1
|
Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res 2024; 9:1271-1279. [PMID: 39036601 PMCID: PMC11260338 DOI: 10.1016/j.ncrna.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as critical regulators in essentially all biological processes across eukaryotes. They exert their functions through chromatin remodeling, transcriptional regulation, interacting with RNA-binding proteins (RBPs), serving as microRNA sponges, etc. Although non-coding RNAs are typically more species-specific than coding RNAs, a number of well-characterized lncRNA (such as XIST and NEAT1) and circRNA (such as CDR1as and ciRS-7) are evolutionarily conserved. The studies on conserved lncRNA and circRNAs across multiple species could facilitate a comprehensive understanding of their roles and mechanisms, thereby overcoming the limitations of single-species studies. In this review, we provide an overview of conserved lncRNAs and circRNAs, and summarize their conserved roles and mechanisms.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| |
Collapse
|
2
|
Zhang J, Zhu H, Li L, Gao Y, Yu B, Ma G, Jin X, Sun Y. New mechanism of LncRNA: In addition to act as a ceRNA. Noncoding RNA Res 2024; 9:1050-1060. [PMID: 39022688 PMCID: PMC11254507 DOI: 10.1016/j.ncrna.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) are a class of RNA molecules with nucleic acid lengths ranging from 200 bp to 100 kb that cannot code for proteins, which are diverse and widely expressed in both animals and plants. Scholars have found that lncRNAs can regulate human physiological processes at the gene and protein levels, mainly through the regulation of epigenetic, transcriptional and post-transcriptional levels of genes and proteins, as well as in the immune response by regulating the expression of immune cells and inflammatory factors, and thus participate in the occurrence and development of a variety of diseases. From the downstream targets of lncRNAs, we summarize the new research progress of lncRNA mechanisms other than miRNA sponges in recent years, aiming to provide new ideas and directions for the study of lncRNA mechanisms.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
5
|
Yan B, Gong B, Zheng Y, Sun L, Wu X. Embryonic Lethal Phenotyping to Identify Candidate Genes Related with Birth Defects. Int J Mol Sci 2024; 25:8788. [PMID: 39201474 PMCID: PMC11354474 DOI: 10.3390/ijms25168788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Congenital birth defects contribute significantly to preterm birth, stillbirth, perinatal death, infant mortality, and adult disability. As a first step to exploring the mechanisms underlying this major clinical challenge, we analyzed the embryonic phenotypes of lethal strains generated by random mutagenesis. In this study, we report the gross embryonic and perinatal phenotypes of 55 lethal strains randomly picked from a collection of mutants that carry piggyBac (PB) transposon inserts. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested most of the analyzed mutations hit genes involved in heart and nervous development, or in Notch and Wnt signaling. Among them, 12 loci are known to be associated with human diseases. We confirmed 53 strains as embryonic or perinatal lethal, while others were subviable. Gross morphological phenotypes such as body size abnormality (29/55, 52.73%), growth or developmental delay (35/55, 63.64%), brain defects (9/55, 16.36%), vascular/heart development (31/55, 56.36%), and other structural defects (9/55, 16.36%) could be easily observed in the mutants, while three strains showed phenotypes similar to those of human patients. Furthermore, we detected body weight or body composition alterations in the heterozygotes of eight strains. One of them was the TGF-β signaling gene Smad2. The heterozygotes showed increased energy expenditure and a lower fat-to-body weight ratio compared to wild-type mice. This study provided new insights into mammalian embryonic development and will help understand the pathology of congenital birth defects in humans. In addition, it expanded our understanding of the etiology of obesity.
Collapse
Affiliation(s)
| | | | | | - Lei Sun
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200441, China; (B.Y.); (B.G.); (Y.Z.)
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200441, China; (B.Y.); (B.G.); (Y.Z.)
| |
Collapse
|
6
|
Ortega Moreno L, Chaparro M, Gisbert JP. Long Non-Coding RNAs and Their Potential Role as Biomarkers in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:8808. [PMID: 39201494 PMCID: PMC11354568 DOI: 10.3390/ijms25168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammatory bowel disease is a chronic inflammatory disease that encompasses entities such as Crohn's disease and ulcerative colitis. Its incidence has risen in newly industrialised countries over time, turning it into a global disease. Lately, studies on inflammatory bowel disease have focused on finding non-invasive and specific biomarkers. Long non-coding RNAs may play a role in the pathophysiology of inflammatory bowel disease and therefore they may be considered as potential biomarkers for this disease. In the present article, we review information in the literature on the relationship between long non-coding RNAs and inflammatory bowel disease. We especially focus on understanding the potential function of these RNAs as non-invasive biomarkers, providing information that may be helpful for future studies in the field.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Área Farmacología, Bromatología y Nutrición, Departamento Ciencias Básicas de la Salud, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - María Chaparro
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006 Madrid, Spain; (M.C.); (J.P.G.)
| | - Javier P. Gisbert
- Gastroenterology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006 Madrid, Spain; (M.C.); (J.P.G.)
| |
Collapse
|
7
|
Zhang Y. LncRNA-encoded peptides in cancer. J Hematol Oncol 2024; 17:66. [PMID: 39135098 PMCID: PMC11320871 DOI: 10.1186/s13045-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), once considered transcriptional noise, have emerged as critical regulators of gene expression and key players in cancer biology. Recent breakthroughs have revealed that certain lncRNAs can encode small open reading frame (sORF)-derived peptides, which are now understood to contribute to the pathogenesis of various cancers. This review synthesizes current knowledge on the detection, functional roles, and clinical implications of lncRNA-encoded peptides in cancer. We discuss technological advancements in the detection and validation of sORFs, including ribosome profiling and mass spectrometry, which have facilitated the discovery of these peptides. The functional roles of lncRNA-encoded peptides in cancer processes such as gene transcription, translation regulation, signal transduction, and metabolic reprogramming are explored in various types of cancer. The clinical potential of these peptides is highlighted, with a focus on their utility as diagnostic biomarkers, prognostic indicators, and therapeutic targets. The challenges and future directions in translating these findings into clinical practice are also discussed, including the need for large-scale validation, development of sensitive detection methods, and optimization of peptide stability and delivery.
Collapse
Affiliation(s)
- Yaguang Zhang
- Laboratory of Gastrointestinal Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
8
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Liu Q, Jiao L, Ye MS, Ma Z, Yu J, Su LY, Zou WY, Yang LX, Chen C, Yao YG. GSNOR negatively regulates the NLRP3 inflammasome via S-nitrosation of MAPK14. Cell Mol Immunol 2024; 21:561-574. [PMID: 38570588 PMCID: PMC11143353 DOI: 10.1038/s41423-024-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Hyperactivation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous diseases. However, the precise molecular mechanisms that modulate the transcriptional regulation of NLRP3 remain largely unknown. In this study, we demonstrated that S-nitrosoglutathione reductase (GSNOR) deficiency in macrophages leads to significant increases in the Nlrp3 and Il-1β expression levels and interleukin-1β (IL-1β) secretion in response to NLRP3 inflammasome stimulation. Furthermore, in vivo experiments utilizing Gsnor-/- mice revealed increased disease severity in both lipopolysaccharide (LPS)-induced septic shock and dextran sodium sulfate (DSS)-induced colitis models. Additionally, we showed that both LPS-induced septic shock and DSS-induced colitis were ameliorated in Gsnor-/- Nlrp3-/- double-knockout (DKO) mice. Mechanistically, GSNOR deficiency increases the S-nitrosation of mitogen-activated protein kinase 14 (MAPK14) at the Cys211 residue and augments MAPK14 kinase activity, thereby promoting Nlrp3 and Il-1β transcription and stimulating NLRP3 inflammasome activity. Our findings suggested that GSNOR is a regulator of the NLRP3 inflammasome and that reducing the level of S-nitrosylated MAPK14 may constitute an effective strategy for alleviating diseases associated with NLRP3-mediated inflammation.
Collapse
Affiliation(s)
- Qianjin Liu
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
| | - Lijin Jiao
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Mao-Sen Ye
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Zhiyu Ma
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Jinsong Yu
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Ling-Yan Su
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Wei-Yin Zou
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Lu-Xiu Yang
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Chang Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution & Animal Models, and Key Laboratory of Animal Models & Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, 650201, Kunming, China.
| |
Collapse
|
10
|
Li Y, Sun R, Lai C, Liu K, Yang H, Peng Z, Xu D, Huang F, Tang K, Peng Y, Liu X. Hyperbaric oxygen therapy ameliorates intestinal and systematic inflammation by modulating dysbiosis of the gut microbiota in Crohn's disease. J Transl Med 2024; 22:518. [PMID: 38816750 PMCID: PMC11137967 DOI: 10.1186/s12967-024-05317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiota is pivotal in Crohn's disease (CD) and modulated by host physiological conditions. Hyperbaric oxygen therapy (HBOT) is a promising treatment for CD that can regulate gut microbiota. The relationship between HBOT and the gut microbiota in CD remains unknown. METHODS CD patients were divided into an HBOT group (n = 10) and a control group (n = 10) in this open-label prospective interventional study. The fecal samples before and after HBOT were used for 16 S rRNA gene sequencing and fecal microbiota transplantation (FMT). A colitis mouse model was constructed using dextran sulfate sodium, and intestinal and systematic inflammation was evaluated. The safety and long-term effect of HBOT were observed. RESULTS HBOT significantly reduced the level of C-reactive protein (CRP) (80.79 ± 42.05 mg/L vs. 33.32 ± 18.31 mg/L, P = 0.004) and the Crohn's Disease Activity Index (CDAI) (274.87 ± 65.54 vs. 221.54 ± 41.89, P = 0.044). HBOT elevated the declined microbial diversity and ameliorated the altered composition of gut microbiota in patients with CD. The relative abundance of Escherichia decreased, and that of Bifidobacterium and Clostridium XIVa increased after HBOT. Mice receiving FMT from donors after HBOT had significantly less intestinal inflammation and serum CRP than the group before HBOT. HBOT was safe and well-tolerated by patients with CD. Combined with ustekinumab, more patients treated with HBOT achieved clinical response (30%vs.70%, P = 0.089) and remission (20%vs.50%, P = 0.160) at week 4. CONCLUSIONS HBOT modulates the dysbiosis of gut microbiota in CD and ameliorates intestinal and systematic inflammation. HBOT is a safe option for CD and exhibits a promising auxiliary effect to ustekinumab. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2200061193. Registered 15 June 2022, https://www.chictr.org.cn/showproj.html?proj=171605 .
Collapse
Affiliation(s)
- Yong Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kezhen Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ziheng Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Duo Xu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Fangling Huang
- Department of Hyperbaric oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Keke Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
11
|
Yu X, Chen Y, Chen J, Fan Y, Lu H, Wu D, Xu Y. Shared genetic architecture between autoimmune disorders and B-cell acute lymphoblastic leukemia: insights from large-scale genome-wide cross-trait analysis. BMC Med 2024; 22:161. [PMID: 38616254 PMCID: PMC11017616 DOI: 10.1186/s12916-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND To study the shared genetic structure between autoimmune diseases and B-cell acute lymphoblastic leukemia (B-ALL) and identify the shared risk loci and genes and genetic mechanisms involved. METHODS Based on large-scale genome-wide association study (GWAS) summary-level data sets, we observed genetic overlaps between autoimmune diseases and B-ALL, and cross-trait pleiotropic analysis was performed to detect shared pleiotropic loci and genes. A series of functional annotation and tissue-specific analysis were performed to determine the influence of pleiotropic genes. The heritability enrichment analysis was used to detect crucial immune cells and tissues. Finally, bidirectional Mendelian randomization (MR) methods were utilized to investigate the casual associations. RESULTS Our research highlighted shared genetic mechanisms between seven autoimmune disorders and B-ALL. A total of 73 pleiotropic loci were identified at the genome-wide significance level (P < 5 × 10-8), 16 of which had strong evidence of colocalization. We demonstrated that several loci have been previously reported (e.g., 17q21) and discovered some novel loci (e.g., 10p12, 5p13). Further gene-level identified 194 unique pleiotropic genes, for example IKZF1, GATA3, IKZF3, GSDMB, and ORMDL3. Pathway analysis determined the key role of cellular response to cytokine stimulus, B cell activation, and JAK-STAT signaling pathways. SNP-level and gene-level tissue enrichment suggested that crucial role pleiotropic mechanisms involved in the spleen, whole blood, and EBV-transformed lymphocytes. Also, hyprcoloc and stratified LD score regression analyses revealed that B cells at different developmental stages may be involved in mechanisms shared between two different diseases. Finally, two-sample MR analysis determined causal effects of asthma and rheumatoid arthritis on B-ALL. CONCLUSIONS Our research proved shared genetic architecture between autoimmune disorders and B-ALL and shed light on the potential mechanism that might involve in.
Collapse
Affiliation(s)
- Xinghao Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Yiyin Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Lu
- Department of Outpatient and Emergency, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Ren X, Liu Q, Zhou P, Zhou T, Wang D, Mei Q, Flavell RA, Liu Z, Li M, Pan W, Zhu S. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells. Nat Commun 2024; 15:3080. [PMID: 38594251 PMCID: PMC11004185 DOI: 10.1038/s41467-024-47235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Collapse
Affiliation(s)
- Xingxing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Qiuyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Peirong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Decai Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China.
| | - Wen Pan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
13
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Tian R, Ghosh S. Mechanisms and functions of lncRNAs linked to autoimmune disease risk alleles. Adv Immunol 2024; 161:1-15. [PMID: 38763698 DOI: 10.1016/bs.ai.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Recent advances in human genomics technologies have helped uncover genetic risk alleles for many complex autoimmune diseases. Intriguingly, over 90% of genome-wide association study (GWAS) risk alleles reside within the non-coding regions of the genome. An emerging new frontier of functional and mechanistic studies have shed light on the functional relevance of risk alleles that lie within long noncoding RNAs (lncRNAs). Here, we review the mechanisms and functional implications of five evolutionarily conserved lncRNAs that display risk allele association with highly prevalent autoimmune diseases.
Collapse
Affiliation(s)
- Ruxiao Tian
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
15
|
Hu J, He K, Yang Y, Huang C, Dou Y, Wang H, Zhang G, Wang J, Niu C, Bi G, Zhang L, Zhu S. Amino acid formula induces microbiota dysbiosis and depressive-like behavior in mice. Cell Rep 2024; 43:113817. [PMID: 38412095 DOI: 10.1016/j.celrep.2024.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Amino acid formula (AAF) is increasingly consumed in infants with cow's milk protein allergy; however, the long-term influences on health are less described. In this study, we established a mouse model by subjecting neonatal mice to an amino acid diet (AAD) to mimic the feeding regimen of infants on AAF. Surprisingly, AAD-fed mice exhibited dysbiotic microbiota and increased neuronal activity in both the intestine and brain, as well as gastrointestinal peristalsis disorders and depressive-like behavior. Furthermore, fecal microbiota transplantation from AAD-fed mice or AAF-fed infants to recipient mice led to elevated neuronal activations and exacerbated depressive-like behaviors compared to that from normal chow-fed mice or cow's-milk-formula-fed infants, respectively. Our findings highlight the necessity to avoid the excessive use of AAF, which may influence the neuronal development and mental health of children.
Collapse
Affiliation(s)
- Ji Hu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Kaixin He
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yifei Yang
- School of Data Science, University of Science and Technology of China, Hefei, China
| | - Chuan Huang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiping Dou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hao Wang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guorong Zhang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jingyuan Wang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chaoshi Niu
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Guoqiang Bi
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lan Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China; School of Data Science, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
16
|
Belete MA, Tadesse S, Tilahun M, Gedefie A, Shibabaw A, Mulatie Z, Wudu MA, Gebremichael S, Debash H, Alebachew M, Alemayehu E. Long noncoding RNAs and circular RNAs as potential diagnostic biomarkers of inflammatory bowel diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1362437. [PMID: 38524131 PMCID: PMC10957631 DOI: 10.3389/fimmu.2024.1362437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) poses a growing global burden, necessitating the discovery of reliable biomarkers for early diagnosis. The clinical significance of dysregulated expression of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in diagnosing IBD has not been well established. Thus, our study aimed to investigate the diagnostic value of lncRNAs and circRNAs for IBD based on currently available studies. Methods A comprehensive search was carried out in diverse electronic databases, such as PubMed, Embase, Scopus, Science Direct and Wiley Online Library to retrieve articles published until October 30, 2023. Stata 17.0 software was employed to determine pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR), and area under the curve (AUC). Heterogeneity, subgroup analysis, and meta-regression were explored, and publication bias was assessed using Deeks' funnel plot. Fagan's nomogram and likelihood ratio scattergram were employed to evaluate the clinical validity. Result A total of 11 articles encompassing 21 studies which involved 1239 IBD patients and 985 healthy controls were investigated. The findings revealed lncRNAs exhibit high level of pooled sensitivity 0.94 (95% CI: 0.87-0.97) and specificity 0.99 (95% CI: 0.89-1.00), along with PLR, NLR, DOR, and AUC values of 64.25 (95% CI: 7.39-558.66), 0.06 (95% CI: 0.03-0.13), 1055.25 (95% CI: 70.61-15770.77), and 0.99 (95% CI: 0.97-0.99), respectively. Conversely, CircRNAs showed moderate accuracy in IBD diagnosis, with sensitivity of 0.68 (95% CI: 0.61-0.73), specificity of 0.73 (95% CI: 0.65-0.79), PLR of 2.47 (95% CI: 1.94-3.16), NLR of 0.45 (95% CI: 0.38-0.53), DOR of 5.54 (95% CI: 3.88-7.93), and AUC value of 0.75 (95% CI: 0.71-0.79). Moreover, findings from subgroup analysis depicted heightened diagnostic efficacy when employing lncRNA H19 and a large sample size (≥100), with notable efficacy in diagnosing both ulcerative colitis (UC) and Crohn's disease (CD). Conclusion LncRNAs exhibit high diagnostic accuracy in distinguishing patients with IBD from healthy controls signifying their possible use as potential biomarkers, while circRNAs showed moderate diagnostic accuracy. Nevertheless, to validate our findings and confirm the clinical utility of lncRNAs and circRNAs in IBD diagnosis, a large pool of prospective and multi-center studies should be undertaken. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023491840.
Collapse
Affiliation(s)
- Melaku Ashagrie Belete
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Zewudu Mulatie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Muluken Amare Wudu
- Department of Pediatric and Child Health Nursing, School of Nursing and Midwifery, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Saba Gebremichael
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mihreteab Alebachew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
17
|
Fitzgerald KA, Shmuel-Galia L. Lnc-ing RNA to intestinal homeostasis and inflammation. Trends Immunol 2024; 45:127-137. [PMID: 38220553 DOI: 10.1016/j.it.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in numerous biological processes, including the immune system. Initial research in this area focused on cell-based studies, but recent advances underscore the profound significance of lncRNAs at the organismal level, providing invaluable insights into their roles in inflammatory diseases. In this rapidly evolving field, lncRNAs have been described with pivotal roles in the intestinal tract where they regulate intestinal homeostasis and inflammation by influencing processes such as immune cell development, inflammatory signaling pathways, epithelial barrier function, and cellular metabolism. Understanding the regulation and function of lncRNAs in this tissue may position lncRNAs not only as potential disease biomarkers but also as promising targets for therapeutic intervention in inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Katherine A Fitzgerald
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Liraz Shmuel-Galia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Shaker OG, Safa A, Khairy A, Abozeid NF. Serum long noncoding RNA H19/micro RNA-675-5p axis as a probable diagnostic biomarker in inflammatory bowel disease. Mol Biol Rep 2023; 50:9029-9036. [PMID: 37716920 PMCID: PMC10635930 DOI: 10.1007/s11033-023-08777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND A significant body of research strengthens the starring role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the pathogenesis of inflammatory bowel disease (IBD). Here, we investigated the diagnostic utility of lncRNA H19 and miRNA-675-5p in IBD. METHODS This study included 97 participants, thirty-five ulcerative colitis patients, thirty-two Crohn's disease patients, and thirty IBD-free controls. History, staging, laboratory investigations, and colonoscopy were performed. Also, quantitative real-time PCR (qPCR) for revealing of lncRNA H19 and miRNA-675-5p was done. RESULTS The estimated serum levels for H19 and miRNA-675-5p in the UC and CD groups in comparison to the control group showed a high statistical difference (P = 0.0001 for each parameter). Based upon the severity of UC patients, both biomarkers showed significantly higher values between remission and moderate cases, with p-values 0.022 and 0.02, respectively. Meanwhile, in CD patients, both biomarkers revealed no statistical significance between remission and any active stage of the disease. Additionally, ROC analysis revealed that H19 could discriminate between UC and control subjects with 94.3% sensitivity and 90.0% specificity, and with 87.5% sensitivity, and 88.5% specificity in the CD group. Furthermore, miR-675-5p was able to discriminate between UC and control subjects with 85.7% sensitivity and 97.3% specificity and with 88.4% sensitivity, 95.2% specificity in the CD group. Logistic regression found a significant predictive utility of using miR-675-5p and H19 in IBD. CONCLUSION H19 and miRNA-675-5p can be used as diagnostic biomarkers in IBD, with superiority in UC patients with moderate activity.
Collapse
Affiliation(s)
- Olfat G Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Aya Safa
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Khairy
- Endemic Medicine, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Naglaa F Abozeid
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|