1
|
Scully R, Glodzik D, Menghi F, Liu ET, Zhang CZ. Mechanisms of tandem duplication in the cancer genome. DNA Repair (Amst) 2025; 145:103802. [PMID: 39742573 DOI: 10.1016/j.dnarep.2024.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025]
Abstract
Tandem duplications (TD) are among the most frequent type of structural variant (SV) in the cancer genome. They are characterized by a single breakpoint junction that defines the boundaries and the size of the duplicated segment. Cancer-associated TDs often increase oncogene copy number or disrupt tumor suppressor gene function, and thus have important roles in tumor evolution. TDs in cancer genomes fall into three classes, defined by the size of duplications, and are associated with distinct genetic drivers. In this review, we survey key features of cancer-related TDs and consider possible underlying mechanisms in relation to stressed DNA replication and the 3D organization of the S phase genome.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Dominik Glodzik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Xu Z, Nie C, Liao J, Ma Y, Zhou XA, Li X, Li S, Lin H, Luo Y, Cheng K, Mao Z, Zhang L, Pan Y, Chen Y, Wang W, Wang J. DDX39A resolves replication fork-associated RNA-DNA hybrids to balance fork protection and cleavage for genomic stability maintenance. Mol Cell 2024:S1097-2765(24)00954-7. [PMID: 39706185 DOI: 10.1016/j.molcel.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Safeguarding replication fork stability in transcriptionally active regions is crucial for precise DNA replication and mutation prevention. Here, we discover the pervasive existence of replication fork-associated RNA-DNA hybrids (RF-RDs) in transcriptionally active regions of human cells. These hybrids function as protective barriers, preventing DNA2-mediated nascent DNA degradation and replication fork collapse under replication stress. We also identify DDX39A as a RAD51-associated protein that binds to stalled forks and resolves RF-RDs, facilitating proper DNA2-mediated DNA resection and replication fork restart. Excessive dissolution of RF-RDs causes replication fork collapse and genomic instability, while insufficient dissolution of RF-RDs under replication stress increases fork stability, resulting in chemoresistance that can be reversed by eliminating RF-RDs. In summary, we elucidated the prevalence of RF-RDs at replication forks within transcriptionally active regions, revealed their pivotal role in safeguarding replication fork stability, and proposed that targeting RF-RDs holds promise for augmenting chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Zhanzhan Xu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Chen Nie
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Junwei Liao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yujie Ma
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haodong Lin
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yefei Luo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Kaiqi Cheng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Zuchao Mao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yichen Pan
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China; Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, Beijing 100142, China.
| |
Collapse
|
3
|
Wilson TE, Ahmed S, Winningham A, Glover TW. Replication stress induces POLQ-mediated structural variant formation throughout common fragile sites after entry into mitosis. Nat Commun 2024; 15:9582. [PMID: 39505880 PMCID: PMC11541566 DOI: 10.1038/s41467-024-53917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Genomic structural variants (SVs) greatly impact human health, but much is unknown about the mechanisms that generate the largest class of nonrecurrent alterations. Common fragile sites (CFSs) are unstable loci that provide a model for SV formation, especially large deletions, under replication stress. We study SV junction formation as it occurs in human cell lines by applying error-minimized capture sequencing to CFS DNA harvested after low-dose aphidicolin treatment. SV junctions form throughout CFS genes at a 5-fold higher rate after cells pass from G2 into M-phase. Neither SV formation nor CFS expression depend on mitotic DNA synthesis (MiDAS), an error-prone form of replication active at CFSs. Instead, analysis of tens of thousands of de novo SV junctions combined with DNA repair pathway inhibition reveal a primary role for DNA polymerase theta (POLQ)-mediated end-joining (TMEJ). We propose an important role for mitotic TMEJ in nonrecurrent SV formation genome wide.
Collapse
Affiliation(s)
- Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Samreen Ahmed
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Amanda Winningham
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Rossetti GG, Dommann N, Karamichali A, Dionellis VS, Asensio Aldave A, Yarahmadov T, Rodriguez-Carballo E, Keogh A, Candinas D, Stroka D, Halazonetis TD. In vivo DNA replication dynamics unveil aging-dependent replication stress. Cell 2024; 187:6220-6234.e13. [PMID: 39293447 DOI: 10.1016/j.cell.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.
Collapse
Affiliation(s)
- Giacomo G Rossetti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Noëlle Dommann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Ainhoa Asensio Aldave
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Adrian Keogh
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
5
|
Kim S, Park S, Kang N, Ra J, Myung K, Lee KY. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells. Nucleic Acids Res 2024; 52:11785-11805. [PMID: 39291733 PMCID: PMC11514459 DOI: 10.1093/nar/gkae785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Replication stresses are the major source of break-induced replication (BIR). Here, we show that in alternative lengthening of telomeres (ALT) cells, replication stress-induced polyubiquitinated proliferating cell nuclear antigen (PCNA) (polyUb-PCNA) triggers BIR at telomeres and the common fragile site (CFS). Consistently, depleting RAD18, a PCNA ubiquitinating enzyme, reduces the occurrence of ALT-associated promyelocytic leukemia (PML) bodies (APBs) and mitotic DNA synthesis at telomeres and CFS, both of which are mediated by BIR. In contrast, inhibiting ubiquitin-specific protease 1 (USP1), an Ub-PCNA deubiquitinating enzyme, results in an increase in the above phenotypes in a RAD18- and UBE2N (the PCNA polyubiquitinating enzyme)-dependent manner. Furthermore, deficiency of ATAD5, which facilitates USP1 activity and unloads PCNAs, augments recombination-associated phenotypes. Mechanistically, telomeric polyUb-PCNA accumulates SLX4, a nuclease scaffold, at telomeres through its ubiquitin-binding domain and increases telomere damage. Consistently, APB increase induced by Ub-PCNA depends on SLX4 and structure-specific endonucleases. Taken together, our results identified the polyUb-PCNA-SLX4 axis as a trigger for directing BIR.
Collapse
Affiliation(s)
- Sangin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Xu S, Egli D. Genome organization and stability in mammalian pre-implantation development. DNA Repair (Amst) 2024; 144:103780. [PMID: 39504608 DOI: 10.1016/j.dnarep.2024.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Colicino-Murbach E, Hathaway C, Dungrawala H. Replication fork stalling in late S-phase elicits nascent strand degradation by DNA mismatch repair. Nucleic Acids Res 2024; 52:10999-11013. [PMID: 39180395 PMCID: PMC11472054 DOI: 10.1093/nar/gkae721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Eukaryotic chromosomal replication occurs in a segmented, temporal manner wherein open euchromatin and compact heterochromatin replicate during early and late S-phase respectively. Using single molecule DNA fiber analyses coupled with cell synchronization, we find that newly synthesized strands remain stable at perturbed forks in early S-phase. Unexpectedly, stalled forks are susceptible to nucleolytic digestion during late replication resulting in defective fork restart. This inherent vulnerability to nascent strand degradation is dependent on fork reversal enzymes and resection nucleases MRE11, DNA2 and EXO1. Inducing chromatin compaction elicits digestion of nascent DNA in response to fork stalling due to reduced association of RAD51 with nascent DNA. Furthermore, RAD51 occupancy at stalled forks in late S-phase is diminished indicating that densely packed chromatin limits RAD51 accessibility to mediate replication fork protection. Genetic analyses reveal that susceptibility of late replicating forks to nascent DNA digestion is dependent on EXO1 via DNA mismatch repair (MMR) and that the BRCA2-mediated replication fork protection blocks MMR from degrading nascent DNA. Overall, our findings illustrate differential regulation of fork protection between early and late replication and demonstrate nascent strand degradation as a critical determinant of heterochromatin instability in response to replication stress.
Collapse
Affiliation(s)
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Blaize JL, Garzon JLN, Howlett NG. FANCD2 genome binding is nonrandom and is enriched at large transcriptionally active neural genes prone to copy number variation. Funct Integr Genomics 2024; 24:180. [PMID: 39365306 PMCID: PMC11452531 DOI: 10.1007/s10142-024-01453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities and increased risk for bone marrow failure and cancer. Central nervous system defects, including acute and irreversible loss of neurological function and white matter lesions with calcifications, have become increasingly recognized among FA patients, and are collectively referred to as Fanconi Anemia Neurological Syndrome or FANS. The molecular etiology of FANS is poorly understood. In this study, we have used a functional integrative genomics approach to further define the function of the FANCD2 protein and FA pathway. Combined analysis of new and existing FANCD2 ChIP-seq datasets demonstrates that FANCD2 binds nonrandomly throughout the genome with binding enriched at transcription start sites and in broad regions spanning protein-coding gene bodies. FANCD2 demonstrates a strong preference for large neural genes involved in neuronal differentiation, synapse function, and cell adhesion, with many of these genes implicated in neurodevelopmental and neuropsychiatric disorders. Furthermore, FANCD2 binds to regions of the genome that replicate late, undergo mitotic DNA synthesis (MiDAS) under conditions of replication stress, and are hotspots for copy number variation. Our analysis describes an important targeted role for FANCD2 and the FA pathway in the maintenance of large neural gene stability.
Collapse
Affiliation(s)
- Justin L Blaize
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
| | - Jada Lauren N Garzon
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA.
| |
Collapse
|
9
|
Lee RS, Twarowski JM, Malkova A. Stressed? Break-induced replication comes to the rescue! DNA Repair (Amst) 2024; 142:103759. [PMID: 39241677 DOI: 10.1016/j.dnarep.2024.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rosemary S Lee
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Anna Malkova
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
Polyzos AA, Cheong A, Yoo JH, Blagec L, Toprani SM, Nagel ZD, McMurray CT. Base excision repair and double strand break repair cooperate to modulate the formation of unrepaired double strand breaks in mouse brain. Nat Commun 2024; 15:7726. [PMID: 39231940 PMCID: PMC11375129 DOI: 10.1038/s41467-024-51906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
We lack the fundamental information needed to understand how DNA damage in the brain is generated and how it is controlled over a lifetime in the absence of replication check points. To address these questions, here, we integrate cell-type and region-specific features of DNA repair activity in the normal brain. The brain has the same repair proteins as other tissues, but normal, canonical repair activity is unequal and is characterized by high base excision repair (BER) and low double strand break repair (DSBR). The natural imbalance creates conditions where single strand breaks (SSBs) can convert to double strand breaks (DSBs) and reversibly switch between states in response to oxidation both in vivo and in vitro. Our data suggest that, in a normal background of repair, SSBs and DSBs are in an equilibrium which is pushed or pulled by metabolic state. Interconversion of SSB to DSBs provides a physiological check point, which would allow the formation of unrepaired DSBs for productive functions, but would also restrict them from exceeding tolerable limits.
Collapse
Affiliation(s)
- Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Ana Cheong
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jung Hyun Yoo
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lana Blagec
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sneh M Toprani
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
11
|
Paul Chowdhuri S, Das BB. TDP1 phosphorylation by CDK1 in mitosis promotes MUS81-dependent repair of trapped Top1-DNA covalent complexes. EMBO J 2024; 43:3710-3732. [PMID: 39014228 PMCID: PMC11377750 DOI: 10.1038/s44318-024-00169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Topoisomerase 1 (Top1) controls DNA topology, relieves DNA supercoiling during replication and transcription, and is critical for mitotic progression to the G1 phase. Tyrosyl-DNA phosphodiesterase 1 (TDP1) mediates the removal of trapped Top1-DNA covalent complexes (Top1cc). Here, we identify CDK1-dependent phosphorylation of TDP1 at residue S61 during mitosis. A TDP1 variant defective for S61 phosphorylation (TDP1-S61A) is trapped on the mitotic chromosomes, triggering DNA damage and mitotic defects. Moreover, we show that Top1cc repair in mitosis occurs via a MUS81-dependent DNA repair mechanism. Replication stress induced by camptothecin or aphidicolin leads to TDP1-S61A enrichment at common fragile sites, which over-stimulates MUS81-dependent chromatid breaks, anaphase bridges, and micronuclei, ultimately culminating in the formation of 53BP1 nuclear bodies during G1 phase. Our findings provide new insights into the cell cycle-dependent regulation of TDP1 dynamics for the repair of trapped Top1-DNA covalent complexes during mitosis that prevents genomic instability following replication stress.
Collapse
Affiliation(s)
- Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
12
|
D'Souza J, Hickson ID. Replication fork barriers to study site-specific DNA replication perturbation. DNA Repair (Amst) 2024; 141:103735. [PMID: 39079395 DOI: 10.1016/j.dnarep.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/18/2024]
Abstract
DNA replication ensures the complete and accurate duplication of the genome. The traditional approach to analysing perturbation of DNA replication is to use chemical inhibitors, such as hydroxyurea or aphidicolin, that slow or stall replication fork progression throughout the genome. An alternative approach is to perturb replication at a single site in the genome that permits a more forensic investigation of the cellular response to the stalling or disruption of a replication fork. This has been achieved in several organisms using different systems that share the common feature of utilizing the high affinity binding of a protein to a defined DNA sequence that is integrated into a specific locus in the host genome. Protein-mediated replication fork blocking systems of this sort have proven very valuable in defining how cells cope with encountering a barrier to fork progression. In this review, we compare protein-based replication fork barrier systems from different organisms that have been developed to generate site-specific replication fork perturbation.
Collapse
Affiliation(s)
- Jenevieve D'Souza
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark.
| |
Collapse
|
13
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Iyyappan R, Scatolin GN, Jiang Z, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat Commun 2024; 15:5247. [PMID: 38898078 PMCID: PMC11187207 DOI: 10.1038/s41467-024-49565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that late replicating regions are established in association with the B compartment and the nuclear lamina from the first cell cycle after fertilization on both maternal and paternal genomes. Late replicating regions contain a relative paucity of active origins and few but long genes and low G/C content. In both bovine and mouse embryos, replication timing patterns are established prior to embryonic genome activation. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to separation of soma and germ cell lineages. Our studies show that the segregation of early and late replicating regions is among the first layers of genome organization established after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York, NY, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical School, New York, NY, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Amnon Koren
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Padayachy L, Ntallis SG, Halazonetis TD. RECQL4 is not critical for firing of human DNA replication origins. Sci Rep 2024; 14:7708. [PMID: 38565932 PMCID: PMC10987555 DOI: 10.1038/s41598-024-58404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.
Collapse
Affiliation(s)
- Laura Padayachy
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Sotirios G Ntallis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
15
|
Petropoulos M, Karamichali A, Rossetti GG, Freudenmann A, Iacovino LG, Dionellis VS, Sotiriou SK, Halazonetis TD. Transcription-replication conflicts underlie sensitivity to PARP inhibitors. Nature 2024; 628:433-441. [PMID: 38509368 PMCID: PMC11006605 DOI: 10.1038/s41586-024-07217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.
Collapse
Affiliation(s)
- Michalis Petropoulos
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | | | - Alena Freudenmann
- FoRx Therapeutics AG, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sotirios K Sotiriou
- FoRx Therapeutics AG, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Liu Y, Zhangding Z, Liu X, Gan T, Ai C, Wu J, Liang H, Chen M, Guo Y, Lu R, Jiang Y, Ji X, Gao N, Kong D, Li Q, Hu J. Fork coupling directs DNA replication elongation and termination. Science 2024; 383:1215-1222. [PMID: 38484065 DOI: 10.1126/science.adj7606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
DNA replication is initiated at multiple loci to ensure timely duplication of eukaryotic genomes. Sister replication forks progress bidirectionally, and replication terminates when two convergent forks encounter one another. To investigate the coordination of replication forks, we developed a replication-associated in situ HiC method to capture chromatin interactions involving nascent DNA. We identify more than 2000 fountain-like structures of chromatin contacts in human and mouse genomes, indicative of coupling of DNA replication forks. Replication fork interaction not only occurs between sister forks but also involves forks from two distinct origins to predetermine replication termination. Termination-associated chromatin fountains are sensitive to replication stress and lead to coupled forks-associated genomic deletions in cancers. These findings reveal the spatial organization of DNA replication forks within the chromatin context.
Collapse
Affiliation(s)
- Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengrong Zhangding
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University ChengDu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haoxin Liang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
| | - Mohan Chen
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
| | - Yuefeng Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ning Gao
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Li
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University; Beijing 100871, China
- PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University ChengDu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| |
Collapse
|
17
|
Oram MK, Baxley RM, Simon EM, Lin K, Chang YC, Wang L, Myers CL, Bielinsky AK. RNF4 prevents genomic instability caused by chronic DNA under-replication. DNA Repair (Amst) 2024; 135:103646. [PMID: 38340377 PMCID: PMC10948022 DOI: 10.1016/j.dnarep.2024.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Eukaryotic genome stability is maintained by a complex and diverse set of molecular processes. One class of enzymes that promotes proper DNA repair, replication and cell cycle progression comprises small ubiquitin-like modifier (SUMO)-targeted E3 ligases, or STUbLs. Previously, we reported a role for the budding yeast STUbL synthetically lethal with sgs1 (Slx) 5/8 in preventing G2/M-phase arrest in a minichromosome maintenance protein 10 (Mcm10)-deficient model of replication stress. Here, we extend these studies to human cells, examining the requirement for the human STUbL RING finger protein 4 (RNF4) in MCM10 mutant cancer cells. We find that MCM10 and RNF4 independently promote origin firing but regulate DNA synthesis epistatically and, unlike in yeast, the negative genetic interaction between RNF4 and MCM10 causes cells to accumulate in G1-phase. When MCM10 is deficient, RNF4 prevents excessive DNA under-replication at hard-to-replicate regions that results in large DNA copy number alterations and severely reduced viability. Overall, our findings highlight that STUbLs participate in species-specific mechanisms to maintain genome stability, and that human RNF4 is required for origin activation in the presence of chronic replication stress.
Collapse
Affiliation(s)
- Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily M Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
19
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.25.573304. [PMID: 38234839 PMCID: PMC10793403 DOI: 10.1101/2023.12.25.573304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that both bovine and mouse cleavage stage embryos progress through S-phase in a defined pattern. Late replicating regions are associated with the nuclear lamina from the first cell cycle after fertilization, and contain few active origins, and few but long genes. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to segregation of soma and germ line. Our studies show that the formation of early and late replicating regions is among the first layers of epigenetic regulation established on the mammalian genome after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York
| | | | - Timour Baslan
- Department of Biomedical Sciences, The University of Pennsylvania, Philadelphia, PA, 19104
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, 14853, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
20
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
21
|
Bhowmick R, Hickson ID, Liu Y. Completing genome replication outside of S phase. Mol Cell 2023; 83:3596-3607. [PMID: 37716351 DOI: 10.1016/j.molcel.2023.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
22
|
Brunner A, Li Q, Fisicaro S, Kourtesakis A, Viiliäinen J, Johansson HJ, Pandey V, Mayank AK, Lehtiö J, Wohlschlegel JA, Spruck C, Rantala JK, Orre LM, Sangfelt O. FBXL12 degrades FANCD2 to regulate replication recovery and promote cancer cell survival under conditions of replication stress. Mol Cell 2023; 83:3720-3739.e8. [PMID: 37591242 PMCID: PMC10592106 DOI: 10.1016/j.molcel.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.
Collapse
Affiliation(s)
- Andrä Brunner
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden.
| | - Qiuzhen Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Samuele Fisicaro
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Alexandros Kourtesakis
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Johanna Viiliäinen
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Henrik J Johansson
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Charles Spruck
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla 92037, CA, USA
| | - Juha K Rantala
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, South Yorkshire, UK; Misvik Biology, Turku 20520, Finland
| | - Lukas M Orre
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden.
| |
Collapse
|
23
|
Wang N, Xu S, Egli D. Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol 2023; 33:872-886. [PMID: 37202286 PMCID: PMC11214770 DOI: 10.1016/j.tcb.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Duplicating a genome of 3 billion nucleotides is challenged by a variety of obstacles that can cause replication stress and affect the integrity of the genome. Recent studies show that replication fork slowing and stalling is prevalent in early mammalian development, resulting in genome instability and aneuploidy, and constituting a barrier to development in human reproduction. Genome instability resulting from DNA replication stress is a barrier to the cloning of animals and to the reprogramming of differentiated cells to induced pluripotent stem cells, as well as a barrier to cell transformation. Remarkably, the regions most impacted by replication stress are shared in these different cellular contexts, affecting long genes and flanking intergenic areas. In this review we integrate our knowledge of DNA replication stress in mammalian embryos, in programming, and in reprogramming, and we discuss a potential role for fragile sites in sensing replication stress and restricting cell cycle progression in health and disease.
Collapse
Affiliation(s)
- Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
24
|
Clerbaux LA, Cordier P, Desboeufs N, Unger K, Leary P, Semere G, Boege Y, Chan LK, Desdouets C, Lopes M, Weber A. Mcl-1 deficiency in murine livers leads to nuclear polyploidisation and mitotic errors: Implications for hepatocellular carcinoma. JHEP Rep 2023; 5:100838. [PMID: 37663116 PMCID: PMC10472239 DOI: 10.1016/j.jhepr.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background & Aims Mcl-1, an antiapoptotic protein overexpressed in many tumours, including hepatocellular carcinoma (HCC), represents a promising target for cancer treatment. Although Mcl-1 non-apoptotic roles might critically influence the therapeutic potential of Mcl-1 inhibitors, these functions remain poorly understood. We aimed to investigate the effects of hepatic Mcl-1 deficiency (Mcl-1Δhep) on hepatocyte ploidy and cell cycle in murine liver in vivo and the possible implications on HCC. Methods Livers of young Mcl-1Δhep and wild-type (WT) mice were analysed for ploidy profile, mitotic figures, in situ chromosome segregation, gene set enrichment analysis and were subjected to two-thirds partial hepatectomy to assess Mcl-1 deficiency effect on cell cycle progression in vivo. Mcl-1Δhep tumours in older mice were analysed for ploidy profile, chromosomal instability, and mutational signatures via whole exome sequencing. Results In young mice, Mcl-1 deficiency leads to nuclear polyploidy and to high rates of mitotic errors with abnormal spindle figures and chromosome mis-segregation along with a prolonged spindle assembly checkpoint activation signature. Chromosomal instability and altered ploidy profile are observed in Mcl-1Δhep tumours of old mice as well as a characteristic mutational signature of currently unknown aetiology. Conclusions Our study suggests novel non-apoptotic effects of Mcl-1 deficiency on nuclear ploidy, mitotic regulation, and chromosomal segregation in hepatocytes in vivo. In addition, the Mcl-1 deficiency characteristic mutational signature might reflect mitotic issues. These results are of importance to consider when developing anti-Mcl-1 therapies to treat cancer. Impact and implications Although Mcl-1 inhibitors represent promising hepatocellular carcinoma treatment, the still poorly understood non-apoptotic roles of Mcl-1 might compromise their successful clinical application. Our study shows that Mcl-1 deficiency leads to nuclear polyploidy, mitotic errors, and aberrant chromosomal segregation in hepatocytes in vivo, whereas hepatocellular tumours spontaneously induced by Mcl-1 deficiency exhibit chromosomal instability and a mutational signature potentially reflecting mitotic issues. These results have potential implications for the development of anti-Mcl-1 therapies to treat hepatocellular carcinoma, especially as hyperproliferative liver is a clinically relevant situation.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Pierre Cordier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Nina Desboeufs
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Munich, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Peter Leary
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
- Functional Genomics Center Zurich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Gabriel Semere
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Yannick Boege
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Lap Kwan Chan
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Massimo Lopes
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| |
Collapse
|
25
|
Scaramuzza S, Jones RM, Sadurni MM, Reynolds-Winczura A, Poovathumkadavil D, Farrell A, Natsume T, Rojas P, Cuesta CF, Kanemaki MT, Saponaro M, Gambus A. TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells. Nat Commun 2023; 14:5071. [PMID: 37604812 PMCID: PMC10442450 DOI: 10.1038/s41467-023-40695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Cell division is the basis for the propagation of life and requires accurate duplication of all genetic information. DNA damage created during replication (replication stress) is a major cause of cancer, premature aging and a spectrum of other human disorders. Over the years, TRAIP E3 ubiquitin ligase has been shown to play a role in various cellular processes that govern genome integrity and faultless segregation. TRAIP is essential for cell viability, and mutations in TRAIP ubiquitin ligase activity lead to primordial dwarfism in patients. Here, we have determined the mechanism of inhibition of cell proliferation in TRAIP-depleted cells. We have taken advantage of the auxin induced degron system to rapidly degrade TRAIP within cells and to dissect the importance of various functions of TRAIP in different stages of the cell cycle. We conclude that upon rapid TRAIP degradation, specifically in S-phase, cells cease to proliferate, arrest in G2 stage of the cell cycle and undergo senescence. Our findings reveal that TRAIP works in S-phase to prevent DNA damage at transcription start sites, caused by replication-transcription conflicts.
Collapse
Affiliation(s)
- Shaun Scaramuzza
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
- Cancer Research UK - Manchester Institute, Manchester Cancer Research Centre, Manchester, UK
| | - Rebecca M Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Martina Muste Sadurni
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Abigail Farrell
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Cyntia Fernandez Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
26
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
27
|
Bhowmick R, Mehta KPM, Lerdrup M, Cortez D. Integrator facilitates RNAPII removal to prevent transcription-replication collisions and genome instability. Mol Cell 2023; 83:2357-2366.e8. [PMID: 37295432 PMCID: PMC10330747 DOI: 10.1016/j.molcel.2023.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Mads Lerdrup
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| |
Collapse
|
28
|
Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, Harper T, Heflich RH, Kidd D, Lynch AM, Myers MB, Parsons BL, Salk JJ, Settivari RS, Smith-Roe SL, Witt KL, Yauk CL, Young R, Zhang S, Minocherhomji S. Error-corrected next generation sequencing - Promises and challenges for genotoxicity and cancer risk assessment. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108466. [PMID: 37643677 DOI: 10.1016/j.mrrev.2023.108466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.
Collapse
Affiliation(s)
| | | | - Connie L Chen
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | | | - Joanne Elloway
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Tod Harper
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Robert H Heflich
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | | | - Meagan B Myers
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara L Parsons
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | | | | | | | - Kristine L Witt
- NIEHS, Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | | | - Robert Young
- MilliporeSigma, Rockville, MD, USA; Current: Consultant, Bethesda, MD, USA
| | | | - Sheroy Minocherhomji
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA; Current: Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
29
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
30
|
Groelly FJ, Dagg RA, Mailler J, Halazonetis TD, Tarsounas M. High-resolution mapping of mitotic DNA synthesis under conditions of replication stress in cultured cells. STAR Protoc 2023; 4:101970. [PMID: 36598851 PMCID: PMC9826876 DOI: 10.1016/j.xpro.2022.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cells experiencing DNA replication stress enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here we describe a protocol to identify at genome wide and at high resolution the genomic sites where MiDAS occurs in cells exposed to aphidicolin. We use EdU incorporation to label nascent DNA in mitotic cells, followed by isolation of the EdU-labeled DNA and next-generation sequencing. For complete details on the use and execution of this protocol, please refer to Groelly et al. (2022)1 and Macheret et al. (2020).2.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jonathan Mailler
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
31
|
Benitez A, Sebald M, Kanagaraj R, Rodrigo-Brenni MC, Chan YW, Liang CC, West SC. GEN1 promotes common fragile site expression. Cell Rep 2023; 42:112062. [PMID: 36729836 DOI: 10.1016/j.celrep.2023.112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.
Collapse
Affiliation(s)
- Anaid Benitez
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Radhakrishnan Kanagaraj
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Monica C Rodrigo-Brenni
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Ying Wai Chan
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Chih-Chao Liang
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
32
|
Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells. Nat Commun 2023; 14:706. [PMID: 36759509 PMCID: PMC9911744 DOI: 10.1038/s41467-023-35992-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Oncogene activation creates DNA replication stress (RS) in cancer cells, which can generate under-replicated DNA regions (UDRs) that persist until cells enter mitosis. UDRs also have the potential to generate DNA bridges in anaphase cells or micronuclei in the daughter cells, which could promote genomic instability. To suppress such damaging changes to the genome, human cells have developed a strategy to conduct 'unscheduled' DNA synthesis in mitosis (termed MiDAS) that serves to rescue under-replicated loci. Previous studies have shown that MiDAS proceeds via a POLD3-dependent pathway that shows some features of break-induced replication. Here, we define how human cells utilize both DNA gap filling (REV1 and Pol ζ) and replicative (Pol δ) DNA polymerases to complete genome duplication following a perturbed S-phase. We present evidence for the existence of a polymerase-switch during MiDAS that is required for new DNA synthesis at UDRs. Moreover, we reveal that, upon oncogene activation, cancer cell survival is significantly compromised when REV1 is depleted, suggesting that REV1 inhibition might be a feasible approach for the treatment of some human cancers.
Collapse
|
33
|
Paiano J, Nussenzweig A. Nascent DNA sequencing and its diverse applications in genome integrity research. Methods Cell Biol 2023; 182:67-81. [PMID: 38359988 DOI: 10.1016/bs.mcb.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple DNA repair pathways and biological responses to DNA damage have evolved to protect cells from various types of lesions to which they are subjected. Although DNA repair systems are mechanistically distinct, all process the damaged region and then insert new bases to fill the gap. In 1969, Robert Painter developed an assay called "unscheduled" DNA synthesis (UDS), which measures DNA repair synthesis as the uptake of radiolabeled DNA precursors distinct from replicative synthesis. Contemporary detection of nascent DNA during repair by next-generation sequencing grants genome-wide information about the nature of lesions that threaten genome integrity. Recently, we developed the SAR-seq (synthesis associated with repair sequencing) method, which provides a high-resolution view of UDS. SAR-seq has been utilized to map programmed DNA repair sites in non-dividing neurons, replication initiation zones, monitor 53BP1 function in countering end-resection, and to identify regions of the genome that fail to complete replication during S phase but utilize repair synthesis during mitosis (MiDAS). As an example of SAR-seq, we present data showing that sites replicated during mitosis correspond to common fragile sites, which have been linked to tumor progression, cellular senescence, and aging.
Collapse
Affiliation(s)
- Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, United States
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
34
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Kibriya MG, Raza M, Quinn A, Kamal M, Ahsan H, Jasmine F. A Transcriptome and Methylome Study Comparing Tissues of Early and Late Onset Colorectal Carcinoma. Int J Mol Sci 2022; 23:ijms232214261. [PMID: 36430738 PMCID: PMC9697435 DOI: 10.3390/ijms232214261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
There is an increase in the incidence of early onset colorectal carcinoma (EOCRC). To better understand if there is any difference in molecular pathogenesis of EOCRC and late onset colorectal carcinoma (LOCRC), we compared the clinical, histological, transcriptome, and methylome profile of paired CRC and healthy colonic tissue from 67 EOCRC and 98 LOCRC patients. The frequency of stage 3 CRC, lymph node involvement, lymphovascular invasion, and perineural invasion was higher in the EOCRC group. Many of the cancer related pathways were differentially expressed in CRC tissue in both EOCRC and LOCRC patients. However, the magnitude of differential expression for some groups of genes, such as DNA damage repair genes and replication stress genes, were significantly less pronounced in the EOCRC group, suggesting less efficient DNA damage repair to be associated with EOCRC. A more marked methylation of "growth factor receptor" genes in LOCRC correlated with a more pronounced down-regulation of those genes in that group. From a therapeutic point of view, more over-expression of fatty acid synthase (FASN) among the LOCRC patients may suggest a better response of FASN targeted therapy in that group. The age of onset of CRC did not appear to modify the response of cis-platin or certain immune checkpoint inhibitors. We found some differences in the molecular pathogenesis in EOCRC and LOCRC that may have some biological and therapeutic significance.
Collapse
Affiliation(s)
- Muhammad G Kibriya
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Maruf Raza
- Department of Pathology, Jahurul Islam Medical College, Kishoregonj 2336, Bangladesh
| | - Anthony Quinn
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Mohammed Kamal
- Department of Pathology, The Laboratory Dhaka, Dhaka 1205, Bangladesh
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51. Nat Commun 2022; 13:6722. [PMID: 36344511 PMCID: PMC9640580 DOI: 10.1038/s41467-022-34519-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.
Collapse
|
37
|
Morris BB, Smith JP, Zhang Q, Jiang Z, Hampton OA, Churchman ML, Arnold SM, Owen DH, Gray JE, Dillon PM, Soliman HH, Stover DG, Colman H, Chakravarti A, Shain KH, Silva AS, Villano JL, Vogelbaum MA, Borges VF, Akerley WL, Gentzler RD, Hall RD, Matsen CB, Ulrich CM, Post AR, Nix DA, Singer EA, Larner JM, Stukenberg PT, Jones DR, Mayo MW. Replicative Instability Drives Cancer Progression. Biomolecules 2022; 12:1570. [PMID: 36358918 PMCID: PMC9688014 DOI: 10.3390/biom12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 01/07/2023] Open
Abstract
In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability develops following inactivation of BRCA1, BRCA2, or BRCA-related genes. However, it is recognized that many tumors exhibit genomic instability but lack BRCA inactivation. We sought to identify a pan-cancer mechanism that underpins genomic instability and cancer progression in BRCA-wildtype tumors. Methods: Using multi-omics data from two independent consortia, we analyzed data from dozens of tumor types to identify patient cohorts characterized by poor outcomes, genomic instability, and wildtype BRCA genes. We developed several novel metrics to identify the genetic underpinnings of genomic instability in tumors with wildtype BRCA. Associated clinical data was mined to analyze patient responses to standard of care therapies and potential differences in metastatic dissemination. Results: Systematic analysis of the DNA repair landscape revealed that defective single-strand break repair, translesion synthesis, and non-homologous end-joining effectors drive genomic instability in tumors with wildtype BRCA and BRCA-related genes. Importantly, we find that loss of these effectors promotes replication stress, therapy resistance, and increased primary carcinoma to brain metastasis. Conclusions: Our results have defined a new pan-cancer class of tumors characterized by replicative instability (RIN). RIN is defined by the accumulation of intra-chromosomal, gene-level gain and loss events at replication stress sensitive (RSS) genome sites. We find that RIN accelerates cancer progression by driving copy number alterations and transcriptional program rewiring that promote tumor evolution. Clinically, we find that RIN drives therapy resistance and distant metastases across multiple tumor types.
Collapse
Affiliation(s)
- Benjamin B. Morris
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jason P. Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, Lexington, KY 40536, USA
| | - Dwight H. Owen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jhanelle E. Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Patrick M. Dillon
- Division of Hematology/Oncology, Department of Internal Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Hatem H. Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel G. Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Howard Colman
- Huntsman Cancer Institute and Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kenneth H. Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S. Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, Lexington, KY 40536, USA
| | | | - Virginia F. Borges
- Division of Medical Oncology, University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
| | - Wallace L. Akerley
- Department of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Ryan D. Gentzler
- Division of Hematology/Oncology, Department of Internal Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Richard D. Hall
- Division of Hematology/Oncology, Department of Internal Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Cindy B. Matsen
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - C. M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew R. Post
- Department of Biomedical Informatics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David A. Nix
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Eric A. Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - James M. Larner
- Department of Radiation Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Peter Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Jones
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marty W. Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
38
|
Shaikh N, Mazzagatti A, De Angelis S, Johnson SC, Bakker B, Spierings DCJ, Wardenaar R, Maniati E, Wang J, Boemo MA, Foijer F, McClelland SE. Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. Genome Biol 2022; 23:223. [PMID: 36266663 PMCID: PMC9583511 DOI: 10.1186/s13059-022-02781-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored. RESULTS We characterize DNA copy number alterations (CNAs) in single, diploid non-transformed cells, caused by one cell cycle in the presence of either aphidicolin or hydroxyurea. Multiple types of CNAs are generated, associated with different genomic regions and features, and observed copy number landscapes are distinct between aphidicolin and hydroxyurea-induced replication stress. Coupling cell type-specific analysis of CNAs to gene expression and single-cell replication timing analyses pinpointed the causative large genes of the most recurrent chromosome-scale CNAs in aphidicolin. These are clustered on chromosome 7 in RPE1 epithelial cells but chromosome 1 in BJ fibroblasts. Chromosome arm level CNAs also generate acentric lagging chromatin and micronuclei containing these chromosomes. CONCLUSIONS Chromosomal instability driven by replication stress occurs via focal CNAs and chromosome arm scale changes, with the latter confined to a very small subset of chromosome regions, potentially heavily skewing cancer genome evolution. Different inducers of replication stress lead to distinctive CNA landscapes providing the opportunity to derive copy number signatures of specific replication stress mechanisms. Single-cell CNA analysis thus reveals the impact of replication stress on the genome, providing insights into the molecular mechanisms which fuel chromosomal instability in cancer.
Collapse
Affiliation(s)
- Nadeem Shaikh
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alice Mazzagatti
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Simone De Angelis
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sarah C Johnson
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
- Current address: The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael A Boemo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Sarah E McClelland
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
39
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
40
|
Groelly FJ, Dagg RA, Petropoulos M, Rossetti GG, Prasad B, Panagopoulos A, Paulsen T, Karamichali A, Jones SE, Ochs F, Dionellis VS, Puig Lombardi E, Miossec MJ, Lockstone H, Legube G, Blackford AN, Altmeyer M, Halazonetis TD, Tarsounas M. Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells. Mol Cell 2022; 82:3382-3397.e7. [PMID: 36002001 PMCID: PMC9631240 DOI: 10.1016/j.molcel.2022.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022]
Abstract
Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Giacomo G Rossetti
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Birbal Prasad
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Teressa Paulsen
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Fena Ochs
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vasilis S Dionellis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Emilia Puig Lombardi
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Matthieu J Miossec
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helen Lockstone
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
41
|
Petermann E. Conflicts with transcription make early replication late. Mol Cell 2022; 82:3315-3317. [PMID: 36113410 DOI: 10.1016/j.molcel.2022.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
By sequencing sites of mitotic DNA synthesis in cells lacking homologous recombination, Groelly, Bhowmick, and colleagues show how conflicts between transcription and replication in early S phase can cause under-replicated DNA to persist into mitosis.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
42
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Yazgili AS, Ebstein F, Meiners S. The Proteasome Activator PA200/PSME4: An Emerging New Player in Health and Disease. Biomolecules 2022; 12:1150. [PMID: 36009043 PMCID: PMC9406137 DOI: 10.3390/biom12081150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Proteasomes comprise a family of proteasomal complexes essential for maintaining protein homeostasis. Accordingly, proteasomes represent promising therapeutic targets in multiple human diseases. Several proteasome inhibitors are approved for treating hematological cancers. However, their side effects impede their efficacy and broader therapeutic applications. Therefore, understanding the biology of the different proteasome complexes present in the cell is crucial for developing tailor-made inhibitors against specific proteasome complexes. Here, we will discuss the structure, biology, and function of the alternative Proteasome Activator 200 (PA200), also known as PSME4, and summarize the current evidence for its dysregulation in different human diseases. We hereby aim to stimulate research on this enigmatic proteasome regulator that has the potential to serve as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Ayse Seda Yazgili
- Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ/7, 17475 Greifswald, Germany
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Sülfeld, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, 24118 Kiel, Germany
| |
Collapse
|
44
|
Bhowmick R, Lerdrup M, Gadi SA, Rossetti GG, Singh MI, Liu Y, Halazonetis TD, Hickson ID. RAD51 protects human cells from transcription-replication conflicts. Mol Cell 2022; 82:3366-3381.e9. [PMID: 36002000 DOI: 10.1016/j.molcel.2022.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/02/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022]
Abstract
Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mads Lerdrup
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Sampath Amitash Gadi
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Giacomo G Rossetti
- Department of Molecular Biology, University of Geneva, 30, quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Manika I Singh
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ying Liu
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 30, quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Ian D Hickson
- Center for Chromosome Stability, Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
45
|
Palmerola KL, Amrane S, De Los Angeles A, Xu S, Wang N, de Pinho J, Zuccaro MV, Taglialatela A, Massey DJ, Turocy J, Robles A, Subbiah A, Prosser B, Lobo R, Ciccia A, Koren A, Baslan T, Egli D. Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell 2022; 185:2988-3007.e20. [PMID: 35858625 DOI: 10.1016/j.cell.2022.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/03/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.
Collapse
Affiliation(s)
- Katherine L Palmerola
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Selma Amrane
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Alejandro De Los Angeles
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Shuangyi Xu
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Masters of Biotechnology Program, Columbia University, New York, NY 10027, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Joao de Pinho
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Michael V Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jenna Turocy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Alex Robles
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Anisa Subbiah
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Bob Prosser
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Rogerio Lobo
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
46
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Break-induced replication: unraveling each step. Trends Genet 2022; 38:752-765. [PMID: 35459559 DOI: 10.1016/j.tig.2022.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Break-induced replication (BIR) repairs one-ended double-strand DNA breaks through invasion into a homologous template followed by DNA synthesis. Different from S-phase replication, BIR copies the template DNA in a migrating displacement loop (D-loop) and results in conservative inheritance of newly synthesized DNA. This unusual mode of DNA synthesis makes BIR a source of various genetic instabilities like those associated with cancer in humans. This review focuses on recent progress in delineating the mechanism of Rad51-dependent BIR in budding yeast. In addition, we discuss new data that describe changes in BIR efficiency and fidelity on encountering replication obstacles as well as the implications of these findings for BIR-dependent processes such as telomere maintenance and the repair of collapsed replication forks.
Collapse
|
48
|
DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Rep 2022; 39:110701. [PMID: 35443178 PMCID: PMC9226383 DOI: 10.1016/j.celrep.2022.110701] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Mitotic DNA synthesis (MiDAS) has been proposed to restart DNA synthesis during mitosis because of replication fork stalling in late interphase caused by mild replication stress (RS). Contrary to this proposal, we find that cells exposed to mild RS in fact maintain continued DNA replication throughout G2 and during G2-M transition in RAD51- and RAD52-dependent manners. Persistent DNA synthesis is necessary to resolve replication intermediates accumulated in G2 and disengage an ATR-imposed block to mitotic entry. Because of its continual nature, DNA synthesis at very late replication sites can overlap with chromosome condensation, generating the phenomenon of mitotic DNA synthesis. Unexpectedly, we find that the commonly used CDK1 inhibitor RO3306 interferes with replication to preclude detection of G2 DNA synthesis, leading to the impression of a mitosis-driven response. Our study reveals the importance of persistent DNA replication and checkpoint control to lessen the risk for severe genome under-replication under mild RS. DNA synthesis persists during G2-M transition to counteract replication stress (RS) RAD51/RAD52-mediated HR pathways facilitate the continuation of G2-M DNA synthesis Continued G2 DNA synthesis relieves RS-induced G2/M checkpoint for mitotic entry RO3306, but not CDK1 inhibition, non-specifically interferes with DNA synthesis
Collapse
|
49
|
Balzano E, Di Tommaso E, Antoccia A, Pelliccia F, Giunta S. Characterization of Chromosomal Instability in Glioblastoma. Front Genet 2022; 12:810793. [PMID: 35154254 PMCID: PMC8831864 DOI: 10.3389/fgene.2021.810793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the central nervous system (CNS). The poor prognosis of GBM due to resistance to therapy has been associated with high chromosomal instability (CIN). Replication stress is a major cause of CIN that manifests as chromosome rearrangements, fragility, and breaks, including those cytologically expressed within specific chromosome regions named common fragile sites (CFSs). In this work, we characterized the expression of human CFSs in the glioblastoma U-251 MG cell line upon treatment with the inhibitor of DNA polymerase alpha aphidicolin (APH). We observed 52 gaps/breaks located within previously characterized CFSs. We found 17 to be CFSs in GBM cells upon treatment with APH, showing a frequency equal to at least 1% of the total gaps/breaks. We report that two CFSs localized to regions FRA2E (2p13/p12) and FRA2F (2q22) were only found in U-251 MG cells, but not lymphocytes or fibroblasts, after APH treatment. Notably, these glioblastoma-specific CFSs had a relatively high expression compared to the other CFSs with breakage frequency between ∼7 and 9%. Presence of long genes, incomplete replication, and delayed DNA synthesis during mitosis (MiDAS) after APH treatment suggest that an impaired replication process may contribute to this loci-specific fragility in U-251 MG cells. Altogether, our work offers a characterization of common fragile site expression in glioblastoma U-251 MG cells that may be further exploited for cytogenetic and clinical studies to advance our understanding of this incurable cancer.
Collapse
Affiliation(s)
- Elisa Balzano
- Laboratory of Molecular Cytogenetics, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
- Laboratory of Genome Evolution, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Elena Di Tommaso
- Laboratory of Molecular Cytogenetics, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
- Laboratory of Genome Evolution, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Antonio Antoccia
- Laboratory of Genetics and Cytogenetics, Dipartimento di Scienze, Università Degli Studi Roma Tre, Roma, Italy
| | - Franca Pelliccia
- Laboratory of Molecular Cytogenetics, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
- *Correspondence: Franca Pelliccia, ; Simona Giunta,
| | - Simona Giunta
- Laboratory of Genome Evolution, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Roma, Italy
- *Correspondence: Franca Pelliccia, ; Simona Giunta,
| |
Collapse
|
50
|
Whale AJ, King M, Hull RM, Krueger F, Houseley J. Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Res 2022; 50:915-936. [PMID: 35018465 PMCID: PMC8789084 DOI: 10.1093/nar/gkab1257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.
Collapse
Affiliation(s)
- Alex J Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Ryan M Hull
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | |
Collapse
|