1
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
4
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
5
|
Ma S, Xu Y, Qin X, Tao M, Gu X, Shen L, Chen Y, Zheng M, Qin S, Wu G, Ju S. RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy. Cell Mol Biol Lett 2024; 29:95. [PMID: 38956466 PMCID: PMC11218243 DOI: 10.1186/s11658-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Shiyi Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Liao C, He ZW, Yu R, Yu YJ, Liu XR, Kong DL, Wang Y. CircRNA: a rising therapeutic strategy for lung injury induced by pulmonary toxicants. Arch Toxicol 2024; 98:1297-1310. [PMID: 38498160 DOI: 10.1007/s00204-024-03706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Lung injury has been a serious medical problem that requires new therapeutic approaches and biomarkers. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) that exist widely in eukaryotes. CircRNAs are single-stranded RNAs that form covalently closed loops. CircRNAs are significant gene regulators that have a role in the development, progression, and therapy of lung injury by controlling transcription, translating into protein, and sponging microRNAs (miRNAs) and proteins. Although the study of circRNAs in lung injury caused by pulmonary toxicants is just beginning, several studies have revealed their expression patterns. The function that circRNAs perform in relation to pulmonary toxicants (severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2), drug abuse, PM2.5, and cigarette smoke) is the main topic of this review. A variety of circRNAs can serve as potential biomarkers of lung injury. In this review, the biogenesis, properties, and biological functions of circRNAs were concluded, and the relationship between circRNAs and pulmonary toxicants was discussed. It is expected that the new ideas and potential treatment targets that circRNAs provide would be beneficial to research into the molecular mechanisms behind lung injury.
Collapse
Affiliation(s)
- Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110000, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
8
|
Ma A, Yang Y, Lu L, Zhang Y, Zhang X, Zheng J, Zheng X. Emerging roles of circular RNAs in nasopharyngeal carcinoma: functions and implications. Cell Death Discov 2024; 10:192. [PMID: 38664370 PMCID: PMC11045839 DOI: 10.1038/s41420-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy primarily prevalent in Southern China and Southeast Asia. Circular RNAs (circRNAs), a class of non-coding RNAs, are evolutionarily conserved and exhibit remarkable stability. Their dysregulation has been observed in various cancers, including NPC. In this review, we investigate the pivotal role of circRNAs in NPC, focusing specifically on their involvement in tumor proliferation, apoptosis, metastasis, angiogenesis, stemness, metabolism, and the tumor microenvironment. We highlight the diagnostic and prognostic potential of circRNAs in NPC, emphasizing their utility as biomarkers for early detection, disease monitoring, and prediction of treatment outcomes. Additionally, we explore the therapeutic implications of circRNAs in NPC, highlighting their potential for targeted therapies.
Collapse
Affiliation(s)
- Aiyu Ma
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lu Lu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinhua Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
9
|
Su R, Zhou M, Lin J, Shan G, Huang C. A circular RNA-gawky-chromatin regulatory axis modulates stress-induced transcription. Nucleic Acids Res 2024; 52:3702-3721. [PMID: 38416578 PMCID: PMC11039993 DOI: 10.1093/nar/gkae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
In response to heavy metal stress, the RNA-binding protein (RBP) gawky translocates into the nucleus and acts as a chromatin-interacting factor to activate the transcription of many stress-responsive genes. However, the upstream regulators of gawky-mediated transcription and their mechanistic details remain unknown. Here, we identified a class of metal-responsive element-containing circRNAs (MRE circRNAs) which specifically interact with gawky during copper stress. Using classic stress-responsive genes as a readout (Drosophila MT), we found that overexpression of MRE circRNAs led to a significant repression in stress-induced transcription. Mechanistically, MRE circRNAs promote the dissociation of gawky from chromatin and increase its aberrant cytoplasmic accumulation, which ultimately impedes the loading of RNA polymerase II to the active gene loci. The MRE motif serves as an important RNA regulon for maintaining the circRNA-gawky interaction, loss of which impaired the inhibitory effects of MRE circRNAs on gawky. Through RNA-seq analyses, we then identified over 500 additional stress-responsive genes whose induced transcription was attenuated upon MRE circRNA overexpression. Finally, we uncovered the physiological relevance of MRE circRNA-mediated regulation in cellular defense against copper overloading. Taken together, this study proposes that the circRNA-RBP-chromatin axis may represent a fundamental regulatory network for gene expression in eukaryotic cells.
Collapse
Affiliation(s)
- Rui Su
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Liu D, Zhou X, He Y, Zhao J. The Roles of CircRNAs in Mitochondria. J Cancer 2024; 15:2759-2769. [PMID: 38577612 PMCID: PMC10988319 DOI: 10.7150/jca.92111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yida He
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
11
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Whittle BJ, Izuogu OG, Lowes H, Deen D, Pyle A, Coxhead J, Lawson RA, Yarnall AJ, Jackson MS, Santibanez-Koref M, Hudson G. Early-stage idiopathic Parkinson's disease is associated with reduced circular RNA expression. NPJ Parkinsons Dis 2024; 10:25. [PMID: 38245550 PMCID: PMC10799891 DOI: 10.1038/s41531-024-00636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) precedes diagnosis by years. Early neurodegeneration may be reflected in RNA levels and measurable as a biomarker. Here, we present the largest quantification of whole blood linear and circular RNAs (circRNA) in early-stage idiopathic PD, using RNA sequencing data from two cohorts (PPMI = 259 PD, 161 Controls; ICICLE-PD = 48 PD, 48 Controls). We identified a replicable increase in TMEM252 and LMNB1 gene expression in PD. We identified novel differences in the expression of circRNAs from ESYT2, BMS1P1 and CCDC9, and replicated trends of previously reported circRNAs. Overall, using circRNA as a diagnostic biomarker in PD did not show any clear improvement over linear RNA, minimising its potential clinical utility. More interestingly, we observed a general reduction in circRNA expression in both PD cohorts, accompanied by an increase in RNASEL expression. This imbalance implicates the activation of an innate antiviral immune response and suggests a previously unknown aspect of circRNA regulation in PD.
Collapse
Affiliation(s)
- Benjamin J Whittle
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Osagie G Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hannah Lowes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Circular RNAs: Biogenesis, Functions, and Role in Myocardial Hypertrophy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S1-S13. [PMID: 38621741 DOI: 10.1134/s0006297924140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) are a large class of endogenous single-stranded covalently closed RNA molecules. High-throughput RNA sequencing and bioinformatic algorithms have identified thousands of eukaryotic circRNAs characterized by high stability and tissue-specific expression pattern. Recent studies have shown that circRNAs play an important role in the regulation of physiological processes in the norm and in various diseases, including cardiovascular disorders. The review presents current concepts of circRNA biogenesis, structural features, and biological functions, describes the methods of circRNA analysis, and summarizes the results of studies on the role of circRNAs in the pathogenesis of hypertrophic cardiomyopathy, the most common inherited heart disease.
Collapse
Affiliation(s)
- Natalia M Baulina
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Ivan S Kiselev
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Olga S Chumakova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga O Favorova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
14
|
Ruiz Esparza Garrido R, Velázquez Flores MÁ. Circular RNAs: the next level of gene regulation. Am J Transl Res 2023; 15:6122-6135. [PMID: 37969203 PMCID: PMC10641363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
Gene regulation is a highly complex process involving the presence and participation of many molecules and complexes that regulate gene expression in the genome, which occurs in a precise and coordinated way. Among all these regulatory molecules, the circular RNAs (circRNAs) are the most novel and peculiar family of noncoding RNAs (ncRNAs) as they have a circular structure, are very specific on their expression, highly conserved, and highly resistant to degradation. These molecules have been described in recent years as excellent disease markers and as potential therapeutic targets. In this review, we focused on general characteristics and on the evolution of the circRNAs, as well as on their biological functions, emphasizing on their participation in the formation of brain tumors.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| | - Miguel Ángel Velázquez Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| |
Collapse
|
15
|
Singh S, Sinha T, Panda AC. Regulation of microRNA by circular RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1820. [PMID: 37783567 DOI: 10.1002/wrna.1820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
He Z, Zhu Q. Circular RNAs: Emerging roles and new insights in human cancers. Biomed Pharmacother 2023; 165:115217. [PMID: 37506578 DOI: 10.1016/j.biopha.2023.115217] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules formed by mRNA exon back-splicing. Although the circRNA functions remain largely unknown, their currently known biological activities include: acting as competing endogenous RNA (ceRNA) to adsorb microRNA (miRNA), binding proteins, regulating transcription or splicing, and ability to be translated into proteins or peptides. A growing number of studies have found that many circRNAs are abnormally expressed in various cancers, and their dysregulation is highly correlated with tumor progression. Therefore, diagnosis and treatment using circRNAs as biomarkers and therapeutic targets, respectively, has gradually become an attractive research topic. In this review, we introduced the canonical biogenesis pathways and degradation mechanisms of circRNAs. In addition, we examined the biological functions of circRNAs in vivo. Finally, we discussed the current clinical applications and challenges faced by circRNA, and proposed future directions for this promising research field.
Collapse
Affiliation(s)
- Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
17
|
Liu J, Zhao F, Chen LL, Su S. Dysregulation of circular RNAs in inflammation and cancers. FUNDAMENTAL RESEARCH 2023; 3:683-691. [PMID: 38933304 PMCID: PMC11197579 DOI: 10.1016/j.fmre.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2024] Open
Abstract
Emerging lines of evidence have shown that the production of the covalently closed single-stranded circular RNAs is not splicing errors, but rather a regulated process with distinct biogenesis and turnover. Circular RNAs are expressed in a cell type- and tissue-specific manner and often localize to specific subcellular regions or organelles for functions. The dysregulation of circular RNAs from birth to death is linked to the pathogenesis and progression of diverse diseases. This review outlines how aberrant circular RNA biogenesis, subcellular location, and degradation are linked to disease progression, focusing on metaflammation and cancers. We also discuss potential therapeutic strategies and obstacles in targeting such disease-related circular RNAs.
Collapse
Affiliation(s)
- Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310003, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200092, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310003, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
18
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
19
|
Xu T, Li ZY, Liu M, Zhang SB, Ding HH, Wu JY, Lin SY, Liu J, Wei JY, Zhang XQ, Xin WJ. CircFhit Modulates GABAergic Synaptic Transmission via Regulating the Parental Gene Fhit Expression in the Spinal Dorsal Horn in a Rat Model of Neuropathic Pain. Neurosci Bull 2023; 39:947-961. [PMID: 36637791 PMCID: PMC10264304 DOI: 10.1007/s12264-022-01014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 01/14/2023] Open
Abstract
Effective treatments for neuropathic pain are lacking due to our limited understanding of the mechanisms. The circRNAs are mainly enriched in the central nervous system. However, their function in various physiological and pathological conditions have yet to be determined. Here, we identified circFhit, an exon-intron circRNA expressed in GABAergic neurons, which reduced the inhibitory synaptic transmission in the spinal dorsal horn to mediate spared nerve injury-induced neuropathic pain. Moreover, we found that circFhit decreased the expression of GAD65 and induced hyperexcitation in NK1R+ neurons by promoting the expression of its parental gene Fhit in cis. Mechanistically, circFhit was directly bound to the intronic region of Fhit, and formed a circFhit/HNRNPK complex to promote Pol II phosphorylation and H2B monoubiquitination by recruiting CDK9 and RNF40 to the Fhit intron. In summary, we revealed that the exon-intron circFhit contributes to GABAergic neuron-mediated NK1R+ neuronal hyperexcitation and neuropathic pain via regulating Fhit in cis.
Collapse
Affiliation(s)
- Ting Xu
- Neuroscience Program of Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhen-Yu Li
- Neuroscience Program of Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510120, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, 510000, China
| | - Su-Bo Zhang
- Neuroscience Program of Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan-Huan Ding
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Yan Wu
- Neuroscience Program of Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510120, China
| | - Su-Yan Lin
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Jia-You Wei
- Neuroscience Program of Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xue-Qin Zhang
- The Affiliated Brain Hospital (Guangzhou Huiai Hospital) and School of Health Management, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Wen-Jun Xin
- Neuroscience Program of Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510000, China.
| |
Collapse
|
20
|
Al-Hawary SIS, Asghar W, Amin A, Mustafa YF, Hjazi A, Almulla AF, Ali SAJ, Ali SS, Romero-Parra RM, Abdulhussien Alazbjee AA, Mahmoudi R, Fard SRH. Circ_0067934 as a novel therapeutic target in cancer: From mechanistic to clinical perspectives. Pathol Res Pract 2023; 245:154469. [PMID: 37100022 DOI: 10.1016/j.prp.2023.154469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Circular RNAs, as a type of non-coding RNAs, are identified in a various cell. Circular RNAs have stable structures, conserved sequence, and tissue and cell-specific level. High throughput technologies have proposed that circular RNAs act via various mechanisms like sponging microRNAs and proteins, regulating transcription factors, and scaffolding mediators. Cancer is one of the major threat for human health. Emerging data have proposed that circular RNAs are dysregulated in cancers as well as are associated with aggressive behaviors of cancer -related behaviors like cell cycle, proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Among them, circ_0067934 was shown to act as an oncogene in cancers to enhance migration, invasion, proliferation, cell cycle, EMT, and inhibit cell apoptosis. In addition, these studies have proposed that it could be a promising diagnostic and prognostic biomarker in cancer. This study aimed to review the expression and molecular mechanism of circ_0067934 in modulating the malignant behaviors of cancers as well as to explore its potential as a target in cancer chemotherapy, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Aaima Amin
- Quaid e Azam Medical College, Bahawal Victorial Hospital, Bahawalpur, Pakistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | | | | | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Reza Hosseini Fard
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
22
|
Yalamarty SSK, Filipczak N, Khan MM, Torchilin VP. Role of circular RNA and its delivery strategies to cancer - An overview. J Control Release 2023; 356:306-315. [PMID: 36878321 DOI: 10.1016/j.jconrel.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
With the passage of years and the progress of research on ribonucleic acids, the range of forms in which these molecules have been observed grows. One of them, discovered relatively recently, is circular RNA - covalently closed circles (circRNA). In recent years, there has been a huge increase in the interest of researchers in this group of molecules. It entailed a significant increase in the state of knowledge about them, which in turn caused a dramatic change in their perception. Rather than seeing circular RNAs as curiosities that represent a minor information noise in a cell or a result of RNA misprocessing, they came to be regarded as a common, essential, and potentially extremely useful group of molecules. Nevertheless, the current state of the art of circRNA is full of white cards. A lot of valuable information has been obtained from high-throughput methods to study whole transcriptomes, but many issues related to circular RNAs still need to be clarified. Presumably, each answer obtained will raise several new questions. However, circRNAs have a wealth of potential applications, including therapeutic applications.
Collapse
Affiliation(s)
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Peña-Paladines JJ, Wong CH, Chen Y. Circularized RNA as novel therapeutics in cancer. Int J Biochem Cell Biol 2023; 156:106364. [PMID: 36639095 DOI: 10.1016/j.biocel.2023.106364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Circular RNAs (CircRNAs) regulate gene expression by functioning as microRNA sponges, regulating protein stability, and gilding proteins for gene transcription and translation. Also, limited circRNAs harbour protein-coding ability through cap-independent pathways. These molecular mechanisms of circRNAs contribute to their importance in several cellular processes. Particularly, the dysregulation of circRNAs also plays a critical role in disease development. Targeting disease-causing circRNAs by restoring their normal expression by gain-of-function or loss-of-function approach and regulating their molecular activities could be potential direction for the development of anti-cancer therapies. Furthermore, due to unique covalently closed circular structure, the superior stability of circRNAs also grants them as novel therapeutic tools replacing the therapeutic small interfering RNAs and messenger RNAs. Here, we will review the functional and molecular mechanisms of circRNAs in pathogenesis, the current methods for targeting the dysregulated circRNAs, and the potential of using synthetic circRNAs in disease treatment and prevention.
Collapse
Affiliation(s)
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China.
| |
Collapse
|
24
|
Huang R, Cai L, Ma X, Shen K. Autophagy-mediated circHIPK2 promotes lipopolysaccharide-induced astrocytic inflammation via SIGMAR1. Int Immunopharmacol 2023; 117:109907. [PMID: 36827915 DOI: 10.1016/j.intimp.2023.109907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Circular RNAs (circRNAs) are a subclass of noncoding RNAs and widely involve in the occurrence of multiple human diseases. It is an urgent task to clarify circRNA upstream regulation mechanism and seek their biofunction. Our previous study has confirmed that circular RNA HIPK2 (circHIPK2) promotes astrocyte activation via SIGMAR1, sigma non-opioid intracellular receptor 1, in a mouse model of single high-dose lipopolysaccharide (LPS) injection. However, what mechanism circHIPK2 is regulated by and whether it is involved in the inflammatory response of astrocytes remain unclear. In this study, we reported that circHIPK2 and SIGMAR1 were significantly increased in mouse prefrontal cortex after multiple intraperitoneal injection of LPS, with the elevation of inflammatory mediators. Knockdown circHIPK2 in primary astrocytes suppressed the SIGMAR1 expression and inflammation. Pretreatment of autophagy inducer rapamycin on astrocytes suppressed the circHIPK2 expression and inactivated inflammatory response. These results implied that autophagy inducer rapamycin could suppress astrocytic inflammation by inactivating circHIPK2-SIGMAR1 axis. Autophagy may be a promising upstream administrator of circHIPK2 and therapeutic target for central nervous system inflammation.
Collapse
Affiliation(s)
- Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
25
|
Zhang L, Wang X, Zhao W, Liu J. Overview of m 6A and circRNAs in human cancers. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04610-8. [PMID: 36807759 DOI: 10.1007/s00432-023-04610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
N6-methyladenosine (m6A), the richest post-transcriptional modification of RNA in eukaryotic cells, is dynamically installed/uninstalled by the RNA methylase complex ("writer") and demethylase ("eraser") and recognized by the m6A-binding protein ("reader"). M6A modification on RNA metabolism involves maturation, nuclear export, translation and splicing, thereby playing a critical role in cellular pathophysiology and disease processes. Circular RNAs (circRNAs) are a class of non-coding RNAs with a covalently closed loop structure. Due to its conserved and stable properties, circRNAs could participate in physiological and pathological processes through unique pathways. Despite the recent discovery of m6A and circRNAs remains in the initial stage, research has shown that m6A modifications are widespread in circRNAs and regulates circRNA metabolism, including biogenesis, cell localization, translation, and degradation. In this review, we describe the functional crosstalk between m6A and circRNAs, and illustrate their roles in cancer development. Moreover, we discuss the potential mechanisms and future research directions of m6A modification and circRNAs.
Collapse
Affiliation(s)
- Leyu Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
26
|
Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023; 37:181-198. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiang-Qian Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Lu-Yu Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
27
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
28
|
Liu R, Ma Y, Guo T, Li G. Identification, biogenesis, function, and mechanism of action of circular RNAs in plants. PLANT COMMUNICATIONS 2023; 4:100430. [PMID: 36081344 PMCID: PMC9860190 DOI: 10.1016/j.xplc.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, closed RNA molecules with unique functions that are ubiquitously expressed in all eukaryotes. The biogenesis of circRNAs is regulated by specific cis-acting elements and trans-acting factors in humans and animals. circRNAs mainly exert their biological functions by acting as microRNA sponges, forming R-loops, interacting with RNA-binding proteins, or being translated into polypeptides or proteins in human and animal cells. Genome-wide identification of circRNAs has been performed in multiple plant species, and the results suggest that circRNAs are abundant and ubiquitously expressed in plants. There is emerging compelling evidence to suggest that circRNAs play essential roles during plant growth and development as well as in the responses to biotic and abiotic stress. However, compared with recent advances in human and animal systems, the roles of most circRNAs in plants are unclear at present. Here we review the identification, biogenesis, function, and mechanism of action of plant circRNAs, which will provide a fundamental understanding of the characteristics and complexity of circRNAs in plants.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yu Ma
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
29
|
Ren L, Jiang Q, Mo L, Tan L, Dong Q, Meng L, Yang N, Li G. Mechanisms of circular RNA degradation. Commun Biol 2022; 5:1355. [PMID: 36494488 PMCID: PMC9734648 DOI: 10.1038/s42003-022-04262-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (CircRNAs) are a class of noncoding RNAs formed by backsplicing during cotranscriptional and posttranscriptional processes, and they widely exist in various organisms. CircRNAs have multiple biological functions and are associated with the occurrence and development of many diseases. While the biogenesis and biological function of circRNAs have been extensively studied, there are few studies on circRNA degradation and only a few pathways for specific circRNA degradation have been identified. Here we outline basic information about circRNAs, summarize the research on the circRNA degradation mechanisms and discusses where this field might head, hoping to provide some inspiration and guidance for scholars who aim to study the degradation of circRNAs.
Collapse
Affiliation(s)
- Longxin Ren
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Qingshan Jiang
- grid.412017.10000 0001 0266 8918Department of Otolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001 China
| | - Liyi Mo
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Lijie Tan
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Qifei Dong
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Lijuan Meng
- grid.412017.10000 0001 0266 8918Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang Hunan, 421001 China
| | - Nanyang Yang
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| | - Guoqing Li
- grid.412017.10000 0001 0266 8918The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
30
|
Liu Z, Zhou Y, Xia J. CircRNAs: Key molecules in the prevention and treatment of ischemic stroke. Biomed Pharmacother 2022; 156:113845. [DOI: 10.1016/j.biopha.2022.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
|
31
|
Song Z, Lin J, Su R, Ji Y, Jia R, Li S, Shan G, Huang C. eIF3j inhibits translation of a subset of circular RNAs in eukaryotic cells. Nucleic Acids Res 2022; 50:11529-11549. [PMID: 36330957 PMCID: PMC9723666 DOI: 10.1093/nar/gkac980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing studies have revealed that a subset of circular RNAs (circRNAs) harbor an open reading frame and can act as protein-coding templates to generate functional proteins that are closely associated with multiple physiological and disease-relevant processes, and thus proper regulation of synthesis of these circRNA-derived proteins is a fundamental cellular process required for homeostasis maintenance. However, how circRNA translation initiation is coordinated by different trans-acting factors remains poorly understood. In particular, the impact of different eukaryotic translation initiation factors (eIFs) on circRNA translation and the physiological relevance of this distinct regulation have not yet been characterized. In this study, we screened all 43 Drosophila eIFs and revealed the conflicting functions of eIF3 subunits in the translational control of the translatable circRNA circSfl: eIF3 is indispensable for circSfl translation, while the eIF3-associated factor eIF3j is the most potent inhibitor. Mechanistically, the binding of eIF3j to circSfl promotes the disassociation of eIF3. The C-terminus of eIF3j and an RNA regulon within the circSfl untranslated region (UTR) are essential for the inhibitory effect of eIF3j. Moreover, we revealed the physiological relevance of eIF3j-mediated circSfl translation repression in response to heat shock. Finally, additional translatable circRNAs were identified to be similarly regulated in an eIF3j-dependent manner. Altogether, our study provides a significant insight into the field of cap-independent translational regulation and undiscovered functions of eIF3.
Collapse
Affiliation(s)
| | | | - Rui Su
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Ji
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- To whom correspondence should be addressed. Tel: +86 19956025374;
| |
Collapse
|
32
|
Chen L, Wang Y, Lin J, Song Z, Wang Q, Zhao W, Wang Y, Xiu X, Deng Y, Li X, Li Q, Wang X, Li J, Liu X, Liu K, Zhou J, Li K, Liu Y, Liao S, Deng Q, Xu C, Sun Q, Wu S, Zhang K, Guan MX, Zhou T, Sun F, Cai X, Huang C, Shan G. Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs. Nat Commun 2022; 13:5769. [PMID: 36182935 PMCID: PMC9526749 DOI: 10.1038/s41467-022-33356-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/09/2022] [Indexed: 12/19/2022] Open
Abstract
Numerous RNAs are exported from the nucleus, abnormalities of which lead to cellular complications and diseases. How thousands of circular RNAs (circRNAs) are exported from the nucleus remains elusive. Here, we provide lines of evidence to demonstrate a link between the conserved Exportin 4 (XPO4) and nuclear export of a subset of circRNAs in metazoans. Exonic circRNAs (ecircRNAs) with higher expression levels, larger length, and lower GC content are more sensitive to XPO4 deficiency. Cellular insufficiency of XPO4 leads to nuclear circRNA accumulation, circRNA:DNA (ciR-loop) formation, linear RNA:DNA (liR-loop) buildup, and DNA damage. DDX39 known to modulate circRNA export can resolve ciR-loop, and splicing factors involved in the biogenesis of circRNAs can also affect the levels of ciR-loop. Testis and brain are two organs with high abundance of circRNAs, and insufficient XPO4 levels are detrimental, as Xpo4 heterozygous mice display male infertility and neural phenotypes. Increased levels of ciR-loop, R-loop, and DNA damage along with decreased cell numbers are observed in testis and hippocampus of Xpo4 heterozygotes. This study sheds light on the understandings of mechanism of circRNA export and reveals the significance of efficient nuclear export of circRNAs in cellular physiology. This study identifies the evolutionarily conserved Exportin 4 as an essential regulator in the nuclear export of circRNAs. Defective circRNA export results in R-loop formation and DNA damage in cells, as well as testis and neurological defects in mice.
Collapse
Affiliation(s)
- Liang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yucong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Qinwei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wenfang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Xiaoyu Xiu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Yuqi Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiuzhi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qiqi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kunpeng Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shanhui Liao
- Division of Life Science and Medicine, CAS Key Laboratory of Structural Biology, University of Science and Technology of China, Hefei, 230027, China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing, 400030, China
| | - Chao Xu
- Division of Life Science and Medicine, CAS Key Laboratory of Structural Biology, University of Science and Technology of China, Hefei, 230027, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Min-Xin Guan
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tianhua Zhou
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center, Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
| | - Fei Sun
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiujun Cai
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
33
|
Jia R, Lin J, You J, Li S, Shan G, Huang C. The DEAD-box helicase Hlc regulates basal transcription and chromatin opening of stress-responsive genes. Nucleic Acids Res 2022; 50:9175-9189. [PMID: 35950495 PMCID: PMC9458421 DOI: 10.1093/nar/gkac684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stress-responsive genes are lowly transcribed under normal conditions and robustly induced in response to stress. The significant difference between basal and induced transcription indicates that the general transcriptional machinery requires a mechanism to distinguish each transcription state. However, what factors specifically function in basal transcription remains poorly understood. Using a classic model stress-responsive gene (Drosophila MtnA), we found that knockdown of the DEAD-box helicase Hlc resulted in a significant transcription attenuation of MtnA under normal, but not stressed, conditions. Mechanistically, Hlc directly binds to the MtnA locus to maintain the accessibility of chromatin near the transcriptional start site, which allows the recruitment of RNA polymerase II and subsequent MtnA transcription. Using RNA-seq, we then identified plenty of additional stress-responsive genes whose basal transcription was reduced upon knockdown of Hlc. Taken together, these data suggest that Hlc-mediated basal transcription regulation is an essential and widespread mechanism for precise control of stress-responsive genes.
Collapse
Affiliation(s)
| | | | | | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- To whom correspondence should be addressed. Tel: +86 19956025374;
| |
Collapse
|
34
|
Qin S, Zhang Q, Xu Y, Ma S, Wang T, Huang Y, Ju S. m 6A-modified circRNAs: detections, mechanisms, and prospects in cancers. Mol Med 2022; 28:79. [PMID: 35836125 PMCID: PMC9284916 DOI: 10.1186/s10020-022-00505-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have become a research hotspot in recent years with their universality, diversity, stability, conservativeness, and spatiotemporal specificity. N6-methyladenosine (m6A), the most abundant modification in the eukaryotic cells, is engaged in the pathophysiological processes of various diseases. An increasing amount of evidence has suggested that m6A modification is common in circRNAs and is associated with their biological functions. This review summarizes the effects of m6A modification on circRNAs and their regulation mechanisms in cancers, providing some suggestions of m6A-modified circRNAs in cancer therapy.
Collapse
Affiliation(s)
- Shiyi Qin
- Medical School of Nantong University, Nantong University, No. 19, Qixiu Road, Nantong, 226001, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qi Zhang
- Medical School of Nantong University, Nantong University, No. 19, Qixiu Road, Nantong, 226001, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yanhua Xu
- Medical School of Nantong University, Nantong University, No. 19, Qixiu Road, Nantong, 226001, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuo Ma
- Medical School of Nantong University, Nantong University, No. 19, Qixiu Road, Nantong, 226001, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Medical School of Nantong University, Nantong University, No. 19, Qixiu Road, Nantong, 226001, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, No. 19, Qixiu Road, Nantong, 226001, Jiangsu, China. .,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, Jiangsu, China. .,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
35
|
CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother 2022; 151:113150. [PMID: 35623170 DOI: 10.1016/j.biopha.2022.113150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Circular RNAs (circRNAs), a class of single-stranded noncoding RNAs with a covalently closed loop structure, are recognized as promising biomarkers and targets for diagnosing and treating dozens of diseases, especially cancers. CircRNAs are extremely stable, abundant and conserved and have tissue- or developmental stage-specific expression. Currently, the biogenesis and biological functions of circRNAs have been increasingly revealed with deep sequencing and bioinformatics. Studies have indicated that circRNAs are frequently expressed in brain tissues and that their expression levels change in different stages of neural development, suggesting that circRNAs may play an important role in diseases of the nervous system, such as glioma. However, because the biogenesis and functions of circRNAs do not depend on a single mechanism but are coregulated by multiple factors, it is necessary to further explore the underlying mechanisms. In this review, we summarized the classification, mechanisms of biogenesis and biological functions of circRNAs. Meanwhile, we emphatically expounded on the process of abnormal expression of circRNAs, methods used in circRNA research, and their effects on the malignant biological capabilities of glioma.
Collapse
|
36
|
Jamil M, Ahmad S, Ran Y, Ma S, Cao F, Lin X, Yan R. Argonaute1 and Gawky Are Required for the Development and Reproduction of Melon fly, Zeugodacus cucurbitae. Front Genet 2022; 13:880000. [PMID: 35812742 PMCID: PMC9260231 DOI: 10.3389/fgene.2022.880000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Argonaute family genes encode a highly conserved group of proteins that have been associated with RNA silencing in both animals and plants. This study investigates the importance of microRNA biogenesis key regulators Argonaute1 (Ago1) and Gawky genes in the post-embryonic and ovarian development of the melon fly, Zeugodacus cucurbitae. The expression levels of these genes were mapped in all developmental stages and different adult tissues. Their roles in development were investigated using RNA interference (RNAi) via two different dsRNA delivery techniques. Embryo microinjection and oral feeding of third instar larvae successfully knocked down and greatly reduced the expression level of the target genes. Additionally, ex vivo essays revealed the stability of dsRNA in food was sufficient for gene silencing, although its integrity was affected in midgut. A wide range of phenotypes were observed on pupation, segmentation, pigmentation, and ovarian development. RNAi-mediated silencing of Gawky caused high mortality and loss of body segmentation, while Ago1 knockdown affected ovarian development and pigmentation. Developmental abnormalities and ovarian malformations caused by silencing these genes suggest that these genes are crucial for viability and reproductive capacity of Z. cucurbitae, and may be used as potential target genes in pest management.
Collapse
Affiliation(s)
- Momana Jamil
- School of Life Sciences, Hainan University, Haikou, China
| | - Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Yingqiao Ran
- School of Plant Protection, Hainan University, Haikou, China
| | - Siya Ma
- School of Life Sciences, Hainan University, Haikou, China
| | - Fengqin Cao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Xianwu Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| | - Rihui Yan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| |
Collapse
|
37
|
D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23084134. [PMID: 35456950 PMCID: PMC9032451 DOI: 10.3390/ijms23084134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer's disease, frontotemporal dementia, and Parkinson's diseases with a look toward their potential usefulness in biomarker searching.
Collapse
Affiliation(s)
- Marianna D’Anca
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Correspondence:
| | - Francesca R. Buccellato
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
38
|
Chen X, Zhou M, Yant L, Huang C. Circular RNA in disease: Basic properties and biomedical relevance. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1723. [PMID: 35194939 DOI: 10.1002/wrna.1723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed RNA molecules with great diversity in molecular features, functions, and regulatory mechanisms. Emerging advances in our understanding of circRNA biogenesis, nuclear export, and stability control have been made very recently. In particular, novel roles of circRNAs in diverse human diseases are increasingly recognized. Various circRNAs have been found to affect many disease-relevant pathways through a diverse array of mechanisms, including forming R-loops, sponging miRNAs or proteins, and translating functional proteins, resulting in different pathological phenotypes. This recent progress calls for a revised view of circRNAs in diseases threatening the lives and health of humans. In this review, we focus on the recently described functional relevance of disease-associated circRNAs as well as the potential of circRNAs in diverse clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Xiaolan Chen
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| |
Collapse
|
39
|
Ju J, Song YN, Chen XZ, Wang T, Liu CY, Wang K. circRNA is a potential target for cardiovascular diseases treatment. Mol Cell Biochem 2022; 477:417-430. [PMID: 34780000 DOI: 10.1007/s11010-021-04286-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs), a novel class of endogenous noncoding RNA, are characterized by their covalently closed-loop structures without a 5' cap or a 3' poly(A) tail. With the evolution of high-throughput sequencing technology and bioinformatics, an increasing number of circRNAs have been discovered, and their functions were highlighted. Cardiovascular diseases (CVDs) have become the world's leading killers, with serious impacts on human health. Although significant progress has been made in clarifying the development of CVDs from the molecular to the cellular level, CVDs remain one of the leading causes of death in humans. circRNAs mainly function as a "sponge" to absorb microRNAs, which results in the positive control of downstream proteins. They play important regulatory roles in the development of CVDs. This paper reviews current knowledge on the biogenesis, detection and validation, translation, translocation and degradation, and general functions of circRNAs, with a focus on their roles in CVDs.
Collapse
Affiliation(s)
- Jie Ju
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Ya-Nan Song
- Medical College of Qingdao University, Qingdao, 266021, China
| | - Xin-Zhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Cui-Yun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, No. 38 Dengzhou Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
40
|
Chen L, Huang C, Shan G. Circular RNAs in physiology and non-immunological diseases. Trends Biochem Sci 2021; 47:250-264. [PMID: 34865956 DOI: 10.1016/j.tibs.2021.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs. Four subclasses of circRNAs have been identified in animal cells, and they have unique features in their biogenesis, degradation, and transport. CircRNAs have diverse molecular functions in sponging miRNAs, regulating transcription, modulating RNA-binding proteins, and even encoding proteins. Some circRNAs are important regulators of various physiological processes to maintain homeostasis. Dysregulation of circRNAs is associated with human disorders, and individual circRNAs are crucial factors that contribute to major diseases including non-immunological diseases such as cancers, neurological disorders, cardiovascular disease, and metabolic disease. Debates on circRNAs have also been raised in recent years, and further studies would help to resolve these disputes and potentially lead to biomedical applications of circRNAs.
Collapse
Affiliation(s)
- Liang Chen
- Department of Clinical Laboratory, First Affiliated Hospital of the USTC, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| | - Ge Shan
- Department of Clinical Laboratory, First Affiliated Hospital of the USTC, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, China; Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
41
|
You J, Song Z, Lin J, Jia R, Xia F, Li Z, Huang C. RNAi-directed knockdown induces nascent transcript degradation and premature transcription termination in the nucleus. Cell Discov 2021; 7:79. [PMID: 34489400 PMCID: PMC8421446 DOI: 10.1038/s41421-021-00297-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jin You
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Fei Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
42
|
Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS, Chakraborty C. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:355-371. [PMID: 34484862 PMCID: PMC8399087 DOI: 10.1016/j.omtn.2021.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), an emerging family member of RNAs, have gained importance in research due to their new functional roles in cellular physiology and disease progression. circRNAs are usually available in a wide range of cells and have shown tissue-specific expression as well as developmental specific expression. circRNAs are characterized by structural stability, conservation, and high abundance in the cell. In this review, we discuss the different models of biogenesis. The properties of circRNAs such as localization, structure and conserved pattern, stability, and expression specificity are also been illustrated. Furthermore, we discuss the biological functions of circRNAs such as microRNA (miRNA) sponging, cell cycle regulation, cell-to-cell communication, transcription regulation, translational regulation, disease diagnosis, and therapeutic potential. Finally, we discuss the recent research progress and future perspective of circRNAs. This review provides an understanding of potential diagnostic markers and the therapeutic potential of circRNAs, which are emerging daily.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| |
Collapse
|
43
|
Tao M, Zheng M, Xu Y, Ma S, Zhang W, Ju S. CircRNAs and their regulatory roles in cancers. Mol Med 2021; 27:94. [PMID: 34445958 PMCID: PMC8393742 DOI: 10.1186/s10020-021-00359-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), have a covalently closed circular structure resulting from pre-mRNA back splicing via spliceosome and ribozymes. They can be classified differently in accordance with different criteria. As circRNAs are abundant, conserved, and stable, they can be used as diagnostic markers in various diseases and targets to develop new therapies. There are various functions of circRNAs, including sponge for miR/proteins, role of scaffolds, templates for translation, and regulators of mRNA translation and stability. Without m7G cap and poly-A tail, circRNAs can still be degraded in several ways, including RNase L, Ago-dependent, and Ago-independent degradation. Increasing evidence indicates that circRNAs can be modified by N-6 methylation (m6A) in many aspects such as biogenesis, nuclear export, translation, and degradation. In addition, they have been proved to play a regulatory role in the progression of various cancers. Recently, methods of detecting circRNAs with high sensitivity and specificity have also been reported. This review presents a detailed overview of circRNAs regarding biogenesis, biomarker, functions, degradation, and dynamic modification as well as their regulatory roles in various cancers. It’s particularly summarized in detail in the biogenesis of circRNAs, regulation of circRNAs by m6A modification and mechanisms by which circRNAs affect tumor progression respectively. Moreover, existing circRNA detection methods and their characteristics are also mentioned.
Collapse
Affiliation(s)
- Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weiwei Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China. .,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
44
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
45
|
Wu J, Guo X, Wen Y, Huang S, Yuan X, Tang L, Sun H. N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Front Cell Dev Biol 2021; 9:709299. [PMID: 34368159 PMCID: PMC8342999 DOI: 10.3389/fcell.2021.709299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
As the most abundant internal modification in eukaryotic cells, N6-methyladenosine (m6A) in mRNA has shown widespread regulatory roles in a variety of physiological processes and disease progressions. Circular RNAs (circRNAs) are a class of covalently closed circular RNA molecules and play an essential role in the pathogenesis of various diseases. Recently, accumulating evidence has shown that m6A modification is widely existed in circRNAs and found its key biological functions in regulating circRNA metabolism, including biogenesis, translation, degradation and cellular localization. Through regulating circRNAs, studies have shown the important roles of m6A modification in circRNAs during immunity and multiple diseases, which represents a new layer of control in physiological processes and disease progressions. In this review, we focused on the roles played by m6A in circRNA metabolism, summarized the regulatory mechanisms of m6A-modified circRNAs in immunity and diseases, and discussed the current challenges to study m6A modification in circRNAs and the possible future directions, providing a comprehensive insight into understanding m6A modification of circRNAs in RNA epigenetics.
Collapse
Affiliation(s)
- Jun Wu
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Guo
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Yi Wen
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
| | - Shangqing Huang
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Lijun Tang
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China.,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
46
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Jia R, Song Z, Lin J, Li Z, Shan G, Huang C. Gawky modulates MTF-1-mediated transcription activation and metal discrimination. Nucleic Acids Res 2021; 49:6296-6314. [PMID: 34107019 PMCID: PMC8216474 DOI: 10.1093/nar/gkab474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Metal-induced genes are usually transcribed at relatively low levels under normal conditions and are rapidly activated by heavy metal stress. Many of these genes respond preferentially to specific metal-stressed conditions. However, the mechanism by which the general transcription machinery discriminates metal stress from normal conditions and the regulation of MTF-1-meditated metal discrimination are poorly characterized. Using a focused RNAi screening in Drosophila Schneider 2 (S2) cells, we identified a novel activator, the Drosophila gawky, of metal-responsive genes. Depletion of gawky has almost no effect on the basal transcription of the metallothionein (MT) genes, but impairs the metal-induced transcription by inducing the dissociation of MTF-1 from the MT promoters and the deficient nuclear import of MTF-1 under metal-stressed conditions. This suggests that gawky serves as a 'checkpoint' for metal stress and metal-induced transcription. In fact, regular mRNAs are converted into gawky-controlled transcripts if expressed under the control of a metal-responsive promoter, suggesting that whether transcription undergoes gawky-mediated regulation is encrypted therein. Additionally, lack of gawky eliminates the DNA binding bias of MTF-1 and the transcription preference of metal-specific genes. This suggests a combinatorial control of metal discrimination by gawky, MTF-1, and MTF-1 binding sites.
Collapse
Affiliation(s)
- Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
48
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
49
|
Zhai X, Zhang Y, Xin S, Cao P, Lu J. Insights Into the Involvement of Circular RNAs in Autoimmune Diseases. Front Immunol 2021; 12:622316. [PMID: 33717126 PMCID: PMC7947908 DOI: 10.3389/fimmu.2021.622316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, endogenous, non-coding RNA (ncRNA) molecules formed by the backsplicing of messenger RNA (mRNA) precursors and have covalently closed circular structures without 5′-end caps and 3′-end polyadenylation [poly(A)] tails. CircRNAs are characterized by abundant species, stable structures, conserved sequences, cell- or tissue-specific expression, and widespread and stable presence in many organisms. Therefore, circRNAs can be used as biomarkers for the prediction, diagnosis, and treatment of a variety of diseases. Autoimmune diseases (AIDs) are caused by defects in immune tolerance or abnormal immune regulation, which leads to damage to host organs. Due to the complexity of the pathophysiological processes of AIDs, clinical therapeutics have been suboptimal. The emergence of circRNAs sheds new light on the treatment of AIDs. In particular, circRNAs mainly participate in the occurrence and development of AIDs by sponging targets. This review systematically explains the formation, function, mechanism, and characteristics of circRNAs in the context of AIDs. With a deeper understanding of the pathophysiological functions of circRNAs in the pathogenesis of AIDs, circRNAs may become reasonable, accurate, and effective biomarkers for the diagnosis and treatment of AIDs in the future.
Collapse
Affiliation(s)
- Xingyu Zhai
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
50
|
The GAUGAA Motif Is Responsible for the Binding between circSMARCA5 and SRSF1 and Related Downstream Effects on Glioblastoma Multiforme Cell Migration and Angiogenic Potential. Int J Mol Sci 2021; 22:ijms22041678. [PMID: 33562358 PMCID: PMC7915938 DOI: 10.3390/ijms22041678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of RNAs with regulatory functions within cells. We recently showed that circSMARCA5 is a tumor suppressor in glioblastoma multiforme (GBM) and acts as a decoy for Serine and Arginine Rich Splicing Factor 1 (SRSF1) through six predicted binding sites (BSs). Here we characterized RNA motifs functionally involved in the interaction between circSMARCA5 and SRSF1. Three different circSMARCA5 molecules (Mut1, Mut2, Mut3), each mutated in two predicted SRSF1 BSs at once, were obtained through PCR-based replacement of wild-type (WT) BS sequences and cloned in three independent pcDNA3 vectors. Mut1 significantly decreased its capability to interact with SRSF1 as compared to WT, based on the RNA immunoprecipitation assay. In silico analysis through the “Find Individual Motif Occurrences” (FIMO) algorithm showed GAUGAA as an experimentally validated SRSF1 binding motif significantly overrepresented within both predicted SRSF1 BSs mutated in Mut1 (q-value = 0.0011). U87MG and CAS-1, transfected with Mut1, significantly increased their migration with respect to controls transfected with WT, as revealed by the cell exclusion zone assay. Immortalized human brain microvascular endothelial cells (IM-HBMEC) exposed to conditioned medium (CM) harvested from U87MG and CAS-1 transfected with Mut1 significantly sprouted more than those treated with CM harvested from U87MG and CAS-1 transfected with WT, as shown by the tube formation assay. qRT-PCR showed that the intracellular pro- to anti-angiogenic Vascular Endothelial Growth Factor A (VEGFA) mRNA isoform ratio and the amount of total VEGFA mRNA secreted in CM significantly increased in Mut1-transfected CAS-1 as compared to controls transfected with WT. Our data suggest that GAUGAA is the RNA motif responsible for the interaction between circSMARCA5 and SRSF1 as well as for the circSMARCA5-mediated control of GBM cell migration and angiogenic potential.
Collapse
|