biology, University of Georgia, Athens, GA 30602, USA
| | - Gerald W. Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Ge R, Cao M, Chen M, Liu M, Xie S. Cytoskeletal networks in primary cilia: Current knowledge and perspectives. J Cell Physiol 2022; 237:3975-3983. [PMID: 36000703 DOI: 10.1002/jcp.30865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Ruixin Ge
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Minghui Cao
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Min Liu
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China.,Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
3
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
4
|
Yang Y, Luan Y, Yuan RX, Luan Y. Histone Methylation Related Therapeutic Challenge in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:710053. [PMID: 34568453 PMCID: PMC8458636 DOI: 10.3389/fcvm.2021.710053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The epidemic of cardiovascular diseases (CVDs) is predicted to spread rapidly in advanced countries accompanied by the high prevalence of risk factors. In terms of pathogenesis, the pathophysiology of CVDs is featured by multiple disorders, including vascular inflammation accompanied by simultaneously perturbed pathways, such as cell death and acute/chronic inflammatory reactions. Epigenetic alteration is involved in the regulation of genome stabilization and cellular homeostasis. The association between CVD progression and histone modifications is widely known. Among the histone modifications, histone methylation is a reversible process involved in the development and homeostasis of the cardiovascular system. Abnormal methylation can promote CVD progression. This review discusses histone methylation and the enzymes involved in the cardiovascular system and determine the effects of histone methyltransferases and demethylases on the pathogenesis of CVDs. We will further demonstrate key proteins mediated by histone methylation in blood vessels and review histone methylation-mediated cardiomyocytes and cellular functions and pathways in CVDs. Finally, we will summarize the role of inhibitors of histone methylation and demethylation in CVDs and analyze their therapeutic potential, based on previous studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Yang Y, Chen M, Li J, Hong R, Yang J, Yu F, Li T, Yang S, Ran J, Guo C, Zhao Y, Luan Y, Liu M, Li D, Xie S, Zhou J. A cilium-independent role for intraflagellar transport 88 in regulating angiogenesis. Sci Bull (Beijing) 2021; 66:727-739. [PMID: 36654447 DOI: 10.1016/j.scib.2020.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023]
Abstract
Endothelial cilia are microtubule-based hair-like protrusions in the lumen ofblood vessels that function as fluid mechanosensors to regulate vascular hemodynamics.However, the functions of endothelial cilia in vascular development remain controversial. In this study, depletion of several key proteins responsible for ciliogenesis allows us to identify a cilium-independent role for intraflagellartransport88 (IFT88) in mammalian angiogenesis. Disruption of primary cilia by heat shock does not affect the angiogenic process. However, depletion of IFT88 significantly inhibits angiogenesis both in vitro and in vivo. IFT88 mediates angiogenesis by regulating the migration, polarization, proliferation, and oriented division of vascular endothelial cells. Further mechanistic studies demonstrate that IFT88 interacts with γ-tubulin and microtubule plus-end tracking proteins and promotes microtubule stability. Our findings indicate that IFT88 regulates angiogenesis through its actions in microtubule-based cellular processes, independent of its role in ciliogenesis.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Renjie Hong
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Jia Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Fan Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Te Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Song Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Jie Ran
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Chunyue Guo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China.
| | - Jun Zhou
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Song T, Zhou P, Sun C, He N, Li H, Ran J, Zhou J, Wu Y, Liu M. Enkurin domain containing 1 (ENKD1) regulates the proliferation, migration and invasion of non-small cell lung cancer cells. Asia Pac J Clin Oncol 2021; 18:e39-e45. [PMID: 33724673 DOI: 10.1111/ajco.13550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer mortality worldwide. NSCLC has an aggressive phenotype and poor prognosis, and is quite heterogeneous without effective and specific targeted therapies. Therefore, exploring new tumor markers and drug targets for NSCLC is crucial towards individualized treatment. Here, we demonstrate that enkurin domain containing 1 (ENKD1), a protein with unknown structure and function, is significantly downregulated in NSCLC tumor tissues compared with their non-tumor counterparts. We also show that ENKD1 expression is decreased in NSCLC cells compared to normal human lung epithelial cells. EdU incorporation, wound healing, and transwell invasion assays reveal that ENKD1 regulates the proliferation, migration, and invasion of NSCLC cells. Collectively, these results suggest that ENKD1 plays an important role in NSCLC progression and that ENKD1 is a tumor marker and a potential molecular drug target for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunjiao Sun
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na He
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Haixia Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Ran
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yue Wu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Ma H, Luo X, Zhou P, He N, Zhou J, Liu M, Xie W. USP21 promotes cell proliferation by maintaining the EZH2 level in diffuse large B-cell lymphoma. J Clin Lab Anal 2021; 35:e23693. [PMID: 33389794 PMCID: PMC7957995 DOI: 10.1002/jcla.23693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common category of non-Hodgkin lymphoma (NHL). However, the underlying molecular mechanism of DLBCL remains unclear. METHODS Real-time PCR and Western blot analysis were performed to assess the expression of ubiquitin-specific peptidase 21 (USP21) or enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). CCK8 assay and cell death staining were carried out to examine the role of USP21 in cell proliferation and cell death, respectively. RESULTS We found that the deubiquitinase USP21 was highly expressed in the DLBCL lymphoid tissue. The expression of USP21 promoted DLBCL cell proliferation, while it had no obvious effect on cell death. In addition, we found that USP21 regulated cell proliferation via cysteine 221, the catalytic site of USP21. Furthermore, we identified that USP21 could stabilize EZH2, a protein required for germinal center formation and lymphoma formation. CONCLUSION The deubiquitinase USP21 promotes cell proliferation by maintaining the EZH2 protein level in DLBCL.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Ubiquitin Thiolesterase/genetics
- Ubiquitin Thiolesterase/metabolism
Collapse
Affiliation(s)
- Huixian Ma
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Xiangrui Luo
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Na He
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesInstitute of Biomedical SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
8
|
O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis. Protein Cell 2021; 11:852-857. [PMID: 32607788 PMCID: PMC7647980 DOI: 10.1007/s13238-020-00746-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
9
|
Abstract
As a transparent avascular tissue located at the front of the eyeball, the cornea is an important barrier to external damage. Both epithelial and endothelial cells of the cornea harbor primary cilia, which sense changes in the external environment and regulate intracellular signaling pathways. Accumulating evidence suggests that the primary cilium regulates corneal development in several ways, including participation in corneal epithelial stratification and maintenance of corneal endothelial cell morphology. In addition, the primary cilium has been implicated in the pathogenesis of several corneal diseases. In this review, we discuss recent findings that demonstrate the critical role of the primary cilium in corneal development. We also discuss the link between ciliary dysfunction and corneal diseases, which suggests that the primary cilium could be targeted to treat these diseases.
Collapse
Affiliation(s)
- Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China. E-mail:
| |
Collapse
|
10
|
Brücker L, Kretschmer V, May-Simera HL. The entangled relationship between cilia and actin. Int J Biochem Cell Biol 2020; 129:105877. [PMID: 33166678 DOI: 10.1016/j.biocel.2020.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Viola Kretschmer
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Zhou P, Song T, Sun C, He N, Cheng Q, Xiao X, Ran J, Liu M, Xie S. USP21 upregulation in cholangiocarcinoma promotes cell proliferation and migration in a deubiquitinase-dependent manner. Asia Pac J Clin Oncol 2020; 17:471-477. [PMID: 33052017 DOI: 10.1111/ajco.13480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitin-specific protease 21 (USP21) has been implicated in several types of cancer. It promotes or suppresses tumor growth in a cell-context dependent manner. Cholangiocarcinoma is a malignant tumor with a high mortality rate. However, the role of USP21 in cholangiocarcinoma remains unknown. Here, we identify that the level of USP21 is upregulated in cholangiocarcinoma using bioinformatics analysis and confirm this elevation in RBE cell lines. Cell counting and 5-ethynyl-2'-deoxyuridine incorporation assays reveal that USP21 promotes the proliferation of cholangiocarcinoma. Wound healing and transwell assays demonstrate that USP21 accelerates RBE cell migration. In addition, rescue assays reveal that reintroduction of USP21 wildtype other than the deubiquitinase-deficient C221A mutant restores USP21 depletion-induced attenuation in cell proliferation and migration, indicative of the requirement of the deubiquitinase activity. Collectively, these data indicate that USP21 is critically involved in cholangiocarcinoma tumorigenesis and may be an effective target for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chunjiao Sun
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Na He
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qiang Cheng
- Department of Emergency, Shanxian Dongda Hospital, Shanxian, Heze, Shandong, 274300, China
| | - Xin Xiao
- Department of Pathology, Zaozhuang Central District People's Hospital, Zaozhuang, Shandong, 277100, China
| | - Jie Ran
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Songbo Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
12
|
Li J, Li Y, Liu M, Xie S. Modified heptapeptide from tau binds both tubulin and microtubules. Thorac Cancer 2020; 11:2993-2997. [PMID: 32893987 PMCID: PMC7529580 DOI: 10.1111/1759-7714.13643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Microtubules are the major cytoskeletal component in eukaryotes which are essential for a large spectrum of cellular activities. Monitoring the behavior of microtubules is helpful for a better understanding of the regulatory mechanism governing microtubule architecture and microtubule‐based activities. Here, we characterized the binding capability of a modified heptapeptide from tau to both tubulin and microtubules and sought to develop it as a fluorescent peptide for monitoring microtubules. Methods To deliver the fluorescent peptide into the cells, a cell‐penetrating peptide was conjugated to the modified heptapeptide from tau and synthesized. The affinity of the modified heptapeptide was determined by microscale thermophoresis. The microtubule labeling ability was determined by adding the peptide into the polymerized microtubule solutions or cultured HeLa cells.; Results Affinity determination revealed that the tau‐derived peptide specifically bound to tubulin. In addition, the peptide was able to label polymerized microtubules in solution, although no obvious microtubule filaments were observed clearly in living cells, probably due to the inadequate affinity. Conclusions These results suggest that using a peptide‐based strategy for imaging microtubules might be plausible and attempts to improve its affinity is warranted in the future.
Collapse
Affiliation(s)
- Jingrui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Yuyang Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
13
|
Ma N, Zhou J. Functions of Endothelial Cilia in the Regulation of Vascular Barriers. Front Cell Dev Biol 2020; 8:626. [PMID: 32733899 PMCID: PMC7363763 DOI: 10.3389/fcell.2020.00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular barrier between blood and tissues is a highly selective structure that is essential to maintain tissue homeostasis. Defects in the vascular barrier lead to a variety of cardiovascular diseases. The maintenance of vascular barriers is largely dependent on endothelial cells, but the precise mechanisms remain elusive. Recent studies reveal that primary cilia, microtubule-based structures that protrude from the surface of endothelial cells, play a critical role in the regulation of vascular barriers. Herein, we discuss recent advances on ciliary functions in the vascular barrier and suggest that ciliary signaling pathways might be targeted to modulate the vascular barrier.
Collapse
Affiliation(s)
- Nan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Zhou P, Zhou J. The Primary Cilium as a Therapeutic Target in Ocular Diseases. Front Pharmacol 2020; 11:977. [PMID: 32676032 PMCID: PMC7333185 DOI: 10.3389/fphar.2020.00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are microtubule-based cellular structures located on the surfaces of most mammalian cells and play important roles in detecting external stimuli, signal transduction, and cell cycle regulation. Primary cilia are also present in several structures of the eye, and their abnormal development or dysfunction can cause various ocular diseases. The rapid development of proteomics and metabolomics technologies have helped in the identification of many ocular disease-related proteins, some of which are dysregulated in primary cilia. This review focuses on ciliary dysregulation in a number of ocular diseases and discusses the potential of targeting primary cilia in gene and stem cell therapy for these diseases.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020; 11:840-850. [PMID: 32101379 PMCID: PMC7113062 DOI: 10.1111/1759-7714.13353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Conventional methods for detecting tumors, such as immunological methods and histopathological diagnostic techniques, often request high analytical costs, complex operation, long turnaround time, experienced personnel and high false-positive rates. In addition, these assays are difficult to obtain an early diagnosis and prognosis quickly for malignant tumors. Compared with traditional technology, electrochemical technology has realized the study of interface charge transfer behavior at the atomic and molecular levels, which has become an important analytical and detection tool in contemporary analytical science. Electrochemical technique has the advantages of rapid detection, high sensitivity (single cell) and specificity in the detection of tumor cells, which has not only been successful in differentiating tumor cells from normal cells, but has also achieved targeted detection of localized tumor cells and circulating tumor cells. Electrochemical biosensors provide powerful tools for early diagnosis, staging and prognosis of tumors in clinical medicine. Therefore, this review mainly discusses the development and application of electrochemical biosensors in tumor cell detection in recent years.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Qingchao Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Xin Du
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
16
|
Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac Cancer 2020. [PMID: 31975505 DOI: 10.1111/tca.v11.310.1111/1759-7714.13323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Mucociliary epithelium lining the upper and lower respiratory tract constitutes the first line of defense of the airway and lungs against inhaled pollutants and pathogens. The concerted beating of multiciliated cells drives mucociliary clearance. Abnormalities in both the structure and function of airway cilia have been implicated in obstructive lung diseases. Emerging evidence reveals a close correlation between lung diseases and environmental stimuli such as sulfur dioxide and tobacco particles. However, the underlying mechanism remains to be described. In this review, we emphasize the importance of airway cilia in mucociliary clearance and discuss how environmental pollutants affect the structure and function of airway cilia, thus shedding light on the function of airway cilia in preventing obstructive lung diseases and revealing the negative effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac Cancer 2020; 11:505-510. [PMID: 31975505 PMCID: PMC7049516 DOI: 10.1111/1759-7714.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 01/11/2023] Open
Abstract
Mucociliary epithelium lining the upper and lower respiratory tract constitutes the first line of defense of the airway and lungs against inhaled pollutants and pathogens. The concerted beating of multiciliated cells drives mucociliary clearance. Abnormalities in both the structure and function of airway cilia have been implicated in obstructive lung diseases. Emerging evidence reveals a close correlation between lung diseases and environmental stimuli such as sulfur dioxide and tobacco particles. However, the underlying mechanism remains to be described. In this review, we emphasize the importance of airway cilia in mucociliary clearance and discuss how environmental pollutants affect the structure and function of airway cilia, thus shedding light on the function of airway cilia in preventing obstructive lung diseases and revealing the negative effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|