1
|
Dao DT, Coleman KK, Bui VN, Bui AN, Tran LH, Nguyen QD, Than S, Pulscher LA, Marushchak LV, Robie ER, Nguyen-Viet H, Pham PD, Christy NC, Brooks JS, Nguyen HC, Rubrum AM, Webby RJ, Gray GC. High Prevalence of Highly Pathogenic Avian Influenza: A Virus in Vietnam's Live Bird Markets. Open Forum Infect Dis 2024; 11:ofae355. [PMID: 39015351 PMCID: PMC11250224 DOI: 10.1093/ofid/ofae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Background In recent years, Vietnam has suffered multiple epizootics of influenza in poultry. Methods From 10 January 2019 to 26 April 2021, we employed a One Health influenza surveillance approach at live bird markets (LBMs) and swine farms in Northern Vietnam. When the COVID-19 pandemic permitted, each month, field teams collected oral secretion samples from poultry and pigs, animal facility bioaerosol and fecal samples, and animal worker nasal washes at 4 LBMs and 5 swine farms across 5 sites. Initially samples were screened with molecular assays followed by culture in embryonated eggs (poultry swabs) or Madin-Darby canine kidney cells (human or swine swabs). Results Many of the 3493 samples collected had either molecular or culture evidence for influenza A virus, including 314 (37.5%) of the 837 poultry oropharyngeal swabs, 144 (25.1%) of the 574 bioaerosol samples, 438 (34.9%) of the 1257 poultry fecal swab samples, and 16 (1.9%) of the 828 human nasal washes. Culturing poultry samples yielded 454 influenza A isolates, 83 of which were H5, and 70 (84.3%) of these were highly pathogenic. Additionally, a positive human sample had a H9N2 avian-like PB1 gene. In contrast, the prevalence of influenza A in the swine farms was much lower with only 6 (0.4%) of the 1700 total swine farm samples studied, having molecular evidence for influenza A virus. Conclusions This study suggests that Vietnam's LBMs continue to harbor high prevalences of avian influenza A viruses, including many highly pathogenic H5N6 strains, which will continue to threaten poultry and humans.
Collapse
Affiliation(s)
- Duy Tung Dao
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Kristen K Coleman
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Vuong N Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Anh N Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Long H Tran
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Quy D Nguyen
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Son Than
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Laura A Pulscher
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lyudmyla V Marushchak
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily R Robie
- Global Health Institute, Duke University, Durham, North Carolina, USA
| | | | - Phuc Duc Pham
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Hanoi, Vietnam
| | | | - John S Brooks
- U.S. Naval Medical Research Unit INDO PACIFIC, Singapore, Singapore
| | - Huy C Nguyen
- U.S. Naval Medical Research Unit INDO PACIFIC, Singapore, Singapore
| | - Adam M Rubrum
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Global Health, School of Public and Population Health, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Papatsiros VG, Papakonstantinou GI, Meletis E, Koutoulis K, Athanasakopoulou Z, Maragkakis G, Labronikou G, Terzidis I, Kostoulas P, Billinis C. Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece. Vet Sci 2023; 10:599. [PMID: 37888551 PMCID: PMC10610732 DOI: 10.3390/vetsci10100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Swine influenza is a highly contagious respiratory disease caused by influenza A virus infection. Pigs play an important role in the overall epidemiology of influenza because of their ability to transmit influenza viruses of avian and human origin, which plays a potential role in the emergence of zoonotic strains with pandemic potential. The aim of our study was to assess the seroprevalence of Swine Influenza Viruses (swIAVs) in commercial pig farms in Greece. A total of 1416 blood samples were collected from breeding animals (gilts and sows) and pigs aged 3 weeks to market age from 40 different swIAV vaccinated and unvaccinated commercial farrow-to-finish pig farms. For the detection of anti-SIV antibodies, sera were analyzed using an indirect ELISA kit CIVTEST SUIS INFLUENZA®, Hipra (Amer, Spain). Of the total 1416 animals tested, 498 were seropositive, indicating that the virus circulates in both vaccinated (54% seroprevalence) and unvaccinated Greek pig farms (23% seroprevalence). In addition, maternally derived antibody (MDA) levels were lower in pigs at 4 and 7 weeks of age in unvaccinated farms than in vaccinated farms. In conclusion, our results underscore the importance of vaccination as an effective tool for the prevention of swIAV infections in commercial farrow-to-finish pig farms.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (G.M.)
| | - Georgios I. Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (G.M.)
| | - Eleftherios Meletis
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Konstantinos Koutoulis
- Department of Poultry Diseases, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece;
| | - Zoi Athanasakopoulou
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (C.B.)
| | - Georgios Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (G.I.P.); (G.M.)
| | - Georgia Labronikou
- Swine Technical Support, Hipra Hellas SA, 10441 Athens, Greece; (G.L.); (I.T.)
| | - Ilias Terzidis
- Swine Technical Support, Hipra Hellas SA, 10441 Athens, Greece; (G.L.); (I.T.)
| | - Polychronis Kostoulas
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Charalambos Billinis
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (C.B.)
| |
Collapse
|
3
|
Andraud M, Hervé S, Gorin S, Barbier N, Quéguiner S, Paboeuf F, Simon G, Rose N. Evaluation of early single dose vaccination on swine influenza A virus transmission in piglets: From experimental data to mechanistic modelling. Vaccine 2023; 41:3119-3127. [PMID: 37061373 DOI: 10.1016/j.vaccine.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Swine influenza A virus (swIAV) is a major pathogen affecting pigs with a huge economic impact and potentially zoonotic. Epidemiological studies in endemically infected farms permitted to identify critical factors favoring on-farm persistence, among which maternally-derived antibodies (MDAs). Vaccination is commonly practiced in breeding herds and might be used for immunization of growing pigs at weaning. Althoughinterference between MDAs and vaccination was reported in young piglets, its impact on swIAV transmission was not yet quantified. To this aim, this study reports on a transmission experiment in piglets with or without MDAs, vaccinated with a single dose injection at four weeks of age, and challenged 17 days post-vaccination. To transpose small-scale experiments to real-life situation, estimated parameters were used in a simulation tool to assess their influence at the herd level. Based on a thorough follow-up of the infection chain during the experiment, the transmission of the swIAV challenge strain was highly dependent on the MDA status of the pigs when vaccinated. MDA-positive vaccinated animals showed a direct transmission rate 3.6-fold higher than the one obtained in vaccinated animals without MDAs, estimated to 1.2. Vaccination nevertheless reduced significantly the contribution of airborne transmission when compared with previous estimates obtained in unvaccinated animals. The integration of parameter estimates in a large-scale simulation model, representing a typical farrow-to-finish pig herd, evidenced an extended persistence of viral spread when vaccination of sows and single dose vaccination of piglets was hypothesized. When extinction was quasi-systematic at year 5 post-introduction in the absence of sow vaccination but with single dose early vaccination of piglets, the extinction probability fell down to 33% when batch-to-batch vaccination was implemented both in breeding herd and weaned piglets. These results shed light on a potential adverse effect of single dose vaccination in MDA-positive piglets, which might lead to longer persistence of the SwIAV at the herd level.
Collapse
Affiliation(s)
- M Andraud
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, France.
| | - S Hervé
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - S Gorin
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - N Barbier
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - S Quéguiner
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - F Paboeuf
- Anses, Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimentation, France
| | - G Simon
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - N Rose
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, France
| |
Collapse
|
4
|
Chauhan RP, Gordon ML. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J Vet Diagn Invest 2022; 34:177-189. [PMID: 35037523 PMCID: PMC8921814 DOI: 10.1177/10406387211068023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rapidly evolving antigenic diversity of influenza A virus (IAV) genomes in swine makes it imperative to detect emerging novel strains and track their circulation. We analyzed in our review the sequencing technologies used for subtyping and characterizing swine IAV genomes. Google Scholar, PubMed, and International Nucleotide Sequence Database Collaboration (INSDC) database searches identified 216 studies that have utilized Sanger, second-, and third-generation sequencing techniques to subtype and characterize swine IAV genomes up to 31 March 2021. Sanger dideoxy sequencing was by far the most widely used sequencing technique for generating either full-length (43.0%) or partial (31.0%) IAV genomes in swine globally; however, in the last decade, other sequencing platforms such as Illumina have emerged as serious competitors for the generation of whole-genome sequences of swine IAVs. Although partial HA and NA gene sequences were sufficient to determine swine IAV subtypes, whole-genome sequences were critical for determining reassortments and identifying unusual or less frequently occurring IAV subtypes. The combination of Sanger and second-generation sequencing technologies also greatly improved swine IAV characterization. In addition, the rapidly evolving third-generation sequencing platform, MinION, appears promising for on-site, real-time sequencing of complete swine IAV genomes. With a higher raw read accuracy, the use of the MinION could enhance the scalability of swine IAV testing in the field and strengthen the swine IAV disease outbreak response.
Collapse
Affiliation(s)
| | - Michelle L. Gordon
- Michelle L. Gordon, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Rd, Durban 4001, South Africa.
| |
Collapse
|
5
|
Moore TC, Fong J, Rosa Hernández AM, Pogreba-Brown K. CAFOs, novel influenza, and the need for One Health approaches. One Health 2021; 13:100246. [PMID: 33997233 PMCID: PMC8091921 DOI: 10.1016/j.onehlt.2021.100246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/18/2022] Open
Abstract
Concentrated animal feeding operations (CAFOs) present highly efficient means of meeting food demands. CAFOs create unique conditions that can affect the health and environment of animals and humans within and outside operations, leading to potential epidemiological concerns that scale with operational size. One such arena meriting further investigation is their possible contribution to novel influenzas. CAFOs present opportunities for cross-species transmission of influenza as demonstrated by reports of swine flu and avian influenza outbreaks. Conditions and pathways leading to novel influenza strains are complex and require varied prevention and intervention approaches. Current challenges for prevention of respiratory viruses entering or leaving swine and poultry CAFOs are multifaceted and include adherence of personal safety measures, lack of training and safety provisions for personnel, and incomplete standardized federal, state, and/or county regulation and enforcement coverage across agricultural systems. This report acknowledges that any proposed CAFO-associated influenza intervention should be cross-organizational, and no single intervention should be expected to provide full resolution. Proposed interventions affect multiple components of the One Health triad, and include seasonal human influenza immunization, PPE regulation and adherence, alternative waste management, general biosecurity standardization and an industry best practices incentive program. Due to the complexity of this problem, multiple anticipated communication, enforcement, and logistical challenges may hinder the full implementation of proposed solutions. General and operation-specific (swine and poultry) biosecurity practices may mitigate some of the risks associated with influenza virus reassortment across species. Education and advocacy can help protect workers, communities, veterinarians and consumers from CAFO-associated influenza virus. To achieve this, there must be more complete communication between CAFOs, governing agencies, health services, animal services, researchers, and consumers to better explore the potential health outcomes associated with CAFOs.
Collapse
Affiliation(s)
- Thomas C. Moore
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Joseph Fong
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Ayeisha M. Rosa Hernández
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| | - Kristen Pogreba-Brown
- The University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, USA
| |
Collapse
|
6
|
Ramesh A, Bailey ES, Ahyong V, Langelier C, Phelps M, Neff N, Sit R, Tato C, DeRisi JL, Greer AG, Gray GC. Metagenomic characterization of swine slurry in a North American swine farm operation. Sci Rep 2021; 11:16994. [PMID: 34417469 PMCID: PMC8379149 DOI: 10.1038/s41598-021-95804-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Modern day large-scale, high-density farming environments are inherently susceptible to viral outbreaks, inadvertently creating conditions that favor increased pathogen transmission and potential zoonotic spread. Metagenomic sequencing has proven to be a useful tool for characterizing the microbial burden in both people, livestock, and environmental samples. International efforts have been successful at characterizing pathogens in commercial farming environments, especially swine farms, however it is unclear whether the full extent of microbial agents have been adequately captured or is representative of farms elsewhere. To augment international efforts we performed metagenomic next-generation sequencing on nine swine slurry and three environmental samples from a United States of America (U.S.A.) farm operation, characterized the microbial composition of slurry, and identified novel viruses. We assembled a remarkable total of 1792 viral genomes, of which 554 were novel/divergent. We assembled 1637 Picobirnavirus genome segments, of which 538 are novel. In addition, we discovered 10 new viruses belonging to a novel taxon: porcine Statoviruses; which have only been previously reported in human, macaques, mouse, and cows. We assembled 3 divergent Posaviruses and 3 swine Picornaviruses. In addition to viruses described, we found other eukaryotic genera such as Entamoeba and Blastocystis, and bacterial genera such as Listeria, Treponema, Peptoclostridium and Bordetella in the slurry. Of these, two species Entamoeba histolytica and Listeria monocytogenes known to cause human disease were detected. Further, antimicrobial resistance genes such as tetracycline and MLS (macrolide, lincosamide, streptogramin) were also identified. Metagenomic surveillance in swine fecal slurry has great potential for novel and antimicrobial resistant pathogen detection.
Collapse
Affiliation(s)
- Akshaya Ramesh
- Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA.,Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Emily S Bailey
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, USA.
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Charles Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.,Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Maira Phelps
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Cristina Tato
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Annette G Greer
- Department of Bioethics and Interdisciplinary Studies, Brody School of Medicine, North Carolina Agromedicine Institute, East Carolina University, Greenville, NC, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA.,Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore.,Global Health Center, Duke Kunshan University, Kunshan, China
| |
Collapse
|
7
|
Li L, Wang K, Chen Z, Koplan JP. US-China health exchange and collaboration following COVID-19. Lancet 2021; 397:2304-2308. [PMID: 33838723 PMCID: PMC8032253 DOI: 10.1016/s0140-6736(21)00734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Strong US-China collaboration on health and medicine is a crucial element of the global effort against COVID-19. We review the history of health collaboration and exchanges between the public and private sectors in the USA and China, including the long-lasting collaboration between governmental public health agencies of the two countries. Academic and scientific exchanges should be reinvigorated and the increasing valuable role of non-profit foundations acknowledged. The shared interests of the two countries and the magnitude of the pandemic necessitate both countries to collaborate and cooperate. We provide recommendations to the two governments and the global health community to control the ongoing COVID-19 pandemic and prepare for future threats. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Liming Li
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Kean Wang
- ThinkTank Research Center for Health Development, Beijing, China
| | - Zhuo Chen
- College of Public Health, The University of Georgia, Athens, GA, USA; Centre for Health Economics, School of Economics, University of Nottingham, Ningbo, China
| | - Jeffrey P Koplan
- Emory Global Health Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Gray GC, Robie ER, Studstill CJ, Nunn CL. Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider. Viruses 2021; 13:637. [PMID: 33917745 PMCID: PMC8068197 DOI: 10.3390/v13040637] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite many recent efforts to predict and control emerging infectious disease threats to humans, we failed to anticipate the zoonotic viruses which led to pandemics in 2009 and 2020. The morbidity, mortality, and economic costs of these pandemics have been staggering. We desperately need a more targeted, cost-efficient, and sustainable strategy to detect and mitigate future zoonotic respiratory virus threats. Evidence suggests that the transition from an animal virus to a human pathogen is incremental and requires a considerable number of spillover events and considerable time before a pandemic variant emerges. This evolutionary view argues for the refocusing of public health resources on novel respiratory virus surveillance at human-animal interfaces in geographical hotspots for emerging infectious diseases. Where human-animal interface surveillance is not possible, a secondary high-yield, cost-efficient strategy is to conduct novel respiratory virus surveillance among pneumonia patients in these same hotspots. When novel pathogens are discovered, they must be quickly assessed for their human risk and, if indicated, mitigation strategies initiated. In this review, we discuss the most common respiratory virus threats, current efforts at early emerging pathogen detection, and propose and defend new molecular pathogen discovery strategies with the goal of preempting future pandemics.
Collapse
Affiliation(s)
- Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore 169856, Singapore
- Global Health Center, Duke Kunshan University, Kunshan 215316, China
| | - Emily R. Robie
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Caleb J. Studstill
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Charles L. Nunn
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Carnovale F, Jin X, Arney D, Descovich K, Guo W, Shi B, Phillips CJC. Chinese Public Attitudes towards, and Knowledge of, Animal Welfare. Animals (Basel) 2021; 11:855. [PMID: 33803067 PMCID: PMC8003013 DOI: 10.3390/ani11030855] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 03/14/2021] [Indexed: 11/21/2022] Open
Abstract
Food-producing animals make up the majority of animals that humans manage globally, and China has been a major producer and exporter of animal products since the late 1990s. The opinions of the population in China regarding animal welfare are not as well understood as those in Europe. In China, animal welfare as a societal concern is still at an early stage of development. This survey of Chinese attitudes aimed to understand consumer knowledge of and behaviour towards animal welfare, and to determine whether harnessing consumer interests may be a potential future influence on the development of high-welfare agricultural production. Most participants were not aware of the meaning of animal welfare, but the number of those that were aware was higher than reported previously. The welfare of wild animals was rated particularly important compared to other animals. The links between welfare and the taste and/or safety of food were considered to be important, and Chinese consumers reported a willingness to pay more for food from animals produced in good welfare conditions, although the quality of the food was considered more important than the animal suffering. A large majority of the respondents reported that there should be legislation protecting animals and certification of welfare on farms, that animals on farms should be provided with enjoyable experiences and that transportation times should be minimised. Furthermore, most respondents reported that animals should be stunned before slaughter. We conclude that animal welfare is of importance to the Chinese consumer, in particular because of its connection to food quality.
Collapse
Affiliation(s)
- Francesca Carnovale
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (X.J.); (W.G.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia;
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia;
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (X.J.); (W.G.)
| | - David Arney
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia;
| | - Kris Descovich
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia;
| | - Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (X.J.); (W.G.)
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (X.J.); (W.G.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
| |
Collapse
|
10
|
An evaluation of the InDevR FluChip-8G insight microarray assay in characterizing influenza a viruses. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2021; 7:8. [PMID: 33731192 PMCID: PMC7967100 DOI: 10.1186/s40794-021-00133-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Influenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.
Collapse
|
11
|
Gray GC, Abdelgadir A. While We Endure This Pandemic, What New Respiratory Virus Threats Are We Missing? Open Forum Infect Dis 2021; 8:ofab078. [PMID: 33778092 PMCID: PMC7928563 DOI: 10.1093/ofid/ofab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we review recent human respiratory virus epidemics, their zoonotic nature, and our current inability to identify future prepandemic threats. We propose a cost-efficient, One Health surveillance strategy that will be more efficient and more sustainable than previous efforts.
Collapse
Affiliation(s)
- Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Global Health Research Center, Duke-Kunshan University, Kunshan, China.,Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Anfal Abdelgadir
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Specimen Types, Collection, and Transport for Influenza A Viruses of Swine. Methods Mol Biol 2021. [PMID: 32170694 DOI: 10.1007/978-1-0716-0346-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Detection of influenza A virus (IAV), viral antigen, nucleic acid, or antibodies in swine is dependent upon the collection of the appropriate specimen type, the quality of the specimen, and the proper storage and handling of the specimen. The diagnostic tests to be performed should be considered prior to specimen collection. Sera are acceptable specimens for ELISA or hemagglutination inhibition tests but not for real-time RT-PCR. Likewise, swabs, wipes, and/or tissues are acceptable for real-time RT-PCR and virus isolation. The specimen type will also depend on the age of the swine being tested; oral fluids can be successfully collected from weaned pigs usually greater than 3 weeks of age, whereas nasal or oral swabs should be collected from suckling pigs in the first weeks of life. The sensitivity of the RT-PCR test is such that IAV can be detected in not only the pig itself but also on surfaces that the pig contacts and in the air. This chapter will outline the collection of different specimen types and procedures for proper specimen handling.
Collapse
|
13
|
Borkenhagen LK, Wang GL, Simmons RA, Bi ZQ, Lu B, Wang XJ, Wang CX, Chen SH, Song SX, Li M, Zhao T, Wu MN, Park LP, Cao WC, Ma MJ, Gray GC. High Risk of Influenza Virus Infection Among Swine Workers: Examining a Dynamic Cohort in China. Clin Infect Dis 2020; 71:622-629. [PMID: 31504322 PMCID: PMC7108185 DOI: 10.1093/cid/ciz865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND China is thought to be a hotspot for zoonotic influenza virus emergence, yet there have been few prospective studies examining the occupational risks of such infections. METHODS We present the first 2 years of data collected from a 5-year, prospective, cohort study of swine-exposed and -unexposed participants at 6 swine farms in China. We conducted serological and virological surveillance to examine evidence for swine influenza A virus infection in humans. RESULTS Of the 658 participants (521 swine-exposed and 137 swine-unexposed), 207 (31.5%) seroconverted against at least 1 swine influenza virus subtype (swine H1N1 or H3N2). Swine-exposed participants' microneutralization titers, especially those enrolled at confined animal feeding operations (CAFOs), were higher against the swine H1N1 virus than were other participants at 12 and 24 months. Despite elevated titers, among the 187 study subjects for whom we had complete follow-up, participants working at swine CAFOs had significantly greater odds of seroconverting against both the swine H1N1 (odds ratio [OR] 19.16, 95% confidence interval [CI] 3.55-358.65) and swine H3N2 (OR 2.97, 95% CI 1.16-8.01) viruses, compared to unexposed and non-CAFO swine workers with less intense swine exposure. CONCLUSIONS While some of the observed increased risk against swine viruses may have been explained by exposure to human influenza strains, study data suggest that even with elevated preexisting antibodies, swine-exposed workers were at high risk of infection with enzootic swine influenza A viruses.
Collapse
Affiliation(s)
- Laura K Borkenhagen
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, North Carolina
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Ryan A Simmons
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, North Carolina
| | - Zhen-Qiang Bi
- Shandong Provincial Center for Disease Control and Prevention
- Shandong Provincial Key Laboratory of Disease Control and Prevention, Jinan
| | - Bing Lu
- Wuxi Center for Disease Control and Prevention, Jinan
| | - Xian-Jun Wang
- Shandong Provincial Center for Disease Control and Prevention
- Shandong Provincial Key Laboratory of Disease Control and Prevention, Jinan
| | - Chuang-Xin Wang
- Licheng District Center for Disease Control and Prevention, Jinan
| | - Shan-Hui Chen
- Wuxi Center for Disease Control and Prevention, Jinan
| | - Shao-Xia Song
- Shandong Provincial Center for Disease Control and Prevention
- Shandong Provincial Key Laboratory of Disease Control and Prevention, Jinan
| | - Min Li
- Licheng District Center for Disease Control and Prevention, Jinan
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Meng-Na Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Lawrence P Park
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, North Carolina
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, North Carolina
- Global Health Research Center, Duke Kunshan University, China
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
14
|
Anderson BD, Yondon M, Bailey ES, Duman EK, Simmons RA, Greer AG, Gray GC. Environmental bioaerosol surveillance as an early warning system for pathogen detection in North Carolina swine farms: A pilot study. Transbound Emerg Dis 2020; 68:361-367. [PMID: 32535997 DOI: 10.1111/tbed.13683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 02/02/2023]
Abstract
Disease outbreaks can readily threaten swine production operations sometimes resulting in large economic losses. Pathogen surveillance in swine farms can be an effective approach for the early identification of new disease threats and the mitigation of transmission before broad dissemination among a herd occurs. Non-invasive environmental bioaerosol sampling could be an effective and affordable approach for conducting routine surveillance in farms, providing an additional tool for farmers to protect their animals and themselves from new disease threats. In this pilot study, we implemented a non-invasive, prospective bioaerosol sampling strategy in a swine farm located in the United States to detect economically important swine pathogens. Farm personnel collected air samples from two swine barns for 23 weeks between July and December 2017. Samples were then tested within 24 hr of collection by molecular techniques for a number of economically important swine pathogens. Of the 86 bioaerosol samples collected, 4 (4.7%) were positive for influenza A, 1 (1.2%) was positive for influenza D, 13 (15.1%) were positive for PCV2, and 13 (15.1%) were positive for PCV3. Overall, this pilot study showed that our bioaerosol surveillance strategy was feasible and able to generate data that could be quickly disseminated back to the farm stakeholders (within 24 hr). We were also able to identify PCV2, PCV3 and influenza A virus in air samples as clinical disease became apparent in the pigs, strongly suggesting that bioaerosol sampling can be used as an effective non-invasive surveillance approach for the detection of multiple pathogens in this and likely other animal production environments.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA.,Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China.,North Carolina Agromedicine Institute, Greenville, NC, USA
| | - Myagmarsukh Yondon
- Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Emily S Bailey
- Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Ege K Duman
- Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Ryan A Simmons
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Annette G Greer
- North Carolina Agromedicine Institute, Greenville, NC, USA.,Department of Bioethics and Interdisciplinary Studies, East Carolina University, Greenville, NC, USA
| | - Gregory C Gray
- Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
A feasibility study of conducting surveillance for swine pathogens in slurry from North Carolina swine farms. Sci Rep 2020; 10:10059. [PMID: 32572119 PMCID: PMC7308328 DOI: 10.1038/s41598-020-67313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/21/2020] [Indexed: 12/02/2022] Open
Abstract
Despite close contact between humans and animals on large scale farms, little to no infectious disease research is conducted at this interface. Our goal in this preliminary study was to explore if we could detect swine pathogens using a non-invasive, indirect approach through the study of swine slurry. From April to November 2018, 105 swine slurry samples were collected by farm personnel from waste pits at two sites on a swine farm in North Carolina. These samples were tested for DNA and RNA viruses using a real-time PCR and RT-PCR. Statistical analyses were performed to measure association between virus positive outcomes and potential predictors such as date of sample collection, weight of pigs, number of pigs in barn, temperature, and weather conditions. Overall, 86% of the samples had evidence of at least one of the targeted viruses. Ultimately, this study demonstrated the utility of conducting noninvasive surveillance for swine pathogens through the study of swine slurry. Such swine slurry surveillance may supplant the need to handle, restrain, and collect specimens directly from pigs thus providing an approach to emerging pathogen detection that appeals to the swine industry.
Collapse
|
16
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
17
|
|
18
|
Zheng G, Lu Q, Wang F, Xing G, Feng H, Jin Q, Guo Z, Teng M, Hao H, Li D, Wei X, Zhang Y, Deng R, Zhang G. Phylogenetic analysis of porcine circovirus type 2 (PCV2) between 2015 and 2018 in Henan Province, China. BMC Vet Res 2020; 16:6. [PMID: 31910824 PMCID: PMC6947828 DOI: 10.1186/s12917-019-2193-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is the pathogen of porcine circovirus associated diseases (PCVAD) and one of the main pathogens in the global pig industry, which has brought huge economic losses to the pig industry. In recent years, there has been limited research on the prevalence of PCV2 in Henan Province. This study investigated the genotype and evolution of PCV2 in this area. Results We collected 117 clinical samples from different regions of Henan Province from 2015 to 2018. Here, we found that the PCV2 infection rate of PCV2 was 62.4%. Thirty-seven positive clinical samples were selected to amplify the complete genome of PCV2 and were sequenced. Based on the phylogenetic analysis of PCV2 ORF2 and complete genome, it was found that the 37 newly detected strains belonged to PCV2a (3 of 37), PCV2b (21 of 37) and PCV2d (13 of 37), indicating the predominant prevalence of PCV2b and PCV2d strains. In addition, we compared the amino acid sequences and found several amino acid mutation sites among different genotypes. Furthermore, the results of selective pressure analysis showed that there were 5 positive selection sites. Conclusions This study indicated the genetic diversity, molecular epidemiology and evolution of PCV2 genotypes in Henan Province during 2015–2018.
Collapse
Affiliation(s)
- Guanmin Zheng
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Fangyu Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Hua Feng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Huifang Hao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Dongliang Li
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Xin Wei
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Yuhang Zhang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China
| | - Gaiping Zhang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, 450002, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|