1
|
Tang X, Hou Y, Zhao M, Li Z, Zhang L. Polystyrene nanoplastics enhance poxvirus preference for migrasome-mediated transmission. Biochem Biophys Res Commun 2024; 734:150619. [PMID: 39232458 DOI: 10.1016/j.bbrc.2024.150619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Since the emergence of a global outbreak of mpox in 2022, understanding the transmission pathways and mechanisms of Orthopoxviruses, including vaccinia virus (VACV), has become paramount. Nanoplastic pollution has become a significant global issue due to its widespread presence in the environment and potential adverse effects on human health. These emerging pollutants pose substantial risks to both living organisms and the environment, raising serious health concerns related to their proliferation. Despite this, the effects of nanoparticles on viral transmission dynamics remain unclear. This study explores how polystyrene nanoparticles (PS-NPs) influence the transmission of VACV through migrasomes. We demonstrate that PS-NPs accelerate the formation of migrasomes early in the infection process, facilitating VACV entry as soon as 15 h post-infection (hpi), compared to the usual onset at 36 hpi. Immunofluorescence and transmission electron microscopy (TEM) reveal significant co-localization of VACV with migrasomes induced by PS-NPs by 15 hpi. This interaction coincides with an increase in lipid droplet size, attributed to higher cholesterol levels influenced by PS-NPs. By 36 hpi, migrasomes exposed to both PS-NPs and VACV exhibit distinct features, such as retraction fibers and larger lipid droplets, emphasizing their critical role in cargo transport during viral infections. These results suggest that PS-NPs may act as modulators of viral transmission dynamics through migrasomes, with potential implications for antiviral strategies and environmental health.
Collapse
Affiliation(s)
- Xichi Tang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yao Hou
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyang Zhao
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zichen Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Li D, Yang Q, Luo J, Xu Y, Li J, Tao L. Bacterial toxins induce non-canonical migracytosis to aggravate acute inflammation. Cell Discov 2024; 10:112. [PMID: 39500876 PMCID: PMC11538519 DOI: 10.1038/s41421-024-00729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 11/08/2024] Open
Abstract
Migracytosis is a recently described cellular process that generates and releases membrane-bound pomegranate-like organelles called migrasomes. Migracytosis normally occurs during cell migration, participating in various intercellular biological functions. Here, we report a new type of migracytosis induced by small GTPase-targeting toxins. Unlike classic migracytosis, toxin-induced migrasome formation does not rely on cell migration and thus can occur in both mobile and immobile cells. Such non-canonical migracytosis allows the cells to promptly respond to microbial stimuli such as bacterial toxins and effectors and release informative cellular contents in bulk. We demonstrated that C. difficile TcdB3 induces liver endothelial cells and Kupffer cells to produce migrasomes in vivo. Moreover, the migracytosis-defective Tspan9‒/‒ mice show less acute inflammation and lower lethality rate in the toxin challenge assay. Therefore, we propose that the non-canonical migracytosis acts as a new mechanism for mammalian species to sense and exacerbate early immune response upon microbial infections.
Collapse
Affiliation(s)
- Diyin Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qi Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jianhua Luo
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yangyushuang Xu
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jingqing Li
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Liang Tao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Jiao H, Yu L. Migrasomes: Biogenesis, physiological roles, and therapeutic potentials. J Cell Biol 2024; 223:e202403051. [PMID: 39400310 PMCID: PMC11473597 DOI: 10.1083/jcb.202403051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Migrasomes, vesicular structures discovered in migrating cells, arise from the junctions or tips of retraction fibers, and gradually grow to microscale vesicles. Migrasomes have garnered attention for their role in intercellular communication and potential therapeutic implications. This review presents an overview of recent advances in migrasome biology, covering the mechanisms of migrasome biogenesis, essential physiological roles, and their association with various diseases, alongside potential therapeutic applications. Furthermore, we share our perspectives on potential future directions in the study of migrasomes and highlight the challenges that remain in this developing area of research.
Collapse
Affiliation(s)
- Haifeng Jiao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Mei J, Cao X, Zhou B, Zhu W, Wang M. Migrasomes: Emerging organelles for unveiling physiopathology and advancing clinical implications. Life Sci 2024; 358:123152. [PMID: 39454990 DOI: 10.1016/j.lfs.2024.123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Migrasomes are newly identified cellular organelles with a pomegranate-like structure and specifically generated by migrating cells. The mechanisms underlying migrasome biogenesis and methods for their isolation are gradually being elucidated. These organelles are pivotal in cell-to-cell communication and the maintenance of mitochondrial homeostasis. Their involvement in a diverse array of physiological and pathological processes is increasingly recognized. Despite these advancements, research on migrasomes is still in its early stages. It is imperative to delve deeper into the intricate mechanisms and functions of migrasomes to fully understand their role in physiopathology. In this review, we summarize the current research progress on migrasomes, including their distribution, biogenesis, purification and identification techniques, biological functionalities, and roles in physiological and pathological processes. We particularly highlight their potentials in disease diagnosis and therapy and point out the challenges facing us, aiming to provide novel insights into the emerging organelles.
Collapse
Affiliation(s)
- Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
5
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024:S1742-7061(24)00529-4. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
6
|
Wang D, Yu L. Migrasome biogenesis: when biochemistry meets biophysics on membranes. Trends Biochem Sci 2024; 49:829-840. [PMID: 38945731 DOI: 10.1016/j.tibs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.
Collapse
Affiliation(s)
- Dongju Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Wang Y, Wang Z, Cui H, Zhang L. The migrasome as a developmental learning paradigm in cell biology. Cell Biol Int 2024; 48:1254-1265. [PMID: 39010645 DOI: 10.1002/cbin.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Migrasome is a newly discovered organelle composed of small vesicular structures enclosed in membrane structures. Since its discovery in 2014, migrasome has attracted increasing attention in cell biology due to its critical role in multiple disease processes. Its pivotal role in various disease processes, including cell migration, intercellular communication, removal of damaged mitochondria, embryogenesis localization, immune cell chemotaxis, and virus transmission, underscores its significance in biological systems. With research on migrasome steadily increasing, it becomes a unique resource for undergraduate cell biology education. For deeper understanding of migrasome, we applied a bibliometric approach. Here we conducted a comprehensive analysis of migrasome research by retrieving relevant literature from databases such as Web of Science, Scopus, and PubMed using the keywords "migrasome" or "migrasomes." Employing CiteSpace software and Prism, we analyzed annual publication trends, identified core authors and institutions, assessed national contributions, examined keywords, and scrutinized highly cited literature related to migrasome research. This study presents a comprehensive overview of migrasome research, elucidating its literature characteristics, key contributors, research hotspots, and emerging trends. By shedding light on the current status and future trajectories of migrasome research, we aim to provide valuable insights for teachers in cell biology education. We propose for the integration of migrasome research into undergraduate curricula to enhance the understanding of cell biology among premedical, medical, and biomedical students, thereby fostering a deeper appreciation for the intricate mechanisms governing cellular behavior and disease processes.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Infection and Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zirui Wang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Infection and Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoran Cui
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Infection and Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Infection and Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Tang H, Huang Z, Wang M, Luan X, Deng Z, Xu J, Fan W, He D, Zhou C, Wang L, Li J, Zeng F, Li D, Zhou J. Research progress of migrasomes: from genesis to formation, physiology to pathology. Front Cell Dev Biol 2024; 12:1420413. [PMID: 39206093 PMCID: PMC11349668 DOI: 10.3389/fcell.2024.1420413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Migrasomes are recently identified organelles that form at the ends or forks of retraction fibers (RFs) behind migrating cells and are expelled from the cell through cell migration. Migrasomes contain signaling molecules which are captured by surrounding cells along with migrasomes or released into the extracellular environment following the rupture of the migrasomes. Finally, through the action of these signaling molecules, migrasomes facilitate the entire process of information conveyance. In addition, migrasomes also serves as a "scavenger" by removing damaged mitochondria from the cell to ensure cellular viability. Thus, migrasomes play a pivotal role in the integration of temporal, spatial, specific chemical information and the clearance of cellular harmful substances, critical for grasping migrasomes' functions. This review delves into the latest advancements in migrasomes research, covering aspects such as migrasomes' discovery, distribution, structure and characteristics, genesis and regulation mechanisms, and their correlation with diseases. Additionally, we scrutinize the present investigational findings on migrasomes within the cancer domain, examining their potential impact on cancer and prospective research avenues.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zengfu Deng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jian Xu
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Wei Fan
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongsheng He
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Chong Zhou
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Liangbin Wang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jun Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Fanfeng Zeng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongbo Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Han Y, Yu L. Calcium ions promote migrasome formation via Synaptotagmin-1. J Cell Biol 2024; 223:e202402060. [PMID: 38647453 PMCID: PMC11035859 DOI: 10.1083/jcb.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Migrasomes, organelles crucial for cell communication, undergo distinct stages of nucleation, maturation, and expansion. The regulatory mechanisms of migrasome formation, particularly through biological cues, remain largely unexplored. This study reveals that calcium is essential for migrasome formation. Furthermore, we identify that Synaptotagmin-1 (Syt1), a well-known calcium sensor, is not only enriched in migrasomes but also indispensable for their formation. The calcium-binding ability of Syt1 is key to initiating migrasome formation. The recruitment of Syt1 to migrasome formation sites (MFS) triggers the swelling of MFS into unstable precursors, which are subsequently stabilized through the sequential recruitment of tetraspanins. Our findings reveal how calcium regulates migrasome formation and propose a sequential interaction model involving Syt1 and Tetraspanins in the formation and stabilization of migrasomes.
Collapse
Affiliation(s)
- Yiyang Han
- State Key Laboratory of Membrane Biology, Tsinghua University–Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University–Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Jiao L, Luo X, Xu Y, Sun T, Lei X, Song X, Ying B. Emerging concepts of migrasome: An up-and-coming organelle from biology to the clinic. FASEB J 2024; 38:e23811. [PMID: 39031505 DOI: 10.1096/fj.202400503rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Since the migrasome concept was first proposed in 2015, extensive research has been conducted on these novel organelles, which grow on retracted fibers at the posterior end of migrating cells. Recently, molecular markers, biological functions, and clinical values based on the initial formation mechanism of migrasomes have emerged. Additionally, researchers are recognizing the significant role that migrasomes play in the pathological and diagnostic processes of clinical diseases. In this review, we summarize recent advances in the biology and clinical application of migrasomes and provide a comprehensive view of the prospective challenges surrounding their clinical application.
Collapse
Affiliation(s)
- Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxing Lei
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li Y, Wen Y, Li Y, Tan X, Gao S, Fan P, Tian W, Wong CC, Chen Y. Rab10-CAV1 mediated intraluminal vesicle transport to migrasomes. Proc Natl Acad Sci U S A 2024; 121:e2319267121. [PMID: 39008679 PMCID: PMC11287133 DOI: 10.1073/pnas.2319267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.
Collapse
Affiliation(s)
- Yong Li
- Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100084, China
- Center for Precision Medicine Multi-Omics Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing100191, China
| | - Yiling Wen
- Center for Precision Medicine Multi-Omics Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing100191, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xinyi Tan
- The Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Shuaixin Gao
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH43210
| | - Peiyao Fan
- Center for Precision Medicine Multi-Omics Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing100191, China
| | - Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing100191, China
| | - Catherine C.L. Wong
- Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100084, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100730, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Advanced Clinical Medicine, Peking University, Beijing100191, China
| |
Collapse
|
12
|
Jiang D, He J, Yu L. The migrasome, an organelle for cell-cell communication. Trends Cell Biol 2024:S0962-8924(24)00099-0. [PMID: 38866683 DOI: 10.1016/j.tcb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Migrasomes, newly identified extracellular organelles produced by migrating cells, are observed widely across both in vivo and in vitro studies. These organelles, rich in signaling and bioactive molecules, are pivotal in a range of physiological functions. This opinion summarizes current understanding of migrasomes, highlighting their importance as a versatile mechanism for cell-cell communication. Furthermore, it examines their roles in health and disease and potential diagnostic and therapeutic applications, and addresses the emerging challenges and open questions in this developing field.
Collapse
Affiliation(s)
- Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinzhao He
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Zhang F, Liu W, Mao Y, Yang Y, Ling C, Liu Y, Yao F, Zhen Y, Wang X, Zou M. Migrasome, a migration-dependent organelle. Front Cell Dev Biol 2024; 12:1417242. [PMID: 38903534 PMCID: PMC11187097 DOI: 10.3389/fcell.2024.1417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Migrasomes are organelles produced by migrating cells that form on retraction fibers and are released during cell migration. Migrasomes are involved in physiological and pathological processes such as intercellular communication, cell homeostasis maintenance, signal transduction, disease occurrence and development, and cancer metastasis. In addition, methods and techniques for studying migrasomes are constantly evolving. Here, we review the discovery, formation process, regulation, and known functions of migrasomes, summarize the commonly used specific markers of migrasomes, and the methods for observing migrasomes. Meanwhile, this review also discusses the potential applications of migrasomes in physiological processes, disease diagnosis, treatment, and prognosis, and looks forward to their wider application in biomedicine. In addition, the study of migrasomes will also reveal a new perspective on the mechanism of intercellular communication and promote the further development of life science.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mincheng Zou
- Department of Orthopaedics, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Yang R, Zhang H, Chen S, Lou K, Zhou M, Zhang M, Lu R, Zheng C, Li L, Chen Q, Liu Z, Zen K, Yuan Y, Liang H. Quantification of urinary podocyte-derived migrasomes for the diagnosis of kidney disease. J Extracell Vesicles 2024; 13:e12460. [PMID: 38853287 PMCID: PMC11162892 DOI: 10.1002/jev2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non-invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)-coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte-derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte-derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.
Collapse
Affiliation(s)
- Rong Yang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Heng Zhang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Si Chen
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaibin Lou
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Meng Zhou
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Rui Lu
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Limin Li
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Qihan Chen
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacauSARChina
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Ke Zen
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Yanggang Yuan
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongwei Liang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
15
|
Ye Z, Ng CP, Liu H, Bao Q, Xu S, Zu D, He Y, Huang Y, Al-Aidaroos AQO, Guo K, Li J, Yaw LP, Xiong Q, Thura M, Zheng W, Guan F, Cheng X, Shi Y, Zeng Q. PRL1 and PRL3 promote macropinocytosis via its lipid phosphatase activity. Theranostics 2024; 14:3423-3438. [PMID: 38948056 PMCID: PMC11209707 DOI: 10.7150/thno.93127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.
Collapse
Affiliation(s)
- Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Chee Ping Ng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Qimei Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Shengfeng Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dan Zu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yanhua He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- National Clinical Research Center for Children's Health, Department of Pulmonology of Children's Hospital, Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Abdul Qader Omer Al-Aidaroos
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Ke Guo
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Jie Li
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Lai Ping Yaw
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Qiancheng Xiong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Min Thura
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Weihui Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Fenghui Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yin Shi
- National Clinical Research Center for Children's Health, Department of Pulmonology of Children's Hospital, Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| |
Collapse
|
16
|
Huang Y, Yu L. Seeing is believing: observation of migrasomes. BIOPHYSICS REPORTS 2024; 10:67-81. [PMID: 38774353 PMCID: PMC11103717 DOI: 10.52601/bpr.2023.230024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 05/24/2024] Open
Abstract
Migrasomes are a novel type of cell organelle that form on the retraction fibers at the rear of migrating cells. In recent years, numerous studies have unveiled the mechanisms of migrasome formation and have highlighted significant roles of migrasomes in both physiological and pathological processes. Building upon the strategies outlined in published works and our own research experiences, we have compiled a comprehensive set of protocols for observing migrasomes. These step-by-step instructions encompass various aspects such as cell culture, labeling, imaging, in vitro reconstitution, and statistical analysis. We believe that these protocols serve as a valuable resource for researchers exploring migrasome biology.
Collapse
Affiliation(s)
- Yuwei Huang
- School of Basic Medical Sciences, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Yoshikawa K, Saito S, Kadonosono T, Tanaka M, Okochi M. Osmotic stress induces the formation of migrasome-like vesicles. FEBS Lett 2024; 598:437-445. [PMID: 38339800 DOI: 10.1002/1873-3468.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Migrasomes are extracellular vesicles that form on the retraction fibers of migrating cells. In this study, we report the formation of migrasome-like vesicles enriched in tetraspanin 4 and containing cytoplasmic components in response to hypoosmotic stress. When migrating cells were subjected to hypoosmotic stress, vesicles with a size distribution of 0.5 to 2 μm formed on the retraction fibers, and vanished in a few minutes. The vesicles are rich in cholesterol, and their number was reduced when cells were pretreated with lipoprotein-deficient serum. The formation of migrasome-like vesicles upon hypoosmotic stress may provide biophysical cues regarding the cellular response to this external stimulus in cells and tissues.
Collapse
Grants
- 23K17843 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 22K19913 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 21H01726 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 21H01725 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- JP21zf0127004 Moonshot Research and Development Program from the Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Koki Yoshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Japan
| | - Shogo Saito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Japan
| | - Tetsuya Kadonosono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Yokohama-shi, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Japan
| |
Collapse
|
18
|
Zhang X, Yao L, Meng Y, Li B, Yang Y, Gao F. Migrasome: a new functional extracellular vesicle. Cell Death Discov 2023; 9:381. [PMID: 37852963 PMCID: PMC10584828 DOI: 10.1038/s41420-023-01673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Migrasome is a novel cellular organelle produced during cell migration, and its biogenesis depends on the migration process. It is generated in a variety of cells such as immune cells, metastatic tumor cells, other special functional cells like podocytes and cells in developing organisms. It plays important roles in various fields especially in the information exchange between cells. The discovery of migrasome, as an important supplement to the extracellular vesicle system, provides new mechanisms and targets for comprehending various biological or pathological processes. In this article, we will review the discovery, structure, distribution, detection, biogenesis, and removal of migrasomes and mainly focus on summarizing its biological functions in cell-to-cell communication, homeostatic maintenance, embryonic development and multiple diseases. This review also creates prospects for the possible research directions and clinical applications of migrasomes in the future.
Collapse
Affiliation(s)
- Xide Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuanyuan Meng
- Naval Medical University, Department of Traditional Chinese Medicine, Affiliated Hospital 1, 200433, Shanghai, P. R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| |
Collapse
|
19
|
Zhen Y, Stenmark H. A phosphoinositide kinase triggers migrasome formation. Cell Res 2023; 33:577-578. [PMID: 37165066 PMCID: PMC10397299 DOI: 10.1038/s41422-023-00822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.
| |
Collapse
|
20
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|