1
|
Staunton C, Shabani M, Mascalzoni D, Mežinska S, Slokenberga S. Ethical and social reflections on the proposed European Health Data Space. Eur J Hum Genet 2024; 32:498-505. [PMID: 38355959 PMCID: PMC11061131 DOI: 10.1038/s41431-024-01543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
The COVID-19 pandemic demonstrated the benefits of international data sharing. Data sharing enabled the health care policy makers to make decisions based on real-time data, it enabled the tracking of the virus, and importantly it enabled the development of vaccines that were crucial to mitigating the impact of the virus. This data sharing is not the norm as data sharing needs to navigate complex ethical and legal rules, and in particular, the fragmented application of the General Data Protection Regulation (GDPR). The introduction of the draft regulation for a European Health Data Space (EHDS) in May 2022 seeks to address some of these legal issues. If passed, it will create an obligation to share electronic health data for certain secondary purposes. While there is a clear need to address the legal complexities involved with data sharing, it is critical that any proposed reforms are in line with ethical principles and the expectations of the data subjects. In this paper we offer a critique of the EHDS and offer some recommendations for this evolving regulatory space.
Collapse
Affiliation(s)
- Ciara Staunton
- Institute for Biomedicine, Eurac Research, Bolzano, Italy.
- School of Law, University of Kwazulunatal, Durban, South Africa.
| | - Mahsa Shabani
- Faculty of Law and Criminology, Ghent University, Gent, Belgium
| | - Deborah Mascalzoni
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- Department of Public Health and Caring Science, Uppsala University, CRB, P.O. Box 256, 751 05, Uppsala, Sweden
| | - Signe Mežinska
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | | |
Collapse
|
2
|
Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, Nielsen FC. Whole genome sequencing in clinical practice. BMC Med Genomics 2024; 17:39. [PMID: 38287327 PMCID: PMC10823711 DOI: 10.1186/s12920-024-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
Whole genome sequencing (WGS) is becoming the preferred method for molecular genetic diagnosis of rare and unknown diseases and for identification of actionable cancer drivers. Compared to other molecular genetic methods, WGS captures most genomic variation and eliminates the need for sequential genetic testing. Whereas, the laboratory requirements are similar to conventional molecular genetics, the amount of data is large and WGS requires a comprehensive computational and storage infrastructure in order to facilitate data processing within a clinically relevant timeframe. The output of a single WGS analyses is roughly 5 MIO variants and data interpretation involves specialized staff collaborating with the clinical specialists in order to provide standard of care reports. Although the field is continuously refining the standards for variant classification, there are still unresolved issues associated with the clinical application. The review provides an overview of WGS in clinical practice - describing the technology and current applications as well as challenges connected with data processing, interpretation and clinical reporting.
Collapse
Affiliation(s)
- Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Sand Jespersen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Reimer Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Deserranno K, Tilleman L, Rubben K, Deforce D, Van Nieuwerburgh F. Targeted haplotyping in pharmacogenomics using Oxford Nanopore Technologies' adaptive sampling. Front Pharmacol 2023; 14:1286764. [PMID: 38026945 PMCID: PMC10679755 DOI: 10.3389/fphar.2023.1286764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Pharmacogenomics (PGx) studies the impact of interindividual genomic variation on drug response, allowing the opportunity to tailor the dosing regimen for each patient. Current targeted PGx testing platforms are mainly based on microarray, polymerase chain reaction, or short-read sequencing. Despite demonstrating great value for the identification of single nucleotide variants (SNVs) and insertion/deletions (INDELs), these assays do not permit identification of large structural variants, nor do they allow unambiguous haplotype phasing for star-allele assignment. Here, we used Oxford Nanopore Technologies' adaptive sampling to enrich a panel of 1,036 genes with well-documented PGx relevance extracted from the Pharmacogenomics Knowledge Base (PharmGKB). By evaluating concordance with existing truth sets, we demonstrate accurate variant and star-allele calling for five Genome in a Bottle reference samples. We show that up to three samples can be multiplexed on one PromethION flow cell without a significant drop in variant calling performance, resulting in 99.35% and 99.84% recall and precision for the targeted variants, respectively. This work advances the use of nanopore sequencing in clinical PGx settings.
Collapse
Affiliation(s)
| | | | | | | | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Gyngell C, Lynch F, Vears D, Bowman-Smart H, Savulescu J, Christodoulou J. Storing paediatric genomic data for sequential interrogation across the lifespan. JOURNAL OF MEDICAL ETHICS 2023:jme-2022-108471. [PMID: 37263770 DOI: 10.1136/jme-2022-108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/02/2023] [Indexed: 06/03/2023]
Abstract
Genomic sequencing (GS) is increasingly used in paediatric medicine to aid in screening, research and treatment. Some health systems are trialling GS as a first-line test in newborn screening programmes. Questions about what to do with genomic data after it has been generated are becoming more pertinent. While other research has outlined the ethical reasons for storing deidentified genomic data to be used in research, the ethical case for storing data for future clinical use has not been explicated. In this paper, we examine the ethical case for storing genomic data with the intention of using it as a lifetime health resource. In this model, genomic data would be stored with the intention of reanalysis at certain points through one's life. We argue this could benefit individuals and create an important public resource. However, several ethical challenges must first be met to achieve these benefits. We explore issues related to privacy, consent, justice and equality. We conclude by arguing that health systems should be moving towards futures that allow for the sequential interrogation of genomic data throughout the lifespan.
Collapse
Affiliation(s)
- Christopher Gyngell
- Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fiona Lynch
- Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Melbourne Law School, The University of Melbourne, Parkville, VIC, Australia
| | - Danya Vears
- Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hilary Bowman-Smart
- Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of South Australia, Adeliade, South Australia, Australia
| | - Julian Savulescu
- Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Faculty of Philosophy, University of Oxford, Oxford, UK
- Centre for Biomedical Ethics - Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Christodoulou
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
5
|
Horton R, Lucassen A. Ethical Considerations in Research with Genomic Data. New Bioeth 2023; 29:37-51. [PMID: 35484929 DOI: 10.1080/20502877.2022.2060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our ability to generate genomic data is currently well ahead of our ability to understand what they mean, raising challenges about how best to engage with them. This article considers ethical aspects of work with such data, focussing on research contexts that are intertwined with clinical care. We discuss the identifying nature of genomic data, the medical information intrinsic within them, and their linking of people within a biological family. We go on to consider what this means for consent, the importance of thoughtful sharing of genomic data, the challenge of constructing meaningful findings, and the legacy of unequal representation in genomic datasets. We argue that the ongoing success of genomic data research relies on public trust in the enterprise: to justify this trust, we need to ensure robust stewarding, and wide engagement about the ethical issues inherent in such practices.
Collapse
Affiliation(s)
- Rachel Horton
- Centre for Personalised Medicine, St Anne's College, University of Oxford, Oxford, UK.,Clinical Ethics, Law and Society, University of Southampton, Southampton, UK
| | - Anneke Lucassen
- Centre for Personalised Medicine, St Anne's College, University of Oxford, Oxford, UK.,Clinical Ethics, Law and Society, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Eikemo H, Roten LT, Vaaler AE. Research based on existing clinical data and biospecimens: a systematic study of patients' opinions. BMC Med Ethics 2022; 23:60. [PMID: 35710552 PMCID: PMC9202664 DOI: 10.1186/s12910-022-00799-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background The aim of the present survey was to investigate newly discharged hospital patients’ opinions on secondary use of their hospital data and biospecimens within the context of health research in general and, more specifically, on genetic research, data sharing across borders and cooperation with the health industry. Methods A paper questionnaire was sent to 1049 consecutive newly discharged hospital patients. Results The vast majority of the respondents preferred to be informed (passive consent) or to receive no notification at all for secondary research on their health data and biospecimens (88% and 91% for data and biospecimens respectively). The rest wanted to be asked for active consent. The same trend applied for the other aspects also. 81% of respondents were positive towards genetic research without active consent. 95% were positive towards cooperating with the health industry, and 90% were positive towards data sharing. Conclusions These results suggest that hospital patients generally are very positive to secondary research and support the concept of opting out rather than opting in. Supplementary Information The online version contains supplementary material available at 10.1186/s12910-022-00799-4.
Collapse
Affiliation(s)
- Hilde Eikemo
- Regional Committee for Medical and Health Related Research Ethics Mid Norway, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), REK Midt V/Hilde Eikemo, Postboks 8900, 7491, Torgarden, Trondheim, Norway.
| | - Linda Tømmerdal Roten
- Regional Committee for Medical and Health Related Research Ethics Mid Norway, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), REK Midt V/Hilde Eikemo, Postboks 8900, 7491, Torgarden, Trondheim, Norway
| | - Arne Einar Vaaler
- Østmarka Department of Psychiatry, St. Olav University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Santaló J, Berdasco M. Ethical implications of epigenetics in the era of personalized medicine. Clin Epigenetics 2022; 14:44. [PMID: 35337378 PMCID: PMC8953972 DOI: 10.1186/s13148-022-01263-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Given the increasing research activity on epigenetics to monitor human diseases and its connection with lifestyle and environmental expositions, the field of epigenetics has attracted a great deal of interest also at the ethical and societal level. In this review, we will identify and discuss current ethical, legal and social issues of epigenetics research in the context of personalized medicine. The review covers ethical aspects such as how epigenetic information should impact patient autonomy and the ability to generate an intentional and voluntary decision, the measures of data protection related to privacy and confidentiality derived from epigenome studies (e.g., risk of discrimination, patient re-identification and unexpected findings) or the debate in the distribution of responsibilities for health (i.e., personal versus public responsibilities). We pay special attention to the risk of social discrimination and stigmatization as a consequence of inferring information related to lifestyle and environmental exposures potentially contained in epigenetic data. Furthermore, as exposures to the environment and individual habits do not affect all populations equally, the violation of the principle of distributive justice in the access to the benefits of clinical epigenetics is discussed. In this regard, epigenetics represents a great opportunity for the integration of public policy measures aimed to create healthier living environments. Whether these public policies will coexist or, in contrast, compete with strategies reinforcing the personalized medicine interventions needs to be considered. The review ends with a reflection on the main challenges in epigenetic research, some of them in a technical dimension (e.g., assessing causality or establishing reference epigenomes) but also in the ethical and social sphere (e.g., risk to add an epigenetic determinism on top of the current genetic one). In sum, integration into life science investigation of social experiences such as exposure to risk, nutritional habits, prejudice and stigma, is imperative to understand epigenetic variation in disease. This pragmatic approach is required to locate clinical epigenetics out of the experimental laboratories and facilitate its implementation into society.
Collapse
Affiliation(s)
- Josep Santaló
- Facultat de Biociències, Unitat de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. .,Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Adashi EY, Cohen IG. CRISPR immunity: a case study for justified somatic genetic modification? JOURNAL OF MEDICAL ETHICS 2022; 48:83-85. [PMID: 33658335 DOI: 10.1136/medethics-2020-106838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The current SARS-CoV-2 pandemic has killed thousands across the world. SARS-CoV-2 is the latest but surely not the last such global pandemic we will face. The biomedical response to such pandemics includes treatment, vaccination, and so on. In this paper, though, we argue that it is time to consider an additional strategy: the somatic (non-heritable) enhancement of human immunity. We argue for this approach and consider bioethics objections we believe can be overcome.
Collapse
Affiliation(s)
- Eli Y Adashi
- Medical Science, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
9
|
Pysar R, Wallingford CK, Boyle J, Campbell SB, Eckstein L, McWhirter R, Terrill B, Jacobs C, McInerney-Leo AM. Australian human research ethics committee members' confidence in reviewing genomic research applications. Eur J Hum Genet 2021; 29:1811-1818. [PMID: 34446835 PMCID: PMC8633339 DOI: 10.1038/s41431-021-00951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Human research ethics committees (HRECs) are evaluating increasing quantities of genomic research applications with complex ethical considerations. Genomic confidence is reportedly low amongst many non-genetics-experts; however, no studies have evaluated genomic confidence levels in HREC members specifically. This study used online surveys to explore genomic confidence levels, predictors of confidence, and genomics resource needs of members from 185 HRECs across Australia. Surveys were fully or partially completed by 145 members. All reported having postgraduate 94 (86%) and/or bachelor 15 (14%) degrees. Participants consisted mainly of researchers (n = 45, 33%) and lay members (n = 41, 30%), affiliated with either public health services (n = 73, 51%) or public universities (n = 31, 22%). Over half had served their HREC [Formula: see text]3 years. Fifty (44%) reviewed genomic studies [Formula: see text]3 times annually. Seventy (60%) had undertaken some form of genomic education. While most (94/103, 91%) had high genomic literacy based on familiarity with genomic terms, average genomic confidence scores (GCS) were moderate (5.7/10, n = 119). Simple linear regression showed that GCS was positively associated with years of HREC service, frequency of reviewing genomic applications, undertaking self-reported genomic education, and familiarity with genomic terms (p < 0.05 for all). Conversely, lay members and/or those relying on others when reviewing genomic studies had lower GCSs (p < 0.05 for both). Most members (n = 83, 76%) agreed further resources would be valuable when reviewing genomic research applications, and online courses and printed materials were preferred. In conclusion, even well-educated HREC members familiar with genomic terms lack genomic confidence, which could be enhanced with additional genomic education and/or resources.
Collapse
Affiliation(s)
- Ryan Pysar
- grid.117476.20000 0004 1936 7611Genetic Counseling, Graduate School of Health, University of Technology Sydney, Sydney, NSW Australia ,grid.414009.80000 0001 1282 788XCentre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW Australia
| | - Courtney K. Wallingford
- grid.1003.20000 0000 9320 7537University of Queensland Diamantina Institute, University of Queensland, Dermatology Research Centre, Woolloongabba, QLD Australia
| | - Jackie Boyle
- grid.511220.50000 0005 0259 3580NSW Genetics of Learning Disability (GOLD) Service, Hunter Genetics, Waratah, NSW Australia
| | - Scott B. Campbell
- grid.412744.00000 0004 0380 2017Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, QLD Australia
| | - Lisa Eckstein
- grid.1009.80000 0004 1936 826XFaculty of Law University of Tasmania, Hobart, TAS Australia
| | - Rebekah McWhirter
- grid.1021.20000 0001 0526 7079School of Medicine, Faculty of Health, Deakin University, Geelong, VIC Australia
| | - Bronwyn Terrill
- grid.415306.50000 0000 9983 6924Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW Australia ,grid.1005.40000 0004 4902 0432St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW Australia
| | - Chris Jacobs
- grid.117476.20000 0004 1936 7611Genetic Counseling, Graduate School of Health, University of Technology Sydney, Sydney, NSW Australia
| | - Aideen M. McInerney-Leo
- grid.1003.20000 0000 9320 7537University of Queensland Diamantina Institute, University of Queensland, Dermatology Research Centre, Woolloongabba, QLD Australia
| |
Collapse
|
10
|
Koromina M, Fanaras V, Baynam G, Mitropoulou C, Patrinos GP. Ethics and equity in rare disease research and healthcare. Per Med 2021; 18:407-416. [PMID: 34085867 DOI: 10.2217/pme-2020-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid advances in next-generation sequencing technology, particularly whole exome sequencing and whole genome sequencing, have greatly affected our understanding of genetic variation underlying rare genetic diseases. Herein, we describe ethical principles of guiding consent and sharing of genomics research data. We also discuss ethical dilemmas in rare diseases research and patient recruitment policies and address bioethical and societal aspects influencing the ethical framework for genetic testing. Moreover, we focus on addressing ethical issues surrounding research in low- and middle-income countries. Overall, this perspective aims to address key aspects and issues for building proper ethical frameworks, when conducting research involving genomics data with a particular emphasis on rare diseases and genetics testing.
Collapse
Affiliation(s)
- Maria Koromina
- Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, School of Health Sciences, University of Patras, Patras, Greece
| | - Vasileios Fanaras
- The Golden Helix Foundation, London, UK.,School of Theology, Faculty of Social Theology & the Study of Religion, National & Kapodistrian University of Athens, Athens, Greece
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Western Australia.,Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Western Australia.,Telethon Kids Institute & Division of Pediatrics, School of Health & Medical Sciences, University of Western Australia, Perth, Australia.,Faculty of Medicine, Notre Dame University, Australia
| | | | - George P Patrinos
- Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, School of Health Sciences, University of Patras, Patras, Greece.,Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| |
Collapse
|
11
|
Carress H, Lawson DJ, Elhaik E. Population genetic considerations for using biobanks as international resources in the pandemic era and beyond. BMC Genomics 2021; 22:351. [PMID: 34001009 PMCID: PMC8127217 DOI: 10.1186/s12864-021-07618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
The past years have seen the rise of genomic biobanks and mega-scale meta-analysis of genomic data, which promises to reveal the genetic underpinnings of health and disease. However, the over-representation of Europeans in genomic studies not only limits the global understanding of disease risk but also inhibits viable research into the genomic differences between carriers and patients. Whilst the community has agreed that more diverse samples are required, it is not enough to blindly increase diversity; the diversity must be quantified, compared and annotated to lead to insight. Genetic annotations from separate biobanks need to be comparable and computable and to operate without access to raw data due to privacy concerns. Comparability is key both for regular research and to allow international comparison in response to pandemics. Here, we evaluate the appropriateness of the most common genomic tools used to depict population structure in a standardized and comparable manner. The end goal is to reduce the effects of confounding and learn from genuine variation in genetic effects on phenotypes across populations, which will improve the value of biobanks (locally and internationally), increase the accuracy of association analyses and inform developmental efforts.
Collapse
Affiliation(s)
- Hannah Carress
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Daniel John Lawson
- School of Mathematics and Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. .,Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
de Vries JJC, Brown JR, Couto N, Beer M, Le Mercier P, Sidorov I, Papa A, Fischer N, Oude Munnink BB, Rodriquez C, Zaheri M, Sayiner A, Hönemann M, Cataluna AP, Carbo EC, Bachofen C, Kubacki J, Schmitz D, Tsioka K, Matamoros S, Höper D, Hernandez M, Puchhammer-Stöckl E, Lebrand A, Huber M, Simmonds P, Claas ECJ, López-Labrador FX. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. J Clin Virol 2021; 138:104812. [PMID: 33819811 DOI: 10.1016/j.jcv.2021.104812] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
Metagenomic next-generation sequencing (mNGS) is an untargeted technique for determination of microbial DNA/RNA sequences in a variety of sample types from patients with infectious syndromes. mNGS is still in its early stages of broader translation into clinical applications. To further support the development, implementation, optimization and standardization of mNGS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mNGS for viral diagnostics to share methodologies and experiences, and to develop application guidelines. Following the ENNGS publication Recommendations for the introduction of mNGS in clinical virology, part I: wet lab procedure in this journal, the current manuscript aims to provide practical recommendations for the bioinformatic analysis of mNGS data and reporting of results to clinicians.
Collapse
Affiliation(s)
- Jutte J C de Vries
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Julianne R Brown
- Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
| | - Natacha Couto
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | - Martin Beer
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| | | | - Igor Sidorov
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece.
| | - Nicole Fischer
- University Medical Center Hamburg-Eppendorf, UKE Institute for Medical Microbiology, Virology and Hygiene, Germany.
| | | | - Christophe Rodriquez
- Department of Virology, University hospital Henri Mondor, Assistance Public des Hopitaux de Paris, Créteil, France.
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Switzerland.
| | - Arzu Sayiner
- Dokuz Eylul University, Medical Faculty, Department of Medical Microbiology, Izmir, Turkey.
| | - Mario Hönemann
- Institute of Virology, Leipzig University, Leipzig, Germany.
| | - Alba Perez Cataluna
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Paterna, Valencia, Spain.
| | - Ellen C Carbo
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Jakub Kubacki
- Institute of Virology, University of Zurich, Switzerland.
| | - Dennis Schmitz
- RIVM National Institute for Public Health and Environment, Bilthoven, the Netherlands.
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece.
| | - Sébastien Matamoros
- Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Dirk Höper
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| | - Marta Hernandez
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnologico Agrario de Castilla y Leon, Valladolid, Spain.
| | | | | | - Michael Huber
- Institute of Medical Virology, University of Zurich, Switzerland.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Eric C J Claas
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - F Xavier López-Labrador
- Virology Laboratory, Genomics and Health Area, Centre for Public Health Research (FISABIO-Public Health), Valencia, Spain; Department of Microbiology, Medical School, University of Valencia, Spain; CIBERESP, Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
13
|
The promise of public health ethics for precision medicine: the case of newborn preventive genomic sequencing. Hum Genet 2021; 141:1035-1043. [PMID: 33715055 DOI: 10.1007/s00439-021-02269-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to tailor medical treatment to match individual characteristics and to stratify individuals to concentrate benefits and avoid harm. It has recently been joined by precision public health-the application of precision medicine at population scale to decrease morbidity and optimise population health. Newborn preventive genomic sequencing (NPGS) provides a helpful case study to consider how we should approach ethical questions in precision public health. In this paper, I use NPGS as a case in point to argue that both precision medicine and precision public health need public health ethics. I make this argument in two parts. First, I claim that discussions of ethics in precision medicine and NPGS tend to focus on predominantly individualistic concepts from medical ethics such as autonomy and empowerment. This highlights some deficiencies, including overlooking that choice is subject to constraints and that an individual's place in the world might impact their capacity to 'be responsible'. Second, I make the case for using a public health ethics approach when considering ethics and NPGS, and thus precision public health more broadly. I discuss how precision public health needs to be construed as a collective enterprise and not just as an aggregation of individual interests. I also show how analysing collective values and interests through concepts such as solidarity can enrich ethical discussion of NPGS and highlight previously overlooked issues. With this approach, bioethics can contribute to more just and more appropriate applications of precision medicine and precision public health, including NPGS.
Collapse
|
14
|
Mann SP, Treit PV, Geyer PE, Omenn GS, Mann M. Ethical Principles, Constraints and Opportunities in Clinical Proteomics. Mol Cell Proteomics 2021; 20:100046. [PMID: 33453411 PMCID: PMC7950205 DOI: 10.1016/j.mcpro.2021.100046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Recent advances in mass spectrometry (MS)-based proteomics have vastly increased the quality and scope of biological information that can be derived from human samples. These advances have rendered current workflows increasingly applicable in biomedical and clinical contexts. As proteomics is poised to take an important role in the clinic, associated ethical responsibilities increase in tandem with impacts on the health, privacy, and wellbeing of individuals. We conducted and here report a systematic literature review of ethical issues in clinical proteomics. We add our perspectives from a background of bioethics, the results of our accompanying paper extracting individual-sensitive results from patient samples, and the literature addressing similar issues in genomics. The spectrum of potential issues ranges from patient re-identification to incidental findings of clinical significance. The latter can be divided into actionable and unactionable findings. Some of these have the potential to be employed in discriminatory or privacy-infringing ways. However, incidental findings may also have great positive potential. A plasma proteome profile, for instance, could inform on the general health or disease status of an individual regardless of the narrow diagnostic question that prompted it. We suggest that early discussion of ethical issues in clinical proteomics can ensure that eventual healthcare practices and regulations reflect the considered judgment of the community and anticipate opportunities and problems that may arise as the technology matures.
Collapse
Affiliation(s)
- Sebastian Porsdam Mann
- Department of Media, Cognition and Communication, University of Copenhagen, Copenhagen, Denmark; Uehiro Center for Practical Ethics, University of Oxford, Oxford, UK; New address: Faculty of Law, University of Oxford, Oxford, UK.
| | - Peter V Treit
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; New address: OmicEra Diagnostics GmbH, Planegg, Germany
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Sharing genomic data from clinical testing with researchers: public survey of expectations of clinical genomic data management in Queensland, Australia. BMC Med Ethics 2020; 21:119. [PMID: 33213438 PMCID: PMC7678081 DOI: 10.1186/s12910-020-00563-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background There has been considerable investment and strategic planning to introduce genomic testing into Australia’s public health system. As more patients’ genomic data is being held by the public health system, there will be increased requests from researchers to access this data. It is important that public policy reflects public expectations for how genomic data that is generated from clinical tests is used. To inform public policy and discussions around genomic data sharing, we sought public opinions on using genomic data contained in medical records for research purposes in the Australian state of Queensland. Methods A total of 1494 participants completed an online questionnaire between February and May 2019. Participants were adults living in Australia. The questionnaire explored participant preferences for sharing genomic data or biological samples with researchers, and concerns about genomic data sharing. Results Most participants wanted to be given the choice to have their genomic data from medical records used in research. Their expectations on whether and how often they needed to be approached for permission on using their genomic data, depended on whether the data was identifiable or anonymous. Their willingness to sharing data for research purposes depended on the type of information being shared, what type of research would be undertaken and who would be doing the research. Participants were most concerned with genomics data sharing that could lead to discrimination (insurance and employment), data being used for marketing, data security, or commercial use. Conclusions Most participants were willing to share their genomic data from medical records with researchers, as long as permission for use was sought. However, the existing policies related to this process in Queensland do not reflect participant expectations for how this is achieved, particularly with anonymous genomics data. This inconsistency may be addressed by process changes, such as inclusion of research in addition to clinical consent or general research data consent programs.
Collapse
|
16
|
Latin American Genes: The Great Forgotten in Rheumatoid Arthritis. J Pers Med 2020; 10:jpm10040196. [PMID: 33114702 PMCID: PMC7711650 DOI: 10.3390/jpm10040196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022] Open
Abstract
The successful implementation of personalized medicine will rely on the integration of information obtained at the level of populations with the specific biological, genetic, and clinical characteristics of an individual. However, because genome-wide association studies tend to focus on populations of European descent, there is a wide gap to bridge between Caucasian and non-Caucasian populations before personalized medicine can be fully implemented, and rheumatoid arthritis (RA) is not an exception. In this review, we discuss advances in our understanding of genetic determinants of RA risk among global populations, with a focus on the Latin American population. Geographically restricted genetic diversity may have important implications for health and disease that will remain unknown until genetic association studies have been extended to include Latin American and other currently under-represented ancestries. The next few years will witness many breakthroughs in personalized medicine, including applications for common diseases and risk stratification instruments for targeted prevention/intervention strategies. Not all of these applications may be extrapolated from the Caucasian experience to Latin American or other under-represented populations.
Collapse
|
17
|
Hudson M, Garrison NA, Sterling R, Caron NR, Fox K, Yracheta J, Anderson J, Wilcox P, Arbour L, Brown A, Taualii M, Kukutai T, Haring R, Te Aika B, Baynam GS, Dearden PK, Chagné D, Malhi RS, Garba I, Tiffin N, Bolnick D, Stott M, Rolleston AK, Ballantyne LL, Lovett R, David-Chavez D, Martinez A, Sporle A, Walter M, Reading J, Carroll SR. Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data. Nat Rev Genet 2020; 21:377-384. [DOI: 10.1038/s41576-020-0228-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
|
18
|
Wright CF, Ware JS, Lucassen AM, Hall A, Middleton A, Rahman N, Ellard S, Firth HV. Genomic variant sharing: a position statement. Wellcome Open Res 2019; 4:22. [PMID: 31886409 PMCID: PMC6913213 DOI: 10.12688/wellcomeopenres.15090.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Sharing de-identified genetic variant data is essential for the practice of genomic medicine and is demonstrably beneficial to patients. Robust genetic diagnoses that inform medical management cannot be made accurately without reference to genetic test results from other patients, as well as population controls. Errors in this process can result in delayed, missed or erroneous diagnoses, leading to inappropriate or missed medical interventions for the patient and their family. The benefits of sharing individual genetic variants, and the harms of not sharing them, are numerous and well-established. Databases and mechanisms already exist to facilitate deposition and sharing of pseudonomised genetic variants, but clarity and transparency around best practice is needed to encourage widespread use, prevent inconsistencies between different communities, maximise individual privacy and ensure public trust. We therefore recommend that widespread sharing of a small number of individual genetic variants associated with limited clinical information should become standard practice in genomic medicine. Information robustly linking genetic variants with specific conditions is fundamental biological knowledge, not personal information, and therefore should not require consent to share. For additional case-level detail about individual patients or more extensive genomic information, which is often essential for clinical interpretation, it may be more appropriate to use a controlled-access model for data sharing, with the ultimate aim of making as much information as open and de-identified as possible with appropriate consent.
Collapse
Affiliation(s)
- Caroline F. Wright
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | - James S. Ware
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Anneke M. Lucassen
- Department of Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Anna Middleton
- Faculty of Education, University of Cambridge, Cambridge, UK
- Connecting Science, Wellcome Genome Campus, Cambridge, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, UK, London, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| | - Helen V. Firth
- Department of Clinical Genetics, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|