1
|
Zhang Y, Cui J, Liu F, Song Y, Wang Q, Liu Y, Zhang Y, Li Z, Chang Z. Effectiveness of Enterovirus 71 inactivated vaccines against hand, foot, and mouth disease: A test-negative case-control study. Hum Vaccin Immunother 2024; 20:2330163. [PMID: 38544389 PMCID: PMC10984126 DOI: 10.1080/21645515.2024.2330163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
The Enterovirus A71 (EV-A71) vaccine was introduced in China in December 2015 as a preventive measure against hand, foot, and mouth disease (HFMD) caused by EV-A71. However, the effectiveness of the vaccine (VE) in real-world settings needs to be evaluated. We conducted a test-negative case-control study to assess the effectiveness of EV-A71 vaccines in preventing EV-A71-associated HFMD. Children aged 6-71 months with HFMD were enrolled as participants. The case group comprised those who tested positive for EV-A71, while the control group comprised those who tested negative for EV-A71. To estimate VE, a logistic regression model was employed, adjusting for potential confounders including age, gender, and clinical severity. In total, 3223 children aged 6 to 71 months were included in the study, with 162 in the case group and 3061 in the control group. The proportion of children who received EV-A71 vaccination was significantly lower in the case group compared to the control group (p < .001). The overall VEadj was estimated to be 90.8%. The VEadj estimates for partially and fully vaccinated children were 90.1% and 90.9%, respectively. Stratified by age group, the VEadj estimates were 88.7% for 6 to 35-month-olds and 95.5% for 36 to 71-month-olds. Regarding disease severity, the VEadj estimates were 86.3% for mild cases and 100% for severe cases. Sensitivity analysis showed minimal changes in the VE point estimates, with most changing by no more than 1% point. Our study demonstrates a high level of vaccine effectiveness against EV-A71-HFMD, especially in severe cases. Active promotion of EV-A71 vaccination is an effective strategy in preventing EV-A71 infections.
Collapse
Affiliation(s)
- Yutong Zhang
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinzhao Cui
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengfeng Liu
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Song
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Quanyi Wang
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yanzhe Liu
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanping Zhang
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongjie Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaorui Chang
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Gao F, Liu P, Huo Y, Bian L, Wu X, Liu M, Wang Q, He Q, Dong F, Wang Z, Xie Z, Zhang Z, Gu M, Xu Y, Li Y, Zhu R, Cheng T, Wang T, Mao Q, Liang Z. A screening study on the detection strain of Coxsackievirus A6: the key to evaluating neutralizing antibodies in vaccines. Emerg Microbes Infect 2024; 13:2322671. [PMID: 38390796 PMCID: PMC10906128 DOI: 10.1080/22221751.2024.2322671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The increasing incidence of diseases caused by Coxsackievirus A6 (CV-A6) and the presence of various mutants in the population present significant public health challenges. Given the concurrent development of multiple vaccines in China, it is challenging to objectively and accurately evaluate the level of neutralizing antibody response to different vaccines. The choice of the detection strain is a crucial factor that influences the detection of neutralizing antibodies. In this study, the National Institutes for Food and Drug Control collected a prototype strain (Gdula), one subgenotype D1, as well as 13 CV-A6 candidate vaccine strains and candidate detection strains (subgenotype D3) from various institutions and manufacturers involved in research and development. We evaluated cross-neutralization activity using plasma from naturally infected adults (n = 30) and serum from rats immunized with the aforementioned CV-A6 strains. Although there were differences between the geometric mean titer (GMT) ranges of human plasma and murine sera, the overall trends were similar. A significant effect of each strain on the neutralizing antibody test (MAX/MIN 48.0 ∼16410.3) was observed. Among all strains, neutralization of the S112 strain by 15 different sera resulted in higher neutralizing antibody titers (GMTS112 = 132.0) and more consistent responses across different genotypic immune sera (MAX/MIN = 48.0). Therefore, S112 may serve as a detection strain for NtAb testing in various vaccines, minimizing bias and making it suitable for evaluating the immunogenicity of the CV-A6 vaccine.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Pei Liu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yaqian Huo
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- Department of Research & Development, Shanghai Institute of Biological Products Co., Ltd, Shanghai, People’s Republic of China
| | - Lianlian Bian
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Fangyu Dong
- Department of Research & Development, Taibang Biologic Group, Beijing, People’s Republic of China
| | - Zejun Wang
- Department of R&D, Wuhan Institute of Biological Products Co., LTD, Wuhan, People’s Republic of China
| | - Zhongping Xie
- Department of Production Management, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China
| | - Zhongyang Zhang
- The Second Research Laboratory, National Vaccine and Serum Institute, Beijing, People’s Republic of China
| | - Meirong Gu
- R&D Center, Minhai Biotechnology Co., LTD, Beijing, People’s Republic of China
| | - Yingzhi Xu
- R&D Center, Minhai Biotechnology Co., LTD, Beijing, People’s Republic of China
| | - Yajing Li
- R&D Center, Sinovac Biotech Co., LTD, Beijing, People’s Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Roux H, Touret F, Coluccia A, Khoumeri O, Di Giorgio C, Majdi C, Sciò P, Silvestri R, Vanelle P, Roche M. New potent EV-A71 antivirals targeting capsid. Eur J Med Chem 2024; 276:116658. [PMID: 39088999 DOI: 10.1016/j.ejmech.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/03/2024]
Abstract
The enterovirus is a genus of single-stranded, highly diverse positive-sense RNA viruses, including Human Enterovirus A-D and Human Rhinovirus A-C species. They are responsible for numerous diseases and some infections can progress to life-threatening complications, particularly in children or immunocompromised patients. To date, there is no treatment against enteroviruses on the market, except for polioviruses (vaccine) and EV-A71 (vaccine in China). Following a decrease in enterovirus infections during and shortly after the (SARS-Cov2) lockdown, enterovirus outbreaks were once again detected, notably in young children. This reemergence highlights on the need to develop broad-spectrum treatment against enteroviruses. Over the last year, our research team has identified a new class of small-molecule inhibitors showing anti-EV activity. Targeting the well-known hydrophobic pocket in the viral capsid, these compounds show micromolar activity against EV-A71 and a high selectivity index (SI) (5h: EC50, MRC-5 = 0.57 μM, CC50, MRC-5 >20 μM, SI > 35; EC50, RD = 4.38 μM, CC50, RD > 40 μM, SI > 9; 6c: EC50, MRC-5 = 0.29 μM, CC50, MRC-5 >20 μM, SI > 69; EC50, RD = 1.66 μM, CC50, RD > 40 μM, SI > 24; Reference: Vapendavir EC50, MRC-5 = 0.36 μM, CC50, MRC-5 > 20 μM, EC50, RD = 0.53 μM, CC50, RD > 40 μM, SI > 63). The binding mode of these compounds in complex with enterovirus capsids was analyzed and showed a series of conserved interactions. Consequently, 6c and its derivatives are promising candidates for the treatment of enterovirus infections.
Collapse
Affiliation(s)
- Hugo Roux
- Aix-Marseille Université, CNRS, ICR UMR 7273, PCR, Faculté de Pharmacie, 13005 Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Antonio Coluccia
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Omar Khoumeri
- Aix-Marseille Université, CNRS, ICR UMR 7273, PCR, Faculté de Pharmacie, 13005 Marseille, France
| | - Carole Di Giorgio
- Aix-Marseille Université, Avignon Université, CNRS, IRD, IMBE, Faculty of Pharmacy, Service of Environmental Mutagenesis, Marseille, France
| | - Chaimae Majdi
- Aix-Marseille Université, CNRS, ICR UMR 7273, PCR, Faculté de Pharmacie, 13005 Marseille, France
| | - Pietro Sciò
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Romano Silvestri
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, ICR UMR 7273, PCR, Faculté de Pharmacie, 13005 Marseille, France.
| | - Manon Roche
- Aix-Marseille Université, CNRS, ICR UMR 7273, PCR, Faculté de Pharmacie, 13005 Marseille, France.
| |
Collapse
|
4
|
Liu Z, Tian J, Wang Y, Li Y, Liu-Helmersson J, Mishra S, Wagner AL, Lu Y, Wang W. The burden of hand, foot, and mouth disease among children under different vaccination scenarios in China: a dynamic modelling study. BMC Infect Dis 2021; 21:650. [PMID: 34225650 PMCID: PMC8259139 DOI: 10.1186/s12879-021-06157-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common illness in young children. A monovalent vaccine has been developed in China protecting against enterovirus-71, bivalent vaccines preventing HFMD caused by two viruses are under development. OBJECTIVE To predict and compare the incidence of HFMD under different vaccination scenarios in China. METHODS We developed a compartmental model to capture enterovirus transmission and the natural history of HFMD in children aged 0-5, and calibrated to reported cases in the same age-group from 2015 to 2018. We compared the following vaccination scenarios: different combinations of monovalent and bivalent vaccine; a program of constant vaccination to that of pulse vaccination prior to seasonal outbreaks. RESULTS We estimate 1,982,819, 2,258,846, 1,948,522 and 2,398,566 cases from 2015 to 2018. Increased coverage of monovalent vaccine from 0 to 80% is predicted to decrease the cases by 797,262 (49.1%). Use of bivalent vaccine at an 80% coverage level would decrease the cases by 828,560. Use of a 2.0× pulse vaccination for the bivalent vaccine in addition to 80% coverage would reduce cases by over one million. The estimated R0 for HFMD in 2015-2018 was 1.08, 1.10, 1.35 and 1.17. CONCLUSIONS Our results point to the benefit of bivalent vaccine and using a pulse vaccination in specific months over routine vaccination. Other ways to control HFMD include isolation of patients in the early stage of dissemination, more frequent hand-washing and ventilation, and better treatment options for patients.
Collapse
Affiliation(s)
- Zhixi Liu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jie Tian
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yue Wang
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yixuan Li
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jing Liu-Helmersson
- Department of Epidemiology and Global Health, Faculty of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Sharmistha Mishra
- Department of Medicine, Institute of Medical Sciences, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.,Center for Urban Health Solutions, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada
| | - Abram L Wagner
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yihan Lu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Weibing Wang
- School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Wang SH, Wang K, Zhao K, Hua SC, Du J. The Structure, Function, and Mechanisms of Action of Enterovirus Non-structural Protein 2C. Front Microbiol 2020; 11:615965. [PMID: 33381104 PMCID: PMC7767853 DOI: 10.3389/fmicb.2020.615965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses are a group of RNA viruses belonging to the family Picornaviridae. They include human enterovirus groups A, B, C, and D as well as non-human enteroviruses. Enterovirus infections can lead to hand, foot, and mouth disease and herpangina, whose clinical manifestations are often mild, although some strains can result in severe neurological complications such as encephalitis, myocarditis, meningitis, and poliomyelitis. To date, research on enterovirus non-structural proteins has mainly focused on the 2A and 3C proteases and 3D polymerase. However, another non-structural protein, 2C, is the most highly conserved protein, and plays a vital role in the enterovirus life cycle. There are relatively few studies on this protein. Previous studies have demonstrated that enterovirus 2C is involved in virus uncoating, host cell membrane rearrangements, RNA replication, encapsidation, morphogenesis, ATPase, helicase, and chaperoning activities. Despite ongoing research, little is known about the pathogenesis of enterovirus 2C proteins in viral replication or in the host innate immune system. In this review, we discuss and summarize the current understanding of the structure, function, and mechanism of the enterovirus 2C proteins, focusing on the key mutations and motifs involved in viral infection, replication, and immune regulation. We also focus on recent progress in research into the role of 2C proteins in regulating the pattern recognition receptors and type I interferon signaling pathway to facilitate viral replication. Given these functions and mechanisms, the potential application of the 2C proteins as a target for anti-viral drug development is also discussed. Future studies will focus on the determination of more crystal structures of enterovirus 2C proteins, which might provide more potential targets for anti-viral drug development against enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Kuan Wang
- Department of Neurotrauma, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Shu-Cheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Brown DM, Zhang Y, Scheuermann RH. Epidemiology and Sequence-Based Evolutionary Analysis of Circulating Non-Polio Enteroviruses. Microorganisms 2020; 8:microorganisms8121856. [PMID: 33255654 PMCID: PMC7759938 DOI: 10.3390/microorganisms8121856] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) are positive-sense RNA viruses, with over 50,000 nucleotide sequences publicly available. While most human infections are typically associated with mild respiratory symptoms, several different EV types have also been associated with severe human disease, especially acute flaccid paralysis (AFP), particularly with endemic members of the EV-B species and two pandemic types—EV-A71 and EV-D68—that appear to be responsible for recent widespread outbreaks. Here we review the recent literature on the prevalence, characteristics, and circulation dynamics of different enterovirus types and combine this with an analysis of the sequence coverage of different EV types in public databases (e.g., the Virus Pathogen Resource). This evaluation reveals temporal and geographic differences in EV circulation and sequence distribution, highlighting recent EV outbreaks and revealing gaps in sequence coverage. Phylogenetic analysis of the EV genus shows the relatedness of different EV types. Recombination analysis of the EV-A species provides evidence for recombination as a mechanism of genomic diversification. The absence of broadly protective vaccines and effective antivirals makes human enteroviruses important pathogens of public health concern.
Collapse
Affiliation(s)
- David M Brown
- Department of Synthetic Biology, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA 92065, USA
| |
Collapse
|
7
|
Xu S, Li H, Qiao P, Xu G, Zhao D, Lin X, Qin Y, Yu H, Zhang X, Zhang W, Huang L. Neonatal hand, foot, and mouth disease due to coxsackievirus A6 in Shanghai. BMC Pediatr 2020; 20:364. [PMID: 32741368 PMCID: PMC7397588 DOI: 10.1186/s12887-020-02262-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Evidence of hand, foot, and mouth disease (HFMD) in neonates is limited. The aim of this study was to evaluate the clinical symptoms, pathogens, possible transmission routes, and prognosis of neonatal HFMD in Shanghai. METHODS This was a case-control study based on the HFMD registry surveillance system. All neonates and infected family members were enrolled between 2016 and 2017 in Shanghai. Neonates with HFMD were followed for at least half a year. Detailed questionnaires, medical history, and physical examination were recorded. Routine blood examination, liver and renal function, immunophenotypes of peripheral blood lymphocytes (CD3, CD4, and CD8 T-cells; NK cells), immunoglobulin (Ig) M, IgG, and IgA, and cytokine interleukin (IL-1β, IL-2R, IL-6, IL-8, IL-10, and TNF-α) levels were measured. All rectal swab specimens were collected and genotyped for enterovirus, and phylogenetic analysis based on the VP1 sequences of coxsackievirus A6 (CV-A6) was performed to investigate molecular and evolutionary characteristics. T-test or nonparametric test was used to evaluate the differences. Logistic analysis was applied to calculate the risk of clinical manifestations in the group of HFMD neonates and their paired siblings. RESULTS There were 16 neonates among the 12,608 diagnosed patients with HFMD, accounting for 0.13%. All neonatal infections were transmitted by other members of the family, mainly the elder siblings, and were caused by CV-A6. CV-A6 was the emerging and predominant causative agent of HFMD in Shanghai. None of the neonates with HFMD experienced fever, onychomadesis, or severe complications. However, two elder sibling patients showed lethargy, and one developed hypoperfusion. In the elder siblings with HFMD, the proportion of white blood cells was generally higher than in neonates with HFMD. The immunologic function of the neonates with HFMD was basically normal. The levels of inflammatory markers were higher in both neonates and elder siblings with HFMD compared to age-matched controls. The clinical symptoms receded about 1 week after onset. None of the neonates had sequelae. CONCLUSIONS In our study, CV-A6 infection in neonates was benign, but had the character of family clustering. Due to the two-child policy in China, elder siblings may be the main route of HFMD transmission.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pediatric Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huajun Li
- Department of Pediatric Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Peng Qiao
- Department of Infectious Disease Control, Yangpu District Centers for Disease Control and Prevention, Shanghai, 200093, China
| | - Guofeng Xu
- Department of Pediatric Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Dongying Zhao
- Department of Neonatology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoyan Lin
- Department of Pediatric Internal Medicine, Hangzhou Children's Hospital, Hangzhou, 310000, Zhejiang Province, China
| | - Yu Qin
- Department of Pediatric Internal Medicine, Xingtai People's Hospital, Xingtai, 054001, Hebei Province, China
| | - Huiju Yu
- Department of Pediatric Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wanju Zhang
- Pathogen Diagnosis and Biosafety Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Lisu Huang
- Department of Pediatric Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
8
|
Li J, Wang X, Cai J, Ge Y, Wang C, Qiu Y, Xia A, Zeng M. Non-polio enterovirus infections in children with central nervous system disorders in Shanghai, 2016-2018: Serotypes and clinical characteristics. J Clin Virol 2020; 129:104516. [PMID: 32585621 DOI: 10.1016/j.jcv.2020.104516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-polio enrerovirus causes a wide spectrum of neurologic syndromes. The epidemiological and clinical profiles of non-polio enrerovirus-associated central nervous system infections vary by regions and over year. OBJECTIVES This study aimed to understand the prevalence, serotypes and clinical characteristics of enterovirus-associated aseptic meningitis, encephalitis and meningo-encephalitis in children in Shanghai during 2016-2018. METHODS We collected the clinical data and the cerebrospinal fluid specimens from the pediatric patients with aseptic meningitis, encephalitis and meningo-encephalitis during 2016-2018. The nested RT-PCR and sequencing were performed to identify enterovirus and serotypes. RESULTS A total of 424 patients were included in this study and their non-duplicated cerebrospinal fluid specimens were collected during the acute stage of illness. Based on PCR assay, enterovirus was detected in 272 (64.15 %) patients, of whom, the ratio of male to female subjects was 1.99, and the mean age was 5.71 ± 3.55 years (range: 0.03-16 years). There were 17 serotypes identified. Echovirus 30 (24.63 %), Coxsackievirus A10 (20.96 %), Coxsackievirus A6 (18.01 %) accounted for 63.6 %, followed by Coxsackievirus B5 (7.72 %), Echovirus 6 (5.88 %), and other serotypes (22.8 %). Of the 10 (3.68 %) critically severe patients, all had refractory seizure, 8 required mechanical ventilation, 7 survivors had recurrent attacks of epilepsy and 3 abandoned treatment; Coxsackievirus A10, Echovirus 9, Coxsackievirus A2, Coxsackievirus A6 and Echovirus 6 were identified. CONCLUSIONS Non-polio enterovirus is the major pathogen causing aseptic meningitis, encephalitis and meningo-encephalitis in Chinese children and can cause life-threatening encephalitis and severe sequelae.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Xiangshi Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Jiehao Cai
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Yanling Ge
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Chuning Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Yue Qiu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Aimei Xia
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
9
|
Wang Y, Zhao H, Ou R, Zhu H, Gan L, Zeng Z, Yuan R, Yu H, Ye M. Epidemiological and clinical characteristics of severe hand-foot-and-mouth disease (HFMD) among children: a 6-year population-based study. BMC Public Health 2020; 20:801. [PMID: 32460823 PMCID: PMC7254654 DOI: 10.1186/s12889-020-08961-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
Background Hand-foot-and-mouth disease (HFMD) is considered to be self-limited, however, severe HFMD is a deadly threat for children worldwide, therefore, it is essential to define the clinical and epidemiologic characteristics of children with severe HFMD and identify the risk factors of death. Methods Between 2013 and 2018, children who diagnosed with severe HFMD from Chongqing, China were enrolled in this population-based study. A total of 459 severe HFMD children cases were identified during the study period, including 415 survivors and 44 fatal cases. Demographic, geographical, epidemiological and clinical data of the cases were acquired and analyzed. Results Risk factors of the death because of severe HFMD children included female, aged 1 ~ 3 years, enterovirus 71 infection, falling ill in winter, more than one children in home, being taken care of by grandparents, the caregivers’ education not more than 9 years, having fever more than 3 days, consciousness disorders, general weakness, vomiting, general weakness, abnormal pupillary light reflex, repeated cough, tachypnea, moist rales, white frothy sputum, pink frothy sputum, and cyanosis on lips or the whole body, tachycardia, arrhythmia, cold limbs, pale complexion, weakened pulse. (all p < 0.05). Spatial-temporal analysis detected high-value clusters, the most likely cluster located at rural countries in the northern parts of Chongqing, from January, 2015 to July, 2017. (p < 0.01). Besides, some urban districts were also found high incidence of severe HFMD cases according to the incidence maps. Conclusions The detection of clinical risk factors and the temporal, spatial and socio-demographic distribution epidemiological characteristics of severe HFMD contribute to the timely diagnosis and intervention, the results of this study can be the reference of further clinical and public health practice.
Collapse
Affiliation(s)
- Yanhao Wang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, No. 8, Changjiang 2nd Road, Chongqing, 400042, Yuzhong District, China
| | - Rong Ou
- Library, Chongqing Medical University, Chongqing, 400016, China
| | - Hua Zhu
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Lidan Gan
- Pediatric College, Chongqing Medical University, Chongqing, 400014, China
| | - Zihuan Zeng
- College of Nursing, Chongqing Medical University, Chongqing, 400016, China
| | - Ruizhu Yuan
- College of Nursing, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Yu
- College of Nursing, Chongqing Medical University, Chongqing, 400016, China
| | - Mengliang Ye
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Zhao TS, Du J, Sun DP, Zhu QR, Chen LY, Ye C, Wang S, Liu YQ, Cui F, Lu QB. A review and meta-analysis of the epidemiology and clinical presentation of coxsackievirus A6 causing hand-foot-mouth disease in China and global implications. Rev Med Virol 2019; 30:e2087. [PMID: 31811676 DOI: 10.1002/rmv.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
Coxsackievirus A6 (CV-A6) has been associated with increasingly occurred sporadic hand-foot-mouth disease (HFMD) cases and outbreak events in many countries. In order to understand epidemiological characteristics of CV-A6, we collected the information describing HFMD caused by CV-A6 to describe the detection rate, severe rate and onychomadesis rate, which is defined as one or more nails defluvium, caused by CV-A6 from 2007 to 2017. The results showed that there was an outbreak of CV-A6 every other year, and overall trend of the epidemic of CA6-associated HFMD was increasing in China. The detection rate of CV-A6 in other countries was 32.0% (95% CI: 25.0%~40.0%) before 2013 and 28.0% (95% CI: 20.0%~36.0%) after 2013, respectively. Although the severe rate of HFMD caused by CV-A6 was low (0.10%, 95% CI: 0.01%~0.20%), CV-A6 can cause a high incidence of onychomadesis (28.0%, 95%CI: 21.9%-34.3%). Thus, it would be worthwhile to research and develop an effective multivalent vaccine for CV-A6 to achieve a more powerful prevention of HMFD.
Collapse
Affiliation(s)
- Tian-Shuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Da-Peng Sun
- Institute for Viral Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Quan-Rong Zhu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Lin-Yi Chen
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Chen Ye
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Li J, Zhang X, Wang L, Xu C, Xiao G, Wang R, Zheng F, Wang F. Spatial-temporal heterogeneity of hand, foot and mouth disease and impact of meteorological factors in arid/ semi-arid regions: a case study in Ningxia, China. BMC Public Health 2019; 19:1482. [PMID: 31703659 PMCID: PMC6839228 DOI: 10.1186/s12889-019-7758-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/02/2019] [Indexed: 01/08/2023] Open
Abstract
Background The incidence of hand, foot and mouth disease (HFMD) varies over space and time and this variability is related to climate and social-economic factors. Majority of studies on HFMD were carried out in humid regions while few have focused on the disease in arid/semi-arid regions, more research in such climates would potentially make the mechanism of HFMD transmission clearer under different climate conditions. Methods In this paper, we explore spatial-temporal distribution of HFMD in Ningxia province, which has an arid/semi-arid climate in northwest China. We first employed a Bayesian space-time hierarchy model (BSTHM) to assess the spatial-temporal heterogeneity of the HFMD cases and its relationship with meteorological factors in Ningxia from 2009 to 2013, then used a novel spatial statistical software package GeoDetector to test the spatial-temporal heterogeneity of HFMD risk. Results The results showed that the spatial relative risks in northern part of Ningxia were higher than those in the south. The highest temporal risk of HFMD incidence was in fall season, with a secondary peak in spring. Meteorological factors, such as average temperature, relative humidity, and wind speed played significant roles in the spatial-temporal distribution of HFMD risk. Conclusions The study provide valuable information on HFMD distribution in arid/semi-arid areas in northwest China and facilitate understanding of the concentration of HFMD.
Collapse
Affiliation(s)
- Jie Li
- Department of Resources and Environment, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environmental Regulation in Arid Region, Ningxia University, Yinchuan, 750021, China
| | - Xiangxue Zhang
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.,State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Beijing, 100101, China
| | - Li Wang
- College of Environment and Planning, Henan University, KaiFeng, 475001, China.,Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kai Feng, 475001, China
| | - Chengdong Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Beijing, 100101, China.
| | - Gexin Xiao
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Ran Wang
- Department of Resources and Environment, Ningxia University, Yinchuan, 750021, China
| | - Fang Zheng
- Department of Resources and Environment, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environmental Regulation in Arid Region, Ningxia University, Yinchuan, 750021, China
| | - Fang Wang
- Department of Resources and Environment, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environmental Regulation in Arid Region, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
12
|
Fu X, Wan Z, Li Y, Hu Y, Jin X, Zhang C. National Epidemiology and Evolutionary History of Four Hand, Foot and Mouth Disease-Related Enteroviruses in China from 2008 to 2016. Virol Sin 2019; 35:21-33. [PMID: 31664644 PMCID: PMC7035399 DOI: 10.1007/s12250-019-00169-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a major public health concern in China. The most predominant enteroviruses that cause HFMD have traditionally been attributed to enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16). Since its first large outbreak in 2008, the dominant HFMD pathogens are constantly changing. In 2013 and 2015, CVA6 exceeded both EVA71 and CVA16 to become the leading cause of HFMD in some provinces. However, there still lacks a comprehensive overview on the molecular epidemiology and evolution of HFMD-related enteroviruses at the national level. In this study, we performed systematic epidemiological analyses of HFMD-related enteroviruses using the data of 64 published papers that met the inclusion criteria, and conducted phylogenetic analyses based on 12,080 partial VP1 sequences identified in China before 31st June 2018. We found that EVA71 prevalence has decreased sharply but other enteroviruses have increased rapidly from 2008 to 2016 and that one subtype of each enterovirus is represented during the epidemic. In addition, four genotypes EVA71_C4, CVA16_B1, CVA6_D and CVA10_C are the most predominant enterovirus strains and collectively they cause over 90% of all HFMD cases in China according to the phylogenetic trees using representative partial VP1 sequences. These four major enterovirus genotypes have different geographical distributions, and they may co-circulate with other genotypes and serotypes. These results suggest that more molecular epidemiological studies should be performed on several enteroviruses simultaneously, and such information should have implications for virological surveillance, disease management, vaccine development and policy-making on the prevention and control of HFMD.
Collapse
Affiliation(s)
- Xuemin Fu
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, 225300, China
| | - Yanpeng Li
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yihong Hu
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chiyu Zhang
- Pathogen Discovery and Big Data Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
13
|
Gao C, Wu B, Yu S, Peng F, Lan G, Guo Y, Peng L. Satisfactory usage of kidneys from pediatric donors with severe hand foot mouth disease. Pediatr Transplant 2019; 23:e13386. [PMID: 30884087 DOI: 10.1111/petr.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
No studies have reported making use of kidneys from pediatric donors with severe HFMD. Here, we retrospectively analyzed the feasibility and clinical effect of six cases of kidney transplantation from four pediatric donors with severe HFMD in our center between January 2014 and December 2016. The donors' age ranged from 6 months to 3 years and 11 months. The recipients' age ranged from 18 to 41 years. Single kidney transplantation was performed in four recipients, and dual splitting kidney transplantation and en bloc kidney transplantation were performed in two recipients, respectively. During the 1.5-4 years follow-up, all recipients maintained normal kidney allograft function except for one recipient whose allograft was removed due to the allograft artery thrombosis. The survival rates of recipient and allograft were 100% and 83.3%, respectively. None of the six recipients showed any symptoms associated with HFMD. In conclusion, it is feasible to perform kidney transplantation from pediatric donors with severe HFMD to adult recipients with immunity to the pathogens. The clinical effect is satisfactory.
Collapse
Affiliation(s)
- Chen Gao
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bichen Wu
- Department of Respiratory, Hunan Children Hospital, Changsha, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenghua Peng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gongbin Lan
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Guo
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longkai Peng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Bian L, Gao F, Mao Q, Sun S, Wu X, Liu S, Yang X, Liang Z. Hand, foot, and mouth disease associated with coxsackievirus A10: more serious than it seems. Expert Rev Anti Infect Ther 2019; 17:233-242. [PMID: 30793637 DOI: 10.1080/14787210.2019.1585242] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a common viral childhood illness, that has been a severe public health concern worldwide, particularly in the Asia-Pacific region. According to epidemiological data of HFMD during the past decade, the most prevalent causal viruses were enterovirus (EV)-A71, coxsackievirus (CV)-A16, CV-A6, and CV-A10. The public health burden of CV-A10-related diseases has been underestimated as their incidence was lower than that of EV-A71 and CV-A16 in most HFMD outbreaks. However, cases of CV-A10 infection are more severe, and its genome is more variable, which has alerted the research community worldwide. Areas covered: In this paper, studies on the epidemiology, laboratory diagnosis, clinical manifestations, molecular epidemiology, seroepidemiology, animal models of CV-A10, and vaccines and antiviral strategies against this genotype are reviewed. In addition, the genetic evolution of circulating strains was analyzed. Expert opinion: Multivalent vaccines against EV-A71, CV-A16, CV-A6, and CV-A10 should be a next-step HFMD vaccine strategy.
Collapse
Affiliation(s)
- Lianlian Bian
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China.,b Division of Hepatitis Virus Vaccines , Wuhan Institute of Biological Products Co., Ltd , Wuhan , China
| | - Fan Gao
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Qunying Mao
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Shiyang Sun
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Xing Wu
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Siyuan Liu
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| | - Xiaoming Yang
- b Division of Hepatitis Virus Vaccines , Wuhan Institute of Biological Products Co., Ltd , Wuhan , China
| | - Zhenglun Liang
- a Division of Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|