1
|
Feng J, Sun C, Li S, Ye L. Advancing the dynamic mechanical analysis of organic semiconductor materials. Chem Commun (Camb) 2024; 60:10795-10804. [PMID: 39248000 DOI: 10.1039/d4cc03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Dynamic mechanical analysis (DMA) is a powerful technique for characterizing the mechanical properties of a wide range of materials. However, the importance of DMA in studying organic/polymer semiconductors has not been fully appreciated. In this Highlight, we explore recent advancements in the use of DMA in understanding the viscoelastic and mechanical properties and thermal transitions of organic semiconductor materials. In particular, the insights gained from DMA can serve as new guides for the device optimisation of organic solar cells towards stable operation. Furthermore, we present key findings, challenges, and future directions to advance the application of DMA in organic electronics.
Collapse
Affiliation(s)
- Jintao Feng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | - Chunlong Sun
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | - Saimeng Li
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Chen PH, Shimizu H, Matsuda M, Higashihara T, Lin YC. Improved Mobility-Stretchability Properties of Diketopyrrolopyrrole-Based Conjugated Polymers with Diastereomeric Conjugation Break Spacers. Macromol Rapid Commun 2024; 45:e2400331. [PMID: 38875278 DOI: 10.1002/marc.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Stretchable conjugated polymers with conjugation break spacers (CBSs) synthesized via random terpolymerization have gained considerable attention because of their efficacy in modulating mobility and stretchability. This study incorporates a series of dianhydrohexitol diastereomers of isosorbide (ISB) and isomannide (IMN) units into the diketopyrrolopyrrole-based backbone as CBSs. It is found that the distorted CBS (IMN) improves the mobility-stretchability properties of the polymer with a highly coplanar backbone, whereas the extended CBS (ISB) enhances those of the polymer with a noncoplanar backbone. Additionally, the different configurations of ISB and IMN sufficiently affect the solid-state packing, aggregation capabilities, crystallographic parameters, and mobility-stretchability properties of the polymer. The IMN-based polymers exhibit the highest mobility of 1.69 cm2 V-1 s-1 and crystallinity retentions of (85.7, 78.6)% under 20% and 60% strains, outperforming their ISB-based or unmodified counterparts. The improvement is correlated with a robust aggregation capability. Furthermore, the CBS content affects aggregation behavior, notably affecting mobility. This result indicates that incorporating CBSs into the polymer can enhance backbone flexibility via movement and rotation of the CBS without affecting the crystalline regions.
Collapse
Affiliation(s)
- Pin-Hong Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Hiroya Shimizu
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Matsuda M, Lin CY, Enomoto K, Lin YC, Chen WC, Higashihara T. Impact of the Heteroatoms on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kazushi Enomoto
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
Park JS, Kim GU, Lee S, Lee JW, Li S, Lee JY, Kim BJ. Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201623. [PMID: 35765775 DOI: 10.1002/adma.202201623] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in the power conversion efficiency (PCE) of organic solar cells (OSCs) have greatly enhanced their commercial viability. Considering the technical standards (e.g., mechanical robustness) required for wearable electronics, which are promising application platforms for OSCs, the development of fully stretchable OSCs (f-SOSCs) should be accelerated. Here, a comprehensive overview of f-SOSCs, which are aimed to reliably operate under various forms of mechanical stress, including bending and multidirectional stretching, is provided. First, the mechanical requirements of f-SOSCs, in terms of tensile and cohesion/adhesion properties, are summarized along with the experimental methods to evaluate those properties. Second, essential studies to make each layer of f-SOSCs stretchable and efficient are discussed, emphasizing strategies to simultaneously enhance the photovoltaic and mechanical properties of the active layer, ranging from material design to fabrication control. Key improvements to the other components/layers (i.e., substrate, electrodes, and interlayers) are also covered. Lastly, considering that f-SOSC research is in its infancy, the current challenges and future prospects are explored.
Collapse
Affiliation(s)
- Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Tayu M, Rahmanudin A, Perry GJP, Khan RU, Tate DJ, Marcial-Hernandez R, Shen Y, Dierking I, Janpatompong Y, Aphichatpanichakul S, Zamhuri A, Victoria-Yrezabal I, Turner ML, Procter DJ. Modular synthesis of unsymmetrical [1]benzothieno[3,2- b][1]benzothiophene molecular semiconductors for organic transistors. Chem Sci 2022; 13:421-429. [PMID: 35126974 PMCID: PMC8730195 DOI: 10.1039/d1sc05070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
A modular approach to underexplored, unsymmetrical [1]benzothieno[3,2-b][1]benzothiophene (BTBT) scaffolds delivers a library of BTBT materials from readily available coupling partners by combining a transition-metal free Pummerer CH-CH-type cross-coupling and a Newman-Kwart reaction. This effective approach to unsymmetrical BTBT materials has allowed their properties to be studied. In particular, tuning the functional groups on the BTBT scaffold allows the solid-state assembly and molecular orbital energy levels to be modulated. Investigation of the charge transport properties of BTBT-containing small-molecule:polymer blends revealed the importance of molecular ordering during phase segregation and matching the highest occupied molecular orbital energy level with that of the semiconducting polymer binder, polyindacenodithiophene-benzothiadiazole (PIDTBT). The hole mobilities extracted from transistors fabricated using blends of PIDTBT with phenyl or methoxy functionalized unsymmetrical BTBTs were double those measured for devices fabricated using pristine PIDTBT. This study underscores the value of the synthetic methodology in providing a platform from which to study structure-property relationships in an underrepresented family of unsymmetrical BTBT molecular semiconductors.
Collapse
Affiliation(s)
- Masanori Tayu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Aiman Rahmanudin
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gregory J P Perry
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Raja U Khan
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel J Tate
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Yuan Shen
- Department of Physics & Astronomy, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ingo Dierking
- Department of Physics & Astronomy, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | | | - Adibah Zamhuri
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Michael L Turner
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J Procter
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
6
|
Karunathilaka D, Rajapakse RMG, Hardin AE, Sexton TM, Sparks NE, Mosely JJ, Rheingold AL, Hammer NI, Tschumper GS, Watkins DL. Correlation of solid-state order to optoelectronic behavior in heterocyclic oligomers. CrystEngComm 2022. [DOI: 10.1039/d2ce00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we address a longstanding challenge in the field of optoelectronic materials by evaluating the molecular and solid-state arrangements of heterocyclic oligomers and correlating their crystal structures to their optical properties.
Collapse
Affiliation(s)
- Dilan Karunathilaka
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - R. M. G. Rajapakse
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - April E. Hardin
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Thomas More Sexton
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Nicholas E. Sparks
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Jacquelyn J. Mosely
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| |
Collapse
|
7
|
Yuan Y, Zhao F, Ding Y, Zhang G, Wang X, Qiu L. Asymmetric Hybrid Siloxane Side Chains for Enhanced Mobility and Mechanical Properties of Diketopyrrolopyrrole-Based Polymers. Macromol Rapid Commun 2021; 43:e2100636. [PMID: 34847277 DOI: 10.1002/marc.202100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Indexed: 01/03/2023]
Abstract
High performance organic field effect transistor devices based on intrinsically scalable materials are of great significance in wearable electronics. In this work, an exclusive approach is reported to rationale the carrier mobility and stretchability of the conjugate polymers (CPs) by modifying the symmetry of the side chains species. Semiconductor CPs with symmetrical alkyl side chains (P(C-C)), symmetrical siloxane side chains (P(Si-Si)), and asymmetrical silicon-carbon side chains (P(C-Si)) are synthesized to investigate the influence of these side chains on the carrier mobility and mechanical behavior. The result shows that silicon-carbon asymmetric side chains can modulate the aggregation degree of polymer chains with a coherence length of 134 Å and maintain the mobility at 0.90 cm2 V-1 s-1 . P(C-Si) exhibits superior tensile properties that even elongation up to 100% the value of mobility retains a majority properties. The main reason is that the lowest coherence length of P(C-Si) polymer leads to an increased proportion of amorphous zones in its polymer film, which efficiently dissipates mechanical stresses. This study provides an efficient strategy for the design and synthesis of the CPs with high carrier transport properties-mechanical stability.
Collapse
Affiliation(s)
- Ye Yuan
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
8
|
Callaway CP, Bombile JH, Mask W, Ryno SM, Risko C. Thermomechanical enhancement of
DPP‐4T
through purposeful
π‐conjugation
disruption. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Connor P. Callaway
- Department of Chemistry and Center for Applied Energy Research University of Kentucky Lexington Kentucky USA
| | - Joel H. Bombile
- Department of Chemistry and Center for Applied Energy Research University of Kentucky Lexington Kentucky USA
| | - Walker Mask
- Department of Chemistry and Center for Applied Energy Research University of Kentucky Lexington Kentucky USA
| | - Sean M. Ryno
- Department of Chemistry and Center for Applied Energy Research University of Kentucky Lexington Kentucky USA
| | - Chad Risko
- Department of Chemistry and Center for Applied Energy Research University of Kentucky Lexington Kentucky USA
| |
Collapse
|
9
|
Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101469. [PMID: 34297433 DOI: 10.1002/adma.202101469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.
Collapse
Affiliation(s)
- Emilie Dauzon
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | | | - Cedric Plesse
- LPPI, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Qian Z, Galuska LA, Ma G, McNutt WW, Zhang S, Mei J, Gu X. Backbone flexibility on conjugated polymer's crystallization behavior and thin film mechanical stability. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhiyuan Qian
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Luke A. Galuska
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Guorong Ma
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - William W. McNutt
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Song Zhang
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Jianguo Mei
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering The University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
11
|
Lin YC, Matsuda M, Chen CK, Yang WC, Chueh CC, Higashihara T, Chen WC. Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Özen B, Candau N, Temiz C, Grozema FC, Stoclet G, Plummer CJG, Frauenrath H. Semiaromatic polyamides with enhanced charge carrier mobility. Polym Chem 2021. [DOI: 10.1039/d1py01203g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties.
Collapse
Affiliation(s)
- Bilal Özen
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| | - Nicolas Candau
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| | - Cansel Temiz
- Delft University of Technology, Department of Chemical Engineering, Netherlands
| | | | - Grégory Stoclet
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, F-59000 Lille, France
| | - Christopher J. G. Plummer
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| | - Holger Frauenrath
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Aivali S, Anastasopoulos C, Andreopoulou AK, Pipertzis A, Floudas G, Kallitsis JK. A "Rigid-Flexible" Approach for Processable Perylene Diimide-Based Polymers: Influence of the Specific Architecture on the Morphological, Dielectric, Optical, and Electronic Properties. J Phys Chem B 2020; 124:5079-5090. [PMID: 32459484 DOI: 10.1021/acs.jpcb.0c02940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugation-break flexible spacers in-between π-conjugated segments were utilized herein toward processable perylene diimide (PDI)-based polymers. Aromatic-aliphatic PDI-based polymers were developed via the two-phase polyetherification of a phenol-difunctional PDI monomer and aliphatic dibromides. These polyethers showed excellent solubility and film-forming ability and deep lowest unoccupied molecular orbital (LUMO) levels (-4.0 to -3.85 eV), indicating the preservation of good electron-accepting character or characteristics, despite the non-conjugated segments. Their thermodynamic properties, local dynamics, and ionic conductivity demonstrate the suppression of PDI's inherent tendency for aggregation and crystallization, suggesting PDI-polyethers as versatile candidates for organic electronic applications. Their dynamics investigation using dielectric spectroscopy revealed weak dipole moments arising from the distortion of the planar perylene cores. Blends of the PDI-polyethers (as electron acceptors) with P3HT (as a potential electron donor component) showed UV-vis absorbances from 350 to 650 nm and a tendency of the PDI-polyethers to intertwine with rr-P3HT and restrain its high crystallization tendency.
Collapse
Affiliation(s)
- Stefania Aivali
- Department of Chemistry, University of Patras, University Campus, Rio, Patras GR26504, Greece
| | | | - Aikaterini K Andreopoulou
- Department of Chemistry, University of Patras, University Campus, Rio, Patras GR26504, Greece.,Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Platani Str., Patras GR26504, Greece
| | | | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece.,Max Planck Institute for Polymer Research, 55128 Mainz, German
| | - Joannis K Kallitsis
- Department of Chemistry, University of Patras, University Campus, Rio, Patras GR26504, Greece.,Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Platani Str., Patras GR26504, Greece
| |
Collapse
|
14
|
Wu YS, Lin YC, Hung SY, Chen CK, Chiang YC, Chueh CC, Chen WC. Investigation of the Mobility–Stretchability Relationship of Ester-Substituted Polythiophene Derivatives. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Yuan Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Mukhopadhyaya T, Wagner JS, Fan H, Katz HE. Design and Synthesis of Air-Stable p-Channel-Conjugated Polymers for High Signal-to-Drift Nitrogen Dioxide and Ammonia Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21974-21984. [PMID: 32315154 DOI: 10.1021/acsami.0c04810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of high-performance-conjugated polymer-based gas sensors involves detailed structural tailoring such that high sensitivities are achieved without compromising the stability of the fabricated devices. In this work, we systematically developed a series of diketopyrrolopyrrole (DPP)-based polymer semiconductors by modifying the polymer backbone to achieve and rationalize enhancements in gas sensitivities and electronic stability in air. NO2- and NH3-responsive polymer-based organic field-effect transistors (OFETs) are described with improved air stability compared to all-thiophene conjugated polymers. Five DPP-fluorene-based polymers were synthesized and compared to two control polymers and used as active layers to detect a concentration of NO2 at least as low as 0.5 ppm. The hypothesis that the less electron-donating fluorene main-chain subunit would lead to increased signal/drift compared to thiophene and carbazole subunits was tested. The sensitivities exhibited a bias voltage-dependent behavior. The proportional on-current change of OFETs using a dithienyl DPP-fluorene polymer reached ∼614% for an exposure to 20 ppm of NO2 for 5 min, testing at a bias voltage of -33 V, among the higher reported NO2 sensitivities for conjugated polymers. Electronic and morphological studies reveal that introduction of the fluorene unit in the DPP backbone decreases the ease of backbone oxidation and induces traps in the thin films. The combination of thin-film morphology and oxidation potentials governs the gas-absorbing properties of these materials. The ratio of responses on exposure to NO2 and NH3 compared to drifts while taking the device through repeated gate voltage sweeps is the highest for two polymers incorporating electron-donating linkers connecting the DPP and thiophene units in the backbone, in this category of organic semiconductors. The responses to NO2 were much larger than that to NH3, indicating increased susceptibility to oxidizing vs reducing gases, and that the capability of oxidizing gases to induce additional charge density has a more dramatic electronic effect than when reducing gases create traps. This work demonstrates the capability of achieving improved stability with the retention of high sensitivity in conjugated polymer-based OFET sensors by modulating redox and morphological properties of polymer semiconductors by structural control.
Collapse
Affiliation(s)
- Tushita Mukhopadhyaya
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justine S Wagner
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Huidong Fan
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Lin YC, Chen FH, Chiang YC, Chueh CC, Chen WC. Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34158-34170. [PMID: 31441307 DOI: 10.1021/acsami.9b10943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thus far, there is still no study systematically investigating the influence of asymmetric side-chain design on a polymer's stretchability and its associated stretchable device applications. Herein, three kinds of asymmetric side chains consisting of carbosilane side chain (Si-C8), siloxane-terminated side chain (SiO-C8), and decyltetradecane side chain (DT) are engineered in isoindigo-bithiophene (PII2T, P1-P3) and isoindigo-difluorobithiophene (PII2TF, P4-P6) conjugated polymers, and their structure-stretchability correlation is explored in field-effect transistor characterization. It is revealed that owing to the geometric difference between the side chains, different asymmetric side-chain combinations impose distinct influences on the molecular stacking and orientation of the derived polymers. Surprisingly, the combination of asymmetric side chains and backbone fluorination is shown to deliver the best stretchability and mechanical durability of the derived polymer. Consequently, P6 consisting of asymmetric Si-C8/DT side chains and fluorinated backbone possesses the best mobility preservation of 81% at 100% strain with the stretching force perpendicular to the charge-transporting direction. Moreover, it presents 90% mobility retention after 400 stretching-releasing cycles with 60% strain, greatly exceeding the value (36%) of the non-fluorinated counterpart (P3). Our results suggest that the rational design of asymmetric side chains and backbone fluorination provides an efficient way to enhance the intrinsic stretchability of conjugated polymers.
Collapse
|
17
|
Ma L, Ma H. Synthesis of π-conjugated network polymers based on triphenylamine (TPA) and tetraphenylethylene (TPE) as building blocks via direct Pd-catalyzed reactions and their application in CO 2 capture and explosive detection. RSC Adv 2019; 9:18098-18105. [PMID: 35515247 PMCID: PMC9064729 DOI: 10.1039/c9ra02469g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/26/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we report the synthesis of π-conjugated network polymers via palladium-catalyzed direct arylation polycondensation of triphenylamine (TPA) and tetraphenylethylene (TPE) with different active substrates. Moreover, six conjugated porous polymers were obtained (named as TPA-TPA-MA, TPA-PB-MA, TPA-TFB-MA, TPA-TPE-MA, TPE-PB-MA, and TPE-TFB-MA). Then, the fluorescence properties in the solid and dispersed states, the corresponding microporous structures, and the Brunauer-Emmett-Teller (BET) surface areas of all polymers were well studied. Among the obtained materials, TPA-PB-MA possessed not only largest BET surface area (686 m2 g-1) and largest pore volume (0.716 cm3 g-1), but also the smallest pore size of 0.823 nm. These properties are very beneficial for the application of TPA-PB-MA in CO2 storage and PA sensing. At 1 bar, TPA-PB-MA demonstrated the significant CO2 uptake of 2.70 and 1.35 mmol g-1 at 273 and 298 K, respectively. Furthermore, TPA-PB-MA was most sensitive and selective towards PA recognition. The K SV constant was measured as 4.0 × 104 M-1.
Collapse
Affiliation(s)
- Lamaocao Ma
- Shaw Library, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hengchang Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| |
Collapse
|