1
|
Lu S, Jin H, Nong T, Li D, Long K, Chen Y, Li Y, Xing H, Pan T, He S, Jiang K, Zhong F. Hepatocyte-derived Fetuin-A promotes alcohol-associated liver disease in mice by inhibiting autophagy-lysosome degradation of TLR and M2 macrophage polarization. Free Radic Biol Med 2024; 224:506-520. [PMID: 39277121 DOI: 10.1016/j.freeradbiomed.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases worldwide. Fetuin-A (FetA) is a plasma glycoprotein closely related to fat accumulation in the liver. However, the role of FetA in ALD remains unclear. METHODS Both National Institute on Alcohol Abuse and Alcoholism (NIAAA) model and ethanol (EtOH) treated cell were used in this study. The effect of FetA deficiency on the progression of ALD was analyzed and the underlying mechanism was explored. RESULTS The expression of FetA was upregulated in the liver tissues of ethanol-fed mice and ALD patients, as well as in AML12 cells treated with ethanol. FetA deletion reduced hepatic steatosis, oxidative stress, and inflammation in ALD mice. Interestingly, the absence of FetA led to a reduction of TLR4 protein level in liver tissue of EtOH-fed mice, without a corresponding change of its mRNA level. Conversely, the administration of recombinant FetA elevated TLR4 protein level in ethanol-treated RAW264.7 cells. FetA knockout significantly impeded the polarization of M1 macrophage in vivo or in vitro. Mechanistically, FetA deficiency drived the autophagy-lysosomal degradation of TLR4, subsequently inhibiting the activation of NF-kB/NLRP3 inflammasome pathway. Furthermore, knockdown of FetA using an adeno-associated virus 8 (AAV8)-shRNA can effectively prevent the progression of ALD in mice. CONCLUSION Our results indicate that inhibition of FetA reverses the progression of ALD in mice, implying that FetA can serve as a therapeutic target for the treatment of ALD.
Collapse
Affiliation(s)
- Shibang Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hu Jin
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Division of Critical Care Medicine, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi, China
| | - Tiantian Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kang Long
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanjun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingcai Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Songqing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Keqing Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| | - Fudi Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Zhou ZY, Wang JY, Li ZX, Zheng HL, Zhou YN, Huang LN, Wang LJ, Ding XW, Sun X, Cai K, Zhao R, Shi Y, Chen AF, Pan ZQ, Cao J, Lin FQ, Zhao JY. Branched-Chain Amino Acids Deficiency Promotes Diabetic Neuropathic Pain Through Upregulating LAT1 and Inhibiting Kv1.2 Channel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402086. [PMID: 38946582 PMCID: PMC11434239 DOI: 10.1002/advs.202402086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Diabetic neuropathic pain (DNP), one of the most common complications of diabetes, is characterized by bilateral symmetrical distal limb pain and substantial morbidity. To compare the differences is aimed at serum metabolite levels between 81 DNP and 73 T2DM patients without neuropathy and found that the levels of branched-chain amino acids (BCAA) are significantly lower in DNP patients than in T2DM patients. In high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM and leptin receptor-deficient diabetic (db/db) mouse models, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated DNP symptoms. Mechanistically, using a combination of RNA sequencing of mouse dorsal root ganglion (DRG) tissues and label-free quantitative proteomic analysis of cultured cells, it is found that BCAA deficiency activated the expression of L-type amino acid transporter 1 (LAT1) through ATF4, which is reversed by BCAA supplementation. Abnormally upregulated LAT1 reduced Kv1.2 localization to the cell membrane, and inhibited Kv1.2 channels, thereby increasing neuronal excitability and causing neuropathy. Furthermore, intraperitoneal injection of the LAT1 inhibitor, BCH, alleviated DNP symptoms in mice, confirming that BCAA-deficiency-induced LAT1 activation contributes to the onset of DNP. These findings provide fresh insights into the metabolic differences between DNP and T2DM, and the development of approaches for the management of DNP.
Collapse
Affiliation(s)
- Ze-Yu Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ji-Ying Wang
- Department of Pain Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhi-Xiao Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong-Li Zheng
- Department of Pain Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ya-Nan Zhou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Na Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Li-Juan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Xiao-Wei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ke Cai
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fu-Qing Lin
- Department of Pain Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
3
|
Zhang W, Sha Z, Tang Y, Jin C, Gao W, Chen C, Yu L, Lv N, Liu S, Xu F, Wang D, Shi L. Defective Lamtor5 Leads to Autoimmunity by Deregulating v-ATPase and Lysosomal Acidification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400446. [PMID: 38639386 PMCID: PMC11165510 DOI: 10.1002/advs.202400446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Despite accumulating evidence linking defective lysosome function with autoimmune diseases, how the catabolic machinery is regulated to maintain immune homeostasis remains unknown. Late endosomal/lysosomal adaptor, MAPK and mTOR activator 5 (Lamtor5) is a subunit of the Ragulator mediating mechanistic target of rapamycin complex 1 (mTORC1) activation in response to amino acids, but its action mode and physiological role are still unclear. Here it is demonstrated that Lamtor5 level is markedly decreased in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE). In parallel, the mice with myeloid Lamtor5 ablation developed SLE-like manifestation. Impaired lysosomal function and aberrant activation of mTORC1 are evidenced in Lamtor5 deficient macrophages and PBMCs of SLE patients, accompanied by blunted autolysosomal pathway and undesirable inflammatory responses. Mechanistically, it is shown that Lamtor5 is physically associated with ATP6V1A, an essential subunit of vacuolar H+-ATPase (v-ATPase), and promoted the V0/V1 holoenzyme assembly to facilitate lysosome acidification. The binding of Lamtor5 to v-ATPase affected the lysosomal tethering of Rag GTPase and weakened its interaction with mTORC1 for activation. Overall, Lamtor5 is identified as a critical factor for immune homeostasis by intergrading v-ATPase activity, lysosome function, and mTOR pathway. The findings provide a potential therapeutic target for SLE and/or other autoimmune diseases.
Collapse
Affiliation(s)
- Wei Zhang
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Zhou Sha
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Yunzhe Tang
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Cuiyuan Jin
- Key lab of Artificial Organs and Computational MedicineInstitute of Translational MedicineZhejiang Shuren UniversityHangzhou310022China
| | - Wenhua Gao
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Changmai Chen
- School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Lang Yu
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Nianyin Lv
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Dandan Wang
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210093China
| | - Liyun Shi
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
- Key lab of Artificial Organs and Computational MedicineInstitute of Translational MedicineZhejiang Shuren UniversityHangzhou310022China
| |
Collapse
|
4
|
Li Z, Zou X, Lu R, Wan X, Sun S, Wang S, Qu Y, Zhang Y, Li Z, Yang L, Fang S. Arsenic trioxide alleviates atherosclerosis by inhibiting CD36-induced endocytosis and TLR4/NF-κB-induced inflammation in macrophage and ApoE -/- mice. Int Immunopharmacol 2024; 128:111452. [PMID: 38237221 DOI: 10.1016/j.intimp.2023.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Inflammation and lipid accumulation are key events in atherosclerosis progression. Despite arsenic trioxide's (ATO) toxicity, at appropriate doses, it is a useful treatment for various diseases treatment. ATO prevents vascular restenosis; however, its effects on atherosclerotic plaque development and instability remain unclear. METHODS ApoE-/- mice were fed high-fat diet for 4 months, and starting at the third month, ATO was intravenously administered every other day. Atherosclerotic lesion size, histological characteristics, and related protein and lipid profiles were assessed using samples from the aorta, carotid artery, and serum. The anti-inflammatory and anti-pyroptosis effects of ATO were investigated by stimulating RAW264.7 and THP-1 cell lines with oxidized low-density lipoprotein (ox-LDL) or lipopolysaccharide (LPS). RESULTS ATO reduced atherosclerotic lesion formation and plasma lipid levels in ApoE-/- mice. In the serum and aortic plaques, ATO reduced the levels of pro-inflammatory factors, including interleukin (IL) 6 and tumor necrosis factor α, but increased IL-10 levels. Mechanistically, ATO promoted the CD36-mediated internalization of ox-LDL in a peroxisome proliferator-activated receptor γ-dependent manner. Furthermore, ATO downregulated Toll-like receptor 4 (TLR4) expression in plaques and macrophages and inhibited p65 nuclear translocation and IκBα degradation. ATO reduced macrophage pyroptosis by downregulating NLR family pyrin domain-containing 3 (NLRP3) expression and caspase 1 activation. CONCLUSION ATO has potential atheroprotective effects, especially in macrophages. The mechanisms were inhibition of CD36-mediated foam cell formation and suppression of inflammatory responses and pyroptosis mediated by TLR4/nuclear factor κB and NLRP3 activation. Our findings provide evidence supporting the potential atheroprotective value of ATO.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoyi Zou
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Rongzhe Lu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Wan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Song Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanjie Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yinan Qu
- Department of Cardiac Function, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yun Zhang
- Univ Texas MD Anderson Canc Ctr, Dept Clin Canc Prevent, Houston, TX 77030 USA
| | - Zhangyi Li
- Department of biochemistry and life sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Shaohong Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
5
|
Mangione MC, Wen J, Cao DJ. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases. J Mol Cell Cardiol 2024; 186:111-124. [PMID: 38039845 PMCID: PMC10843805 DOI: 10.1016/j.yjmcc.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is evolutionarily conserved from yeast to humans and is one of the most fundamental pathways of living organisms. Since its discovery three decades ago, mTOR has been recognized as the center of nutrient sensing and growth, homeostasis, metabolism, life span, and aging. The role of dysregulated mTOR in common diseases, especially cancer, has been extensively studied and reported. Emerging evidence supports that mTOR critically regulates innate immune responses that govern the pathogenesis of various cardiovascular diseases. This review discusses the regulatory role of mTOR in macrophage functions in acute inflammation triggered by ischemia and in atherosclerotic cardiovascular disease (ASCVD) and heart failure with preserved ejection fraction (HFpEF), in which chronic inflammation plays critical roles. Specifically, we discuss the role of mTOR in trained immunity, immune senescence, and clonal hematopoiesis. In addition, this review includes a discussion on the architecture of mTOR, the function of its regulatory complexes, and the dual-arm signals required for mTOR activation to reflect the current knowledge state. We emphasize future research directions necessary to understand better the powerful pathway to take advantage of the mTOR inhibitors for innovative applications in patients with cardiovascular diseases associated with aging and inflammation.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinhua Wen
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; VA North Texas Health Care System, Dallas TX 75216, USA.
| |
Collapse
|
6
|
Chen Z, Li J, Xu W, Wu X, Xiang F, Li X, Zhang M, Zheng J, Kang X, Wu R. Elevated expression of Toll-like receptor 4 and cytokines in both serum and myometrium at term may serve as promising biomarkers for uterine activation preceding labor. Front Endocrinol (Lausanne) 2023; 14:1255925. [PMID: 37867523 PMCID: PMC10585141 DOI: 10.3389/fendo.2023.1255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Increased inflammation and cytokine levels are considered risk factors and promoters of preterm birth (PTB). However, the regulatory mechanism of pregnancy-related inflammation remains unclear. Toll-like receptor 4 (TLR4) plays a critical role in inflammatory responses in various diseases. Therefore, our study aimed to investigate whether TLR4 is involved in the inflammatory responses during uterine activation for labor, with the goal of identifying potential biomarkers for uterine activation at term. Materials and methods We used flow cytometry to detect TLR4 expression on CD14+ maternal blood monocytes in the first, second, and third trimesters. ELISA was employed to measure TLR4 and cytokines levels in the maternal serum of term non-labor (TNL), term labor (TL) women and LPS induced preterm labor and PBS injected controls. TLR4siRNA was transfected into the human myometrial smooth muscle cells (HMSMCs), which were subsequently treated with IL-1β. The mRNA and protein levels of TLR4, uterine contraction-related protein connexin 43 (CX43), oxytocin receptor (OTR), MAPK/NF-κB signaling pathway, and cytokines were analyzed using qRT-PCR, western blotting, and immunohistochemistry. Results The study revealed TLR4 expression on CD14+ maternal blood monocytes was higher in the third trimester group compared to the first and second trimester groups (p<0.001). Maternal serum concentrations of TLR4 and cytokines were significantly higher in the TL group than the TNL group (p<0.001). TLR4, OTR, CX43, activated MAPK/NF-κB expression, and cytokines levels were upregulated in TL group, and similarly significantly higher in the LPS-induced preterm group than in the control group. Using the HMSMCs we demonstrated that TLR4siRNA transfection suppressed contractility. Interfering with TLR4 expression reduced the expression of OTR, CX43, cytokines, and MAPK/NF-κB activation. There was a significant positive relationship between TLR4 expression and the inflammatory status in the myometrium. ROC analysis indicated that TLR4 and cytokines may serve as potential biomarkers for predicting uterine activation for labor. Conclusion Our data suggest that TLR4 and cytokines can act as stimulators of uterine activation for labor at term. Furthermore, the MAPK/NF-κB pathway appears to be one of the potential signaling pathways mediating TLR4's regulation of parturition initiation.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Wu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhang MJ, Liu J, Wan SC, Li JX, Wang S, Fidele NB, Huang CF, Sun ZJ. CSRP2 promotes cell stemness in head and neck squamous cell carcinoma. Head Neck 2023; 45:2161-2172. [PMID: 37466293 DOI: 10.1002/hed.27464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Xing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nyimi Bushabu Fidele
- The National keys laboratory of Basic Sciences of Stomatology of Kinshasa University, School of Medical University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Tsujimoto K, Takamatsu H, Kumanogoh A. The Ragulator complex: delving its multifunctional impact on metabolism and beyond. Inflamm Regen 2023; 43:28. [PMID: 37173755 PMCID: PMC10175929 DOI: 10.1186/s41232-023-00278-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Our understanding of lysosomes has undergone a significant transformation in recent years, from the view that they are static organelles primarily responsible for the disposal and recycling of cellular waste to their recognition as highly dynamic structures. Current research posits that lysosomes function as a signaling hub that integrates both extracellular and intracellular stimuli, thereby regulating cellular homeostasis. The dysregulation of lysosomal function has been linked to a wide range of diseases. Of note, lysosomes contribute to the activation of mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism. The Ragulator complex, a protein complex anchored on the lysosomal membrane, was initially shown to tether the mTORC1 complex to lysosomes. Recent research has substantially expanded our understanding of the roles of the Ragulator complex in lysosomes, including roles in the regulation of metabolism, inflammation, cell death, cell migration, and the maintenance of homeostasis, via interactions with various proteins. This review summarizes our current knowledge on the diverse functions of the Ragulator complex, highlighting important protein interactions.
Collapse
Affiliation(s)
- Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Bai K, Jiang L, Wang T, Wang W. Treatment of immune dysfunction in intrauterine growth restriction piglets via supplementation with dimethylglycine sodium salt during the suckling period. ANIMAL NUTRITION 2022; 11:215-227. [PMID: 36263403 PMCID: PMC9556798 DOI: 10.1016/j.aninu.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the mechanism of small intestinal immune dysfunction in intrauterine growth restriction (IUGR) newborn piglets and relieve this dysfunction via dimethylglycine sodium salt (DMG-Na) supplementation during the suckling period. Thirty sows (Duroc × [Landrace × Yorkshire]) were selected, and 1 male newborn piglet with normal birth weight (NBW) and 1 male newborn piglet with IUGR were obtained from each sow. Among them, 10 NBW and 10 IUGR newborns were euthanized without suckling. The other 20 NBW newborns were allocated to the group named NCON, which means NBW newborns fed a basic milk diet (BMD) (n = 10), and the group named ND, which means NBW newborns fed BMD supplemented with 0.1% DMG-Na (n = 10); the other 20 IUGR newborns were assigned to the group named ICON, which means IUGR newborns fed BMD (n = 10), and the group named ID, which means IUGR newborns fed BMD supplemented with 0.1% DMG-Na (n = 10). The newborns were fed BMD from 7 to 21 d of age and euthanized at 21 d of age to collect serum and small intestinal samples. The growth performance, small intestinal histological morphology and sub-organelle ultrastructure, serum immunoglobulin, small intestinal digestive enzyme activity, inflammatory cytokine level, and jejunum mRNA and protein expression of the toll-like receptor 4 (TLR4)/nucleotide-binding oligomerization domain protein (NOD)/nuclear factor-κB (NF-κB) network deteriorated in the ICON group compared to that in the NCON group. The small intestinal histological morphology and sub-organelle ultrastructure, serum immunoglobulin, small intestinal digestive enzyme activity, and inflammatory cytokine level improved (P < 0.05) in the ID group compared to those in the ICON group. The jejunum mRNA and protein expression of the TLR4/NOD/NF-κB network improved (P < 0.05) in the ID group compared to that in the ICON group. In conclusion, the activity of the TLR4/NOD/NF-κB pathway was inhibited in the IUGR newborns, which in turn led to their jejunum immune dysfunction and reduced their performance. By ingesting DMG-Na, the IUGR newborns activated the TLR4/NOD/NF-κB pathway, thereby improving their unfavorable body state during the suckling period.
Collapse
Affiliation(s)
- Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Luyi Jiang
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Corresponding author.
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Corresponding author.
| |
Collapse
|
10
|
Toll-Like Receptor 4 Exacerbates Mycoplasma pneumoniaevia Promoting Transcription Factor EB-Mediated Autophagy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3357694. [PMID: 35965629 PMCID: PMC9357725 DOI: 10.1155/2022/3357694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is the most common cause of community-acquired pneumonia. Toll-like receptors (TLRs) play an essential role in pneumonia. The purpose of this study was to investigate the roles of TLR4 in M. pneumoniae. Mice were administrated with 100 μl (1 × 107 ccu/ml) of M. pneumoniae. HE staining was applied for histological analysis. The protein expression was determined by western blot. The cytokine level was detected by ELISA. The results showed that TLR4-deficient mice were protected from M. pneumoniae. However, downregulation of TLR4 inhibited inflammatory response and autophagy. Moreover, transcription factor EB (TFEB) participated in M. pneumoniae-induced inflammatory response and autophagy, while knockdown of TLR4 downregulated TFEB and its nuclear translocation.
Collapse
|
11
|
Zhang H, He F, Zhou L, Shi M, Li F, Jia H. Activation of TLR4 induces inflammatory muscle injury via mTOR and NF-κB pathways in experimental autoimmune myositis mice. Biochem Biophys Res Commun 2022; 603:29-34. [PMID: 35276460 DOI: 10.1016/j.bbrc.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
Abstract
Idiopathic inflammatory myopathy (IIM) is an autoimmune disease that invades skeletal muscle; however, the etiology of IIM is still poorly understood. Toll-like receptor (TLR) 4 has been widely reported to take part in the autoimmune inflammation of IIMs. The mammalian target of rapamycin, mTOR, is a key central substance which mediates immune responses and metabolic changes, and also has been confirmed to be involved in the pathogenesis of IIMs. However, the interconnectedness between TLR4 and mTOR in IIM inflammation has not been fully elucidated. We hypothesized that TLR4 may play an important role in IIM inflammatory muscle injury by regulating mTOR. Mice were divided into four groups: a normal control group, IIM animal model (experimental autoimmune myositis, EAM) group, TAK242 intervention group and rapamycin (RAPA) intervention group. The results of EAM mice showed that TLR4, mTOR, nuclear factor-kappa B (NF-κB) and inflammatory factors interleukin-17A (IL-17A) and interferon γ (IFN-γ) mRNA levels were significantly upregulated. These factors were positively correlated with the degree of muscle inflammatory injury. When EAM mice were given the antagonist TAK242 to inhibit the TLR4 pathway, the results demonstrated that both mTOR and NF-κB were downregulated in the muscle of the mice. Muscle staining showed that the inflammatory injury was alleviated and the EAM mouse muscle strength was improved. Then, RAPA was used to inhibit the mTOR pathway, and the inflammatory factors IL-17A and IFN-γ were downregulated in EAM mouse muscle and serum. Consistently, muscle inflammatory injury was significantly reduced, and muscle strength was significantly improved. Our results suggest that TLR4 may regulate inflammatory muscle injury in EAM by activating the mTOR and NF-κB pathways, which provides both an experimental complement for the pathological mechanism of IIM and an encouraging target for the selection of effective treatments.
Collapse
Affiliation(s)
- Hongya Zhang
- Air Force Medical University, Xi'an, China; Department of Neurology, Shenzhen University General Hospital, Shenzhen, China
| | - Fangyuan He
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Linfu Zhou
- Department of Neurology, Northwestern University School of Medicine, Xi'an, China
| | - Ming Shi
- Air Force Medical University, Xi'an, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen, China.
| | - Hongge Jia
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| |
Collapse
|
12
|
Baymiller M, Nordick B, Forsyth CM, Martinis SA. Tissue-specific alternative splicing separates the catalytic and cell signaling functions of human leucyl-tRNA synthetase. J Biol Chem 2022; 298:101757. [PMID: 35202654 PMCID: PMC8941210 DOI: 10.1016/j.jbc.2022.101757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022] Open
Abstract
The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Benjamin Nordick
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Connor M Forsyth
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Susan A Martinis
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
13
|
Surfactant protein A enhances the degradation of LPS-induced TLR4 in primary alveolar macrophages involving Rab7, β-arrestin2, and mTORC1. Infect Immun 2021; 90:e0025021. [PMID: 34780278 DOI: 10.1128/iai.00250-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A-/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2-/- AMs and after intratracheal LPS challenge of β-arrestin2-/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A-/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.
Collapse
|
14
|
Role of TLR4/MyD88 Signaling Pathway in the Occurrence and Development of Uremia-Induced Myocardial Hypertrophy and Possible Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7883643. [PMID: 34691222 PMCID: PMC8528592 DOI: 10.1155/2021/7883643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The morbidity and mortality of cardiovascular disease (CVD) are relatively high. Studies have shown that most patients with chronic kidney disease (CKD) die from cardiovascular complications. Clinically, the pathophysiological state in which heart disease and kidney disease are causal and influence each other is called cardiorenal syndrome (CRS). Myocardial hypertrophy is the key stage of the heart structure changing from reversible to irreversible. It is an important pathophysiological basis for heart failure. Therefore, this study intends to start with the end-stage uremic phase of CKD to construct an animal model of uremia in rats to study the relationship between uremia, TLR4/MyD88 signaling pathway, and myocardial hypertrophy. The results showed that the uremic rats showed slow weight gain and were thinner. At 12 weeks (w), the serum creatinine and urea nitrogen of the uremic rats increased, and the global hypertrophy index increased. Detecting the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor (MyD88) in blood samples of rats, we found that the expression of TLR4 and MyD88 increased at 12 w in the uremia group; pathological observation showed that at 4 weeks of uremia model rats, renal tissue compensatory hypertrophy, renal fibrous membrane proliferation, renal parenchyma atrophy, a large number of fibrous proliferation and inflammatory cell infiltration in the interstitium, and protein casts in the renal tubules were observed. Myocardial cells were obviously hypertrophy and disordered. At 12 w, renal tubules were obviously expanded, the epithelium was flat, the brush border disappeared, and the interstitial fibrous connective tissue of the myocardial tissue was proliferated. The detection of TLR4 and MyD88 in kidney tissue and myocardial tissue revealed that the positive expression of TLR4 and MyD88 gradually increased over time. Therefore, the final result of the study is that uremia can gradually lead to myocardial hypertrophy and TLR4 and MyD88 are highly expressed in serum, kidney, and myocardial tissues of uremic rats, suggesting that TLR4 and MyD88 may be related to the degree of uremic disease and the myocardium caused by it. Hypertrophy is related.
Collapse
|
15
|
Eloiflin RJ, Auray G, Python S, Rodrigues V, Seveno M, Urbach S, El Koulali K, Holzmuller P, Totte P, Libeau G, Bataille A, Summerfield A. Identification of Differential Responses of Goat PBMCs to PPRV Virulence Using a Multi-Omics Approach. Front Immunol 2021; 12:745315. [PMID: 34671358 PMCID: PMC8521192 DOI: 10.3389/fimmu.2021.745315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.
Collapse
Affiliation(s)
- Roger-Junior Eloiflin
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Gaël Auray
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Valérie Rodrigues
- ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France.,CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Petit-Bourg, France
| | - Martial Seveno
- BCM (BioCampus Montpellier), Univ. Montpellier, CNRS (Centre national de la recherche scientifique), INSERM, Montpellier, France
| | - Serge Urbach
- IGF (Institut de Génomique Fonctionnelle), Univ. Montpellier, CNRS (Centre national de la recherche scientifique), INSERM, Montpellier, France
| | - Khadija El Koulali
- BCM (BioCampus Montpellier), Univ. Montpellier, CNRS (Centre national de la recherche scientifique), INSERM, Montpellier, France
| | - Philippe Holzmuller
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Philippe Totte
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Genevieve Libeau
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Arnaud Bataille
- CIRAD (Agricultural Research Centre for International Development), UMR (Unité Mixte de Recherche), ASTRE (Animal, Health, Territories, Risks and Ecosystems), Montpellier, France.,ASTRE (Animal, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD (Agricultural Research Centre for International Development), INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Montpellier, France
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Li J, Jiang H, Wu P, Li S, Han B, Yang Q, Wang X, Han B, Deng N, Qu B, Zhang Z. Toxicological effects of deltamethrin on quail cerebrum: Weakened antioxidant defense and enhanced apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117319. [PMID: 33990053 DOI: 10.1016/j.envpol.2021.117319] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin is the most common type II synthetic pyrethroid insecticide, and has posed widespread residues to environment. However, whether deltamethrin has potential toxic effects on quail cerebrum remains greatly obscure. Accordingly, we investigated the impact of chronic exposure to deltamethrin on oxidative stress and apoptosis in quail cerebrum. Quails upon 12-week exposure of deltamethrin (0, 15, 30, or 45 mg/kg body weight intragastric administration) were used as a cerebrum injury model. The results showed that deltamethrin treatment led to cerebral injury dose-dependently through the weakened antioxidant defense by downregulating nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream proteins levels and mRNA expression. Furthermore, deltamethrin treatment induced apoptosis in cerebrum by decreasing B-cell lymphoma gene 2 (Bcl-2) level, as well as increasing Jun N-terminal kinase3, caspase-3, and Bcl-2-associated X protein levels. Simultaneously, toll-like receptor 4 (TLR4) downstream inflammation-related genes or proteins were significantly up-regulated by deltamethrin dose-dependently. Altogether, our study demonstrated that chronic exposure to deltamethrin induces inflammation and apoptosis in quail cerebrums by promoting oxidative stress linked to inhibition of the Nrf2/TLR4 signaling pathway. These results provide a novel knowledge on the chronic toxic effect of deltamethrin, and establish a theoretical foundation for the evaluation of pesticide-induced health risk.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
17
|
Zaniani NR, Oroujalian A, Valipour A, Peymani M. LAMTOR5 expression level is a biomarker for colorectal cancer and lncRNA LAMTOR5-AS1 predicting miRNA sponging effect. Mol Biol Rep 2021; 48:6093-6101. [PMID: 34374893 DOI: 10.1007/s11033-021-06623-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Strong evidence indicated that high expression of HBXIP (also known as LAMTOR5) promotes cancer cells proliferation and helps cancer progression. Long non-coding RNAs (lncRNA) have also a crucial role in developing cancer. In this study, we aimed to determine the expression of LAMTOR5 and its nearby lncRNA, LAMTOR5-AS1 and investigate their potential as a biomarker in colorectal cancer (CRC) patients. METHODS 75 tissues of colorectal tumors and non-tumor adjacent normal sampled in this study. After RNA procedure then RT-qPCR was applied for expression analysis. Moreover, in silico investigation also enrolled for predicting sponging effect of lncRNA with miRNAs. RESULTS LAMTOR5 transcription level significantly overexpressed (p value < 0.001) and has shown a diagnostic potential (AUC = 0.8) in CRC. LAMTOR5-AS1 did not indicate any remarkable expression change overall, but showed a significant overexpressed in elderly patients (> 60) with CRC (p value < 0.0097). Moreover, the correlation analysis between LAMTOR5 and LAMTOR5-AS1 revealed a significant association in CRC (p value = 0.0074) which can be partly explained by its predicting act as a mediator with sponging effect on hsa-miR-let-7b-3p and hsa-miR-20a-5p. CONCLUSION LAMTOR5 gene can be considered as prognostic biomarker for CRC. LAMTOR5-AS5 which is a nearby lncRNA of this gene could play a regulatory impact through its sponging effect on hsa-miR-let-7b-3p and hsa-miR-20a-5p which both have shown a significant impact on overall survival rate in CRC patients in high expression levels.
Collapse
Affiliation(s)
- Najmeh Riahi Zaniani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Andisheh Oroujalian
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Valipour
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
18
|
Li X, Chu Q, Wang H. MicroRNA-16 regulates lipopolysaccharide-induced inflammatory factor expression by targeting TLR4 in normal human bronchial epithelial cells. Exp Ther Med 2021; 22:982. [PMID: 34345264 PMCID: PMC8311244 DOI: 10.3892/etm.2021.10414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is mainly caused by inflammation and is associated with high mortality rates. Emerging evidence has suggested that microRNAs (miRNAs or miRs) serve a significant function in ALI. However, the fundamental mechanism underlying ALI remain to be fully elucidated. Although miR-16 has been reported to be involved in the occurrence and development of a number of diseases its association with ALI has not been previously investigated. Therefore, the present study aimed to explore the role of miR-16 in the lipopolysaccharide (LPS)-induced ALI model. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were measured by ELISA in the blood samples of rats with ALI and in the normal human bronchial epithelial (NHBE) cell line. The role of miR-16 in inflammation was evaluated using gene overexpression and silencing experiments in NHBE cells by reverse transcription-quantitative PCR. In addition, the expression levels of inflammatory factors TNF-α, IL-1β and IL-6 were also determined using ELISA. The potential interaction between miR-16 and TLR4 was assessed using bioinformatics analysis by the TargetScan database and then verified in 293T cells using luciferase reporter assay. The expression of miR-16 was notably decreased in the lung tissues of rats with LPS-induced ALI compared with the PBS treated-group. Additionally, the levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 were reduced following transfection of NHBE cells with miR-16 mimics compared with those in the miR-negative control group. Western blot analysis revealed that miR-16 overexpression could downregulate TLR4 expression in NHBE cells compared with that in the miR-NC group. Luciferase reporter assay confirmed that TLR4 may be directly targeted by miR-16. The effect of miR-16 on TLR4 was rescued in NHBE cells following treatment with LPS. Overall, these aforementioned findings suggest that miR-16 may serve a protective role against LPS-mediated inflammatory responses in NHBE cells by regulating TLR4, where this mechanism may be considered to be a novel approach for treating ALI in the future.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Wang F, Kong L, Pu Y, Chao F, Zang C, Qin W, Zhao F, Cai S. Long Noncoding RNA DICER1-AS1 Functions in Methylation Regulation on the Multi-Drugresistance of Osteosarcoma Cells via miR-34a-5p and GADD45A. Front Oncol 2021; 11:685881. [PMID: 34307152 PMCID: PMC8299526 DOI: 10.3389/fonc.2021.685881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that commonly occurs in children and adolescents. Long noncoding RNAs (lncRNAs) are recognized as a novel class of regulators of gene expression associated with tumorigenesis. However, the effect and mechanism of lncRNAs in OS tumorigenesis and drug resistance have not been characterized. The purpose of the study is to screen potential biomarker and therapeutic target against OS. We compared the lncRNA expression profiles between OS cell lines with different drug resistance levels using RNA-seq analysis and found that lncRNA DICER1-AS1 was significantly differentially expressed in multi-drugresistant OS cells SJSA-1 versus multi-drugsensitive OS cells G-292. Bisulfite Sequencing PCR (BSP) assay was performed to analyze the differential methylation status of the promoter region of DICER1-AS1 in four OS cells. Subsequently, in vitro gain- and loss-of-function experiments demonstrated the roles of DICER1-AS1 and miR-34a-5p in the multi-drugresistance of OS cells. The main findings is that DICER1-AS1 directly binds to miR-34a-5p, and their expression has a negative correlation with each other. The hypermethylation of the promoter region of DICER1-AS1 silenced its expression in the drugresistant cells SJSA-1 and MNNG/HOS. Moreover, we found that growth arrest and DNA damage-inducible alpha (GADD45A) participates in the DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, probably via the cell cycle/pRb-E2F pathway. Our results revealed DICER1-AS1/miR-34a-5p-regulated drug resistance of OS cells, a new lncRNA-regulated network in OS tumorigenesis, suggested that DICER1-AS1 can be considered as a potential biomarker and therapeutic target against OS cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, West district of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunbao Zang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Qin
- Department of Science and Education Section, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Zhao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Kaixin Z, Xuedie G, Jing L, Yiming Z, Khoso PA, Zhaoyi L, Shu L. Selenium-deficient diet induces inflammatory response in the pig adrenal glands by activating TLR4/NF-κB pathway via miR-30d-R_1. Metallomics 2021; 13:6300451. [PMID: 34132350 DOI: 10.1093/mtomcs/mfab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is an important trace element to maintain the body's dynamic balance. Lack of Se can cause inflammation. Studies have shown that inflammation often leads to disorders of the hypothalamic-pituitary-adrenal axis, but the mechanism by which Se deficiency causes inflammation of the porcine adrenal glands is still unclear. In order to study the effect of Se deficiency on the adrenal glands of pigs, we obtained Se-deficient pig adrenal glands through a low-Se diet. The results of mass spectrometry showed that the Se content in the Se-deficient group was only one-tenth of the control group. We detected the expression of the toll-like receptor 4 (TLR4) and downstream factors by qRT-PCR and Western blotting, and found that the lack of Se affected the TLR4/NF-κB pathway. It is known that miR-155-3p, miR-30d-R_1, and miR-146b have all been verified for targeting relationship with TLR4. We confirmed by qRT-PCR that miR-30d-R_1 decreased most significantly in the Se-deficient pig model. Then we tested 25 selenoproteins and some indicators of oxidative stress. It is confirmed that Se deficiency reduces the antioxidant capacity and induces oxidative stress in pig adrenal tissue. In short, a diet lacking Se induces oxidative stress in pig adrenal tissues and leads to inflammation through the miR-30d-R_1/TLR4 pathway. This study provides a reference for the prevention of adrenal inflammation in pigs from a nutritional point of view.
Collapse
Affiliation(s)
- Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Gu Xuedie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Pakistan
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
21
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Multi-omics analysis identifies FoxO1 as a regulator of macrophage function through metabolic reprogramming. Cell Death Dis 2020; 11:800. [PMID: 32973162 PMCID: PMC7518254 DOI: 10.1038/s41419-020-02982-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Macrophages are plastic cells that can switch among different states according to bioenergetic or biosynthetic requirements. Our previous work demonstrated that the transcription factor Forkhead Box Protein 1 (FoxO1) plays a pivotal role in regulating the function of macrophages, but the underlying mechanisms are still unclear. Here we identify FoxO1 as a regulator of macrophage function through metabolic reprogramming. Transcriptomic and proteomic analyses showed that the deficiency of FoxO1 results in an alternatively activated (M2) phenotype of macrophages, with lower expression of inflammatory response- and migration-associated genes. Using the high content screening and analysis technology, we found that deletion of FoxO1 in macrophages slows their migration rate and impairs their function to limit tumor cell growth in vitro. Next, we demonstrated that glycolysis is inhibited in FoxO1-deficient macrophages, which leads to the observed functional changes and the reduced tumor suppression capability. This prospective study shows that FoxO1 serves as a bridge between metabolism and macrophage function.
Collapse
|
23
|
Liu B, Che Y, Zhang M, Ren W, Xia X, Liu H, Huang T, Huang J, Lei L. IFN-γ Activates the TLR4-CCL5 Signaling Through Reducing Arginine Level, Leading to Enhanced Susceptibility of Bovine Mammary Epithelial Cells to Staphylococcus aureus. Inflammation 2020; 43:2209-2221. [PMID: 32725514 DOI: 10.1007/s10753-020-01288-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dairy cow mastitis is a common bacterial infectious disease which seriously threatens the development of the dairy cow industry. Previous studies have found that increased IFN-γ expression in dairy cows makes dairy cows more susceptible to mastitis, but the underlying mechanism is still not known. In this study, we utilized the in vitro bovine mammary epithelial cells (BMECs) model to explore the molecular mechanism via transcriptome sequencing technology, immunofluorescence, and Western blotting. It was found that IFN-γ promoted the adhesion and invasion of Staphylococcus aureus to BMECs through increasing the expression of TLR4-mediated CCL5 in BMECs. IFN-γ increased the activity of arginase II and reduced the level of arginine in cells, while the addition of arginine inhibited the expression of TLR4 and CCL5. An invasion experiment in mice further validated that IFN-γ treatment significantly increased the bacterial load in mammary glands and blood. However, the colonization and diffusion of S. aureus were interestingly decreased after Arg supplement. These data reveal that increased IFN-γ reduces arginine levels and activates TLR4-CCL5 signaling, leading to enhanced susceptibility of BMECs to S. aureus. Our findings are helpful to understand the pathogenesis of dairy cow mastitis and provide a theoretical basis for improvement of mastitis resistance in dairy cows.
Collapse
Affiliation(s)
- Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Yanyi Che
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Meina Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Wenbo Ren
- The First Hospital, Jilin University, Xinmin street 71, Changchun, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongtao Liu
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Tinghao Huang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jing Huang
- The First Hospital, Jilin University, Xinmin street 71, Changchun, China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China. .,College of Animal Sciences, Yangtze University, Jingzhou, China.
| |
Collapse
|