1
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Eggermann T. Human Reproduction and Disturbed Genomic Imprinting. Genes (Basel) 2024; 15:163. [PMID: 38397153 PMCID: PMC10888310 DOI: 10.3390/genes15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic imprinting is a specific mode of gene regulation which particularly accounts for the factors involved in development. Its disturbance affects the fetus, the course of pregnancy and even the health of the mother. In children, aberrant imprinting signatures are associated with imprinting disorders (ImpDis). These alterations also affect the function of the placenta, which has consequences for the course of the pregnancy. The molecular causes of ImpDis comprise changes at the DNA level and methylation disturbances (imprinting defects/ImpDefs), and there is an increasing number of reports of both pathogenic fetal and maternal DNA variants causing ImpDefs. These ImpDefs can be inherited, but prediction of the pregnancy complications caused is difficult, as they can cause miscarriages, aneuploidies, health issues for the mother and ImpDis in the child. Due to the complexity of imprinting regulation, each pregnancy or patient with suspected altered genomic imprinting requires a specific workup to identify the precise molecular cause and also careful clinical documentation. This review will cover the current knowledge on the molecular causes of aberrant imprinting signatures and illustrate the need to identify this basis as the prerequisite for personalized genetic and reproductive counselling of families.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH University Aachen, Pauwelsstr. 3, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
4
|
Staniczek J, Manasar-Dyrbuś M, Drosdzol-Cop A, Stojko R. Beckwith-Wiedemann Syndrome in Newborn of Mother with HELLP Syndrome/Preeclampsia: An Analysis of Literature and Case Report with Fetal Growth Restriction and Absence of CDKN1C Typical Pathogenic Genetic Variation. Int J Mol Sci 2023; 24:13360. [PMID: 37686168 PMCID: PMC10487691 DOI: 10.3390/ijms241713360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder, which manifests by overgrowth and predisposition to embryonal tumors. The evidence on the relationship between maternal complications such as HELLP (hemolysis, elevated liver enzymes, and low platelet count) and preeclampsia and the development of BWS in offspring is scarce. A comprehensive clinical evaluation, with genetic testing focused on screening for mutations in the CDKN1C gene, which is commonly associated with BWS, was conducted in a newborn diagnosed with BWS born to a mother with a history of preeclampsia and HELLP syndrome. The case study revealed typical clinical manifestations of BWS in the newborn, including hemihyperplasia, macroglossia, midfacial hypoplasia, omphalocele, and hypoglycemia. Surprisingly, the infant also exhibited fetal growth restriction, a finding less commonly observed in BWS cases. Genetic analysis, however, showed no mutations in the CDKN1C gene, which contrasts with the majority of BWS cases. This case report highlights the complex nature of BWS and its potential association with maternal complications such as preeclampsia and HELLP syndrome. The atypical presence of fetal growth restriction in the newborn and the absence of CDKN1C gene mutations have not been reported to date in BWS.
Collapse
|
5
|
Eggermann T, Monk D, de Nanclares GP, Kagami M, Giabicani E, Riccio A, Tümer Z, Kalish JM, Tauber M, Duis J, Weksberg R, Maher ER, Begemann M, Elbracht M. Imprinting disorders. Nat Rev Dis Primers 2023; 9:33. [PMID: 37386011 DOI: 10.1038/s41572-023-00443-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - David Monk
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Caserta, Italy
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Departments of Pediatrics and Genetics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maithé Tauber
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Jessica Duis
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Bilo L, Ochoa E, Lee S, Dey D, Kurth I, Kraft F, Rodger F, Docquier F, Toribio A, Bottolo L, Binder G, Fekete G, Elbracht M, Maher ER, Begemann M, Eggermann T. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenetics 2023; 15:35. [PMID: 36859312 PMCID: PMC9979536 DOI: 10.1186/s13148-023-01453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Imprinting disorders (ImpDis) comprise diseases which are caused by aberrant regulation of monoallelically and parent-of-origin-dependent expressed genes. A characteristic molecular change in ImpDis patients is aberrant methylation signatures at disease-specific loci, without an obvious DNA change at the specific differentially methylated region (DMR). However, there is a growing number of reports on multilocus imprinting disturbances (MLIDs), i.e. aberrant methylation at different DMRs in the same patient. These MLIDs account for a significant number of patients with specific ImpDis, and several reports indicate a central role of pathogenic maternal effect variants in their aetiology by affecting the maturation of the oocyte and the early embryo. Though several studies on the prevalence and the molecular causes of MLID have been conducted, homogeneous datasets comprising both genomic and methylation data are still lacking. RESULTS Based on a cohort of 36 MLID patients, we here present both methylation data obtained from next-generation sequencing (NGS, ImprintSeq) approaches and whole-exome sequencing (WES). The compilation of methylation data did not reveal a disease-specific MLID episignature, and a predisposition for the phenotypic modification was not obvious as well. In fact, this lack of epigenotype-phenotype correlation might be related to the mosaic distribution of imprinting defects and their functional relevance in specific tissues. CONCLUSIONS Due to the higher sensitivity of NGS-based approaches, we suggest that ImprintSeq might be offered at reference centres in case of ImpDis patients with unusual phenotypes but MLID negative by conventional tests. By WES, additional MLID causes than the already known maternal effect variants could not be identified, neither in the patients nor in the maternal exomes. In cases with negative WES results, it is currently unclear to what extent either environmental factors or undetected genetic variants contribute to MLID.
Collapse
Affiliation(s)
- Larissa Bilo
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniela Dey
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Florian Kraft
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Universiy of Tuebingen, Tuebingen, Germany
| | - György Fekete
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miriam Elbracht
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Begemann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Urakawa T, Ozawa J, Tanaka M, Narusawa H, Matsuoka K, Fukami M, Nagasaki K, Kagami M. Beckwith-Wiedemann syndrome with long QT caused by a deletion involving KCNQ1 but not KCNQ1OT1:TSS-DMR. Eur J Med Genet 2023; 66:104671. [PMID: 36402267 DOI: 10.1016/j.ejmg.2022.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with characteristic features, such as overgrowth, macroglossia, and exomphalos. Hypomethylation of the KCNQ1OT1:TSS-differentially methylated region (DMR) on the 11p15.5 imprinted region is the most common etiology of BWS. KCNQ1 on 11p15.5 is expressed from the maternally inherited allele in most tissues, but is biparentally expressed in the heart, and maternal KCNQ1 transcription is required to establish the maternal DNA imprint in the KCNQ1OT1:TSS-DMR. Loss of function variants in KCNQ1 result in long QT syndrome type 1 (LQT1). To date, eight patients with BWS due to KCNQ1 splice variants or structural abnormalities involving KCNQ1 but not the KCNQ1OT1:TSS-DMR have been reported (KCNQ1-BWS), and four of them had LQT1. We report a Japanese boy with BWS and LQT1 presenting with extreme hypomethylation of the KCNQ1OT1:TSS-DMR caused by a de novo 215-kb deletion including KCNQ1 but not the KCNQ1OT1:TSS-DMR on the maternal allele. He was born by emergency cesarean section due to suspicion of placental abruption at 30 weeks of gestation. His birth weight and length were +1.6 SD and +1.0 SD, respectively. His placental weight was +3.9 SD, and histological examination of his placenta was consistent with mesenchymal dysplasia. He had BWS clinical features, including macroglossia, ear creases and pits, body asymmetry, and rectus abdominis muscle dehiscence, and BWS was therefore diagnosed. LQT1 was first noticed at three months in a preoperative examination for lingual frenectomy. The summarized data of our patient and the previously reported eight patients in KCNQ1-BWS showed more frequent and earlier preterm births and smaller sized birth weight in KCNQ1-BWS cases than those with BWS caused by epimutation of the KCNQ1OT1:TSS-DMR. In addition, in five of nine patients with KCNQ1-BWS, LQT1 was detected, and two of them were identified at school age. In our patient and in another single case with LQT1, the LQT1 was not detected early despite neonatal ECG monitoring. For BWS patients with extreme hypomethylation of the KCNQ1OT1:TSS-DMR, searching for CNVs involving KCNQ1 and mutation screening for KCNQ1 should be considered together with periodic ECG monitoring. (338/500 words).
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Nagasaki University, Japan
| | - Junichi Ozawa
- Department of Pediatrics, Graduate School of Medicine, Niigata University, Japan
| | - Masato Tanaka
- Department of Pediatrics, Graduate School of Medicine, Niigata University, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Nagasaki
- Department of Pediatrics, Graduate School of Medicine, Niigata University, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
8
|
Placental Mesenchymal Dysplasia and Beckwith-Wiedemann Syndrome. Cancers (Basel) 2022; 14:cancers14225563. [PMID: 36428656 PMCID: PMC9688415 DOI: 10.3390/cancers14225563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Placental mesenchymal dysplasia (PMD) is characterized by placentomegaly, aneurysmally dilated chorionic plate vessels, thrombosis of the dilated vessels, and large grapelike vesicles, and is often mistaken for partial or complete hydatidiform mole with a coexisting normal fetus. Androgenetic/biparental mosaicism (ABM) has been found in many PMD cases. Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with complex and diverse phenotypes and an increased risk of developing embryonal tumors. There are five major causative alterations: loss of methylation of imprinting control region 2 (KCNQ1OT1:TSS-DMR) (ICR2-LOM), gain of methylation at ICR1 (H19/IGF2:IG-DMR) (ICR1-GOM), paternal uniparental disomy of 11 (pUPD11), loss-of-function variants of the CDKN1C gene, and paternal duplication of 11p15. Additional minor alterations include genetic variants within ICR1, paternal uniparental diploidy/biparental diploidy mosaicism (PUDM, also called ABM), and genetic variants of KCNQ1. ABM (PUDM) is found in both conditions, and approximately 20% of fetuses from PMD cases are BWS and vice versa, suggesting a molecular link. PMD and BWS share some molecular characteristics in some cases, but not in others. These findings raise questions concerning the timing of the occurrence of the molecularly abnormal cells during the postfertilization period and the effects of these abnormalities on cell fates after implantation.
Collapse
|
9
|
Molecular Basis of Beckwith–Wiedemann Syndrome Spectrum with Associated Tumors and Consequences for Clinical Practice. Cancers (Basel) 2022; 14:cancers14133083. [PMID: 35804856 PMCID: PMC9265096 DOI: 10.3390/cancers14133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is an inborn overgrowth disorder caused by molecular alterations in chromosome 11p15.5. These molecular changes affect so-called imprinted genes, i.e., genes which underlie a complex regulation which is linked to the parental origin of the gene copy. Thus, either the maternal gene copy is expressed or the paternal, but this balanced regulation is prone to disturbances. In fact, different types of molecular variants have been identified in BWS, resulting in a variable phenotype; thus, it was consented that the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). Some molecular subgroups of BWSp are associated with an increased embryonic tumor risk and have different likelihoods for specific tumors. Therefore, the precise determination of the molecular subgroup is needed for precise monitoring and treatment, but the molecular diagnostic procedure has several limitations and challenges which have to be considered. Abstract Beckwith–Wiedemann syndrome (BWS, OMIM 130650) is a congenital imprinting condition with a heterogenous clinical presentation of overgrowth and an increased childhood cancer risk (mainly nephroblastoma, hepatoblastoma or neuroblastoma). Due to the varying clinical presentation encompassing classical, clinical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly, the syndromic entity was extended to the Beckwith–Wiedemann spectrum (BWSp). The tumor risk of up to 30% depends on the molecular subtype of BWSp with causative genetic or epigenetic alterations in the chromosomal region 11p15.5. The molecular diagnosis of BWSp can be challenging for several reasons, including the range of causative molecular mechanisms which are frequently mosaic. The molecular basis of tumor formation appears to relate to stalled cellular differentiation in certain organs that predisposes persisting embryonic cells to accumulate additional molecular defects, which then results in a range of embryonal tumors. The molecular subtype of BWSp not only influences the overall risk of neoplasia, but also the likelihood of specific embryonal tumors.
Collapse
|
10
|
Ning Y, Czekalski M, Herrada S, Greene C. Interpretation challenge of small copy number variations in the imprinting regions. Mol Genet Genomic Med 2022; 10:e1961. [PMID: 35484641 PMCID: PMC9266595 DOI: 10.1002/mgg3.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yi Ning
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Megan Czekalski
- Department of PediatricsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sylvia Herrada
- Department of PediatricsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Carol Greene
- Department of PediatricsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Eggermann T, Yapici E, Bliek J, Pereda A, Begemann M, Russo S, Tannorella P, Calzari L, de Nanclares GP, Lombardi P, Temple IK, Mackay D, Riccio A, Kagami M, Ogata T, Lapunzina P, Monk D, Maher ER, Tümer Z. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin Epigenetics 2022; 14:41. [PMID: 35296332 PMCID: PMC8928698 DOI: 10.1186/s13148-022-01259-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Imprinting disorders are a group of congenital diseases which are characterized by molecular alterations affecting differentially methylated regions (DMRs). To date, at least twelve imprinting disorders have been defined with overlapping but variable clinical features including growth and metabolic disturbances, cognitive dysfunction, abdominal wall defects and asymmetry. In general, a single specific DMR is affected in an individual with a given imprinting disorder, but there are a growing number of reports on individuals with so-called multilocus imprinting disturbances (MLID), where aberrant imprinting marks (most commonly loss of methylation) occur at multiple DMRs. However, as the literature is fragmented, we reviewed the molecular and clinical data of 55 previously reported or newly identified MLID families with putative pathogenic variants in maternal effect genes (NLRP2, NLRP5, NLRP7, KHDC3L, OOEP, PADI6) and in other candidate genes (ZFP57, ARID4A, ZAR1, UHRF1, ZNF445). RESULTS In 55 families, a total of 68 different candidate pathogenic variants were identified (7 in NLRP2, 16 in NLRP5, 7 in NLRP7, 17 in PADI6, 15 in ZFP57, and a single variant in each of the genes ARID4A, ZAR1, OOEP, UHRF1, KHDC3L and ZNF445). Clinical diagnoses of affected offspring included Beckwith-Wiedemann syndrome spectrum, Silver-Russell syndrome spectrum, transient neonatal diabetes mellitus, or they were suspected for an imprinting disorder (undiagnosed). Some families had recurrent pregnancy loss. CONCLUSIONS Genomic maternal effect and foetal variants causing MLID allow insights into the mechanisms behind the imprinting cycle of life, and the spatial and temporal function of the different factors involved in oocyte maturation and early development. Further basic research together with identification of new MLID families will enable a better understanding of the link between the different reproductive issues such as recurrent miscarriages and preeclampsia in maternal effect variant carriers/families and aneuploidy and the MLID observed in the offsprings. The current knowledge can already be employed in reproductive and genetic counselling in specific situations.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Elzem Yapici
- grid.1957.a0000 0001 0728 696XInstitute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jet Bliek
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Laboratory for Genome Diagnostics, Amsterdam UMC, Amsterdam, Netherlands
| | - Arrate Pereda
- grid.468902.10000 0004 1773 0974Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava Spain
| | - Matthias Begemann
- grid.1957.a0000 0001 0728 696XInstitute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Silvia Russo
- grid.418224.90000 0004 1757 9530Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Pierpaola Tannorella
- grid.418224.90000 0004 1757 9530Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luciano Calzari
- grid.418224.90000 0004 1757 9530Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Guiomar Perez de Nanclares
- grid.468902.10000 0004 1773 0974Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava Spain
| | - Paola Lombardi
- grid.509540.d0000 0004 6880 3010Department of Human Genetics, Laboratory for Genome Diagnostics, Amsterdam UMC, Amsterdam, Netherlands
| | - I. Karen Temple
- grid.123047.30000000103590315Wessex Clinical Genetics Service, University Hospital Southampton, Southampton, UK ,grid.430506.40000 0004 0465 4079Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Deborah Mackay
- grid.430506.40000 0004 0465 4079Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrea Riccio
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Caserta, Italy ,grid.419869.b0000 0004 1758 2860Institute of Genetics and Biophysics ‘Adriano Buzzati–Traverso’ CNR, Naples, Italy
| | - Masayo Kagami
- grid.63906.3a0000 0004 0377 2305Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Ohkura, Setagayaku, Tokyo, Japan
| | - Tsutomu Ogata
- grid.413553.50000 0004 1772 534XDepartment of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan ,grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Pablo Lapunzina
- grid.81821.320000 0000 8970 9163CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain ,ERN-Ithaca, European Reference Networks, Madrid, Spain
| | - David Monk
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eamonn R. Maher
- grid.24029.3d0000 0004 0383 8386Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK ,grid.24029.3d0000 0004 0383 8386Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Zeynep Tümer
- grid.475435.4Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum Genet 2022; 141:1309-1325. [PMID: 35190856 DOI: 10.1007/s00439-021-02414-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Epigenetic diseases can be produced by a stable alteration, called an epimutation, in DNA methylation, in which epigenome alterations are directly involved in the underlying molecular mechanisms of the disease. This review focuses on the epigenetics of two inherited metabolic diseases, epi-cblC, an inherited metabolic disorder of cobalamin (vitamin B12) metabolism, and alpha-thalassemia type α-ZF, an inherited disorder of α2-globin synthesis, with a particular interest in the role of aberrant antisense transcription of flanking genes in the generation of epimutations in CpG islands of gene promoters. In both disorders, the epimutation is triggered by an aberrant antisense transcription through the promoter, which produces an H3K36me3 histone mark involved in the recruitment of DNA methyltransferases. It results from diverse genetic alterations. In alpha-thalassemia type α-ZF, a deletion removes HBA1 and HBQ1 genes and juxtaposes the antisense LUC7L gene to the HBA2 gene. In epi-cblC, the epimutation in the MMACHC promoter is produced by mutations in the antisense flanking gene PRDX1, which induces a prolonged antisense transcription through the MMACHC promoter. The presence of the epimutation in sperm, its transgenerational inheritance via the mutated PRDX1, and the high expression of PRDX1 in spermatogonia but its nearly undetectable transcription in spermatids and spermatocytes, suggest that the epimutation could be maintained during germline reprogramming and despite removal of aberrant transcription. The epivariation seen in the MMACHC promoter (0.95 × 10-3) is highly frequent compared to epivariations affecting other genes of the Online Catalog of Human Genes and Genetic Disorders in an epigenome-wide dataset of 23,116 individuals. This and the comparison of epigrams of two monozygotic twins suggest that the aberrant transcription could also be influenced by post-zygotic environmental exposures.
Collapse
|
13
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
14
|
Naveh NSS, Deegan DF, Huhn J, Traxler E, Lan Y, Weksberg R, Ganguly A, Engel N, Kalish JM. The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome. Nucleic Acids Res 2021; 49:6315-6330. [PMID: 34107024 PMCID: PMC8216465 DOI: 10.1093/nar/gkab475] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.6 kB deletion that ablates the core promoter of KCNQ1. This structural alteration leads to IC2 LOM and causes recurrent BWS. We find that occupancy of the chromatin organizer CTCF is disrupted proximal to the deletion, which causes chromatin architecture changes both in cis and in trans. We also profile the chromatin architecture of IC2 in patients with sporadic BWS caused by isolated LOM to identify conserved features of IC2 regulatory disruption. A strong interaction between CTCF sites around KCNQ1 and CDKN1C likely drive their expression on the maternal allele, while a weaker interaction involving the imprinting control region element may impede this connection and mediate gene silencing on the paternal allele. We present an imprinting model in which KCNQ1 transcription is necessary for appropriate CTCF binding and a novel chromatin conformation to drive allele-specific gene expression.
Collapse
Affiliation(s)
- Natali S Sobel Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel F Deegan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jacklyn Huhn
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Emily Traxler
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Genetics and Genome Biology, Hospital for Sick Children, and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nora Engel
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Eggermann T, Davies JH, Tauber M, van den Akker E, Hokken-Koelega A, Johansson G, Netchine I. Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. Genes (Basel) 2021; 12:genes12040585. [PMID: 33920525 PMCID: PMC8073901 DOI: 10.3390/genes12040585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Intrauterine and postnatal growth disturbances are major clinical features of imprinting disorders, a molecularly defined group of congenital syndromes caused by molecular alterations affecting parentally imprinted genes. These genes are expressed monoallelically and in a parent-of-origin manner, and they have an impact on human growth and development. In fact, several genes with an exclusive expression from the paternal allele have been shown to promote foetal growth, whereas maternally expressed genes suppress it. The evolution of this correlation might be explained by the different interests of the maternal and paternal genomes, aiming for the conservation of maternal resources for multiple offspring versus extracting maximal maternal resources. Since not all imprinted genes in higher mammals show the same imprinting pattern in different species, the findings from animal models are not always transferable to human. Therefore, human imprinting disorders might serve as models to understand the complex regulation and interaction of imprinted loci. This knowledge is a prerequisite for the development of precise diagnostic tools and therapeutic strategies for patients affected by imprinting disorders. In this review we will specifically overview the current knowledge on imprinting disorders associated with growth retardation, and its increasing relevance in a personalised medicine direction and the need for a multidisciplinary therapeutic approach.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8088008; Fax: +49-241-8082394
| | - Justin H. Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Southampton SO16 6YD, UK;
| | - Maithé Tauber
- Research centre of rare diseases PRADORT, Childrens Hospital, CHU Toulouse, Toulouse Institute of Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Tolouse III University, 31062 Toulouse, France;
| | - Erica van den Akker
- Erasmus University Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Anita Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, 3015 GD Rotterdam, The Netherlands;
| | - Gudmundur Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Department of Endocrinology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Irène Netchine
- Medical Faculty, AP-HP, Armand Trousseau Hospital-Functional Endocrine Research Unit, INSERM, Research Centre Saint-Antoine, Sorbonne University, 75012 Paris, France;
| |
Collapse
|
16
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
17
|
Eggermann T, Kraft F, Lausberg E, Ergezinger K, Kunstmann E. Paternal 132 bp deletion affecting KCNQ1OT1 in 11p15.5 is associated with growth retardation but does not affect imprinting. J Med Genet 2021; 58:173-176. [PMID: 32447323 DOI: 10.1136/jmedgenet-2020-106868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The chromosomal region 11p15.5 harbours two imprinting centres (H19/IGF2:IG-DMR/IC1, KCNQ1OT1:TSS-DMR/IC2). Molecular alterations of the IC2 are associated with Beckwith-Wiedemann syndrome (BWS), whereas only single patients with growth retardation and Silver-Russell syndrome (SRS) features have been reported. CNVs in 11p15.5 account for less than 1% of patients with BWS and SRS, and they mainly consist of duplications of both ICs either affecting the maternal (SRS) or the paternal (BWS) allele. However, this correlation does not apply to smaller CNVs, which are associated with diverse clinical outcomes. METHODS AND RESULTS We identified a family with a 132 bp deletion within the KCNQ1OT1 gene, associated with growth retardation in case of paternal transmission but a normal phenotype when maternally inherited. Comparison of molecular and clinical data with cases from the literature helped to delineate its functional relevance. CONCLUSION Microdeletions within the paternal IC2 affecting the KCNQ1OT1 gene have been described in only five families, and they all include the differentially methylated region KCNQ1OT1:TSS-DMR/IC2 and parts of the KCNQ1 gene. However, these deletions have different impacts on the expression of both genes and the cell-cycle inhibitor CDKN1C. They thereby cause different phenotypes. The 132 bp deletion is the smallest deletion in the IC2 reported so far. It does not affect the IC2 methylation in general and the coding sequence of the KCNQ1 gene. Thus, the deletion is only associated with a growth retardation phenotype when paternally transmitted but not with other clinical features in case of maternal inheritance as observed for larger deletions.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Eva Lausberg
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | | | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Eggermann T, Begemann M, Pfeiffer L. Unusual deletion of the maternal 11p15 allele in Beckwith-Wiedemann syndrome with an impact on both imprinting domains. Clin Epigenetics 2021; 13:30. [PMID: 33541417 PMCID: PMC7863277 DOI: 10.1186/s13148-021-01020-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Whereas duplications in 11p15.5 covering both imprinting centers (ICs) and their subordinated genes account for up to 1% of Beckwith–Wiedemann and Silver–Russell syndrome patients (BWS, SRS), the deletions in 11p15.5 reported so far only affect one of the ICs. In these cases, not only the size and gene content had an impact on the phenotype, but also the sex of the contributing parent influences the clinical signs of the deletion carrier. Results We here report on the first case with a heterozygous deletion within the maternal allele affecting genes which are regulated by both ICs in 11p15.5 in a BWS patient, and describe the molecular and clinical consequences in case of its maternal or paternal inheritance. Conclusions The identification of a unique deletion affecting both 11p15.5 imprinting domains in a BWS patient illustrates the complexity of the regulation mechanisms in these key imprinting regions.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Lutz Pfeiffer
- MVZ Medicover Humangenetik Berlin Lichtenberg, Berlin, Germany
| |
Collapse
|
19
|
Clinical Implications and Gender Differences of KCNQ1 p.Gly168Arg Pathogenic Variant in Long QT Syndrome. J Clin Med 2020; 9:jcm9123846. [PMID: 33256261 PMCID: PMC7760054 DOI: 10.3390/jcm9123846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Long QT syndrome (LQTS) is an inheritable arrhythmogenic disorder associated with life-threatening arrhythmic events (LAEs). In general, patients with LQTS2 (KCNH2) and LQTS3 (SCN5A) are considered to be a greater risk of LAEs than LQTS1 (KCNQ1) patients. Gender differences are also important. Series analyzing families with the same pathogenic variants may help in the progress of elaborating strong specific genotype-phenotype management strategies. In this manuscript, we describe the phenotype of seven unrelated families, carriers of the KCNQ1 G168R pathogenic variant. METHODS we identified all consecutive index cases referred for genetic testing with LQTS diagnosis carriers of KCNQ1 G168R variant. Genetic and clinical screening for all available relatives was performed. RESULTS we evaluated seven unrelated families, with a total 34 KCNQ1 G168R carriers (two obligated carriers died without available EKGs to evaluate the phenotype). All index cases but one were women and three of them presented with aborted sudden cardiac death (SCD) or syncope. The presence of sudden death in these families is notable, with a total of nine unexplained sudden deaths and four aborted SCD. Phenotype penetrance was 100% in women and 37.5% in men. CONCLUSIONS KCNQ1 G168R is a pathogenic variant, with a high penetrance among women and mild penetrance among men. Risk for LAEs in this variant seems not negligible, especially among woman, and risk stratification should always be carefully evaluated.
Collapse
|
20
|
Long QT and Silver Russell syndrome: First case report in a 9-year-old girl. HeartRhythm Case Rep 2020; 6:591-595. [PMID: 32983873 PMCID: PMC7498520 DOI: 10.1016/j.hrcr.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Chang S, Bartolomei MS. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Dis Model Mech 2020; 13:dmm044123. [PMID: 32424032 PMCID: PMC7272347 DOI: 10.1242/dmm.044123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting, a phenomenon in which the two parental alleles are regulated differently, is observed in mammals, marsupials and a few other species, including seed-bearing plants. Dysregulation of genomic imprinting can cause developmental disorders such as Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). In this Review, we discuss (1) how various (epi)genetic lesions lead to the dysregulation of clinically relevant imprinted loci, and (2) how such perturbations may contribute to the developmental defects in BWS and SRS. Given that the regulatory mechanisms of most imprinted clusters are well conserved between mice and humans, numerous mouse models of BWS and SRS have been generated. These mouse models are key to understanding how mutations at imprinted loci result in pathological phenotypes in humans, although there are some limitations. This Review focuses on how the biological findings obtained from innovative mouse models explain the clinical features of BWS and SRS.
Collapse
Affiliation(s)
- Suhee Chang
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Eßinger C, Karch S, Moog U, Fekete G, Lengyel A, Pinti E, Eggermann T, Begemann M. Frequency of KCNQ1 variants causing loss of methylation of Imprinting Centre 2 in Beckwith-Wiedemann syndrome. Clin Epigenetics 2020; 12:63. [PMID: 32393365 PMCID: PMC7216698 DOI: 10.1186/s13148-020-00856-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by disturbances of the chromosomal region 11p15.5. The most frequent molecular finding in BWS is loss of methylation (LOM) of the Imprinting Centre 2 (IC2) region on the maternal allele, which is localised in intron 10 of the KCNQ1 gene. In rare cases, LOM of IC2 has been reported in families with KCNQ1 germline variants which additionally cause long-QT syndrome (LQTS). Thus, a functional link between disrupted KCNQ1 transcripts and altered IC2 methylation has been suggested, resulting in the co-occurrence of LQTS and BWS in case of maternal inheritance. Whereas these cases were identified by chance or in patients with abnormal electrocardiograms, a systematic screen for KCNQ1 variants in IC2 LOM carriers has not yet been performed. Results We analysed 52 BWS patients with IC2 LOM to determine the frequency of germline variants in KCNQ1 by MLPA and an amplicon-based next generation sequencing approach. We identified one patient with a splice site variant causing premature transcription termination of KCNQ1. Conclusions Our study strengthens the hypothesis that proper KCNQ1 transcription is required for the establishment of IC2 methylation, but that KCNQ1 variants cause IC2 LOM only in a small number of BWS patients.
Collapse
Affiliation(s)
- Carla Eßinger
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephanie Karch
- University Children's Hospital, Heidelberg University, Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - György Fekete
- II. Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Anna Lengyel
- II. Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Eva Pinti
- II. Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
23
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
24
|
Common genetic variation in the Angelman syndrome imprinting centre affects the imprinting of chromosome 15. Eur J Hum Genet 2020; 28:835-839. [PMID: 32152487 PMCID: PMC7253442 DOI: 10.1038/s41431-020-0595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurogenetic imprinting disorder caused by the loss of function of UBE3A. In ~3–5% of AS patients, the disease is due to an imprinting defect (ID). These patients lack DNA methylation of the maternal SNRPN promotor so that a large SNRPN sense/UBE3A antisense transcript (SNHG14) is expressed, which silences UBE3A. In very rare cases, the ID is caused by a deletion of the AS imprinting centre (AS-IC). To search for sequence alterations, we sequenced this region in 168 patients without an AS-IC deletion, but did not detect any sequence alteration. However, the AS-IC harbours six common variants (five single nucleotide variants and one TATG insertion/deletion variant), which constitute five common haplotypes. To determine if any of these haplotypes is associated with an increased risk for an ID, we investigated 119 informative AS-ID trios with the transmission disequilibrium test, which is a family-based association test that measures the over-transmission of an allele or haplotype from heterozygous parents to affected offspring. By this we observed maternal over-transmission of haplotype H-AS3 (p = 0.0073). Interestingly, H-AS3 is the only haplotype that includes the TATG deletion allele. We conclude that this haplotype and possibly the TATG deletion, which removes a SOX2 binding site, increases the risk for a maternal ID and AS. Our data strengthen the notion that the AS-IC is important for establishing and/or maintaining DNA methylation at the SNRPN promotor and show that common genetic variation can affect genomic imprinting.
Collapse
|
25
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
26
|
Abstract
The mammalian genome experiences profound setting and resetting of epigenetic patterns during the life-course. This is understood best for DNA methylation: the specification of germ cells, gametogenesis, and early embryo development are characterised by phases of widespread erasure and rewriting of methylation. While mitigating against intergenerational transmission of epigenetic information, these processes must also ensure correct genomic imprinting that depends on faithful and long-term memory of gamete-derived methylation states in the next generation. This underscores the importance of understanding the mechanisms of methylation programming in the germline.
De novo methylation in the oocyte is of particular interest because of its intimate association with transcription, which results in a bimodal methylome unique amongst mammalian cells. Moreover, this methylation landscape is entirely set up in a non-dividing cell, making the oocyte a fascinating model system in which to explore mechanistic determinants of methylation. Here, we summarise current knowledge on the oocyte DNA methylome and how it is established, focussing on recent insights from knockout models in the mouse that explore the interplay between methylation and chromatin states. We also highlight some remaining paradoxes and enigmas, in particular the involvement of non-nuclear factors for correct
de novo methylation.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197-213. [DOI: 10.1093/humupd/dmz045] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Human reproductive issues affecting fetal and maternal health are caused by numerous exogenous and endogenous factors, of which the latter undoubtedly include genetic changes. Pathogenic variants in either maternal or offspring DNA are associated with effects on the offspring including clinical disorders and nonviable outcomes. Conversely, both fetal and maternal factors can affect maternal health during pregnancy. Recently, it has become evident that mammalian reproduction is influenced by genomic imprinting, an epigenetic phenomenon that regulates the expression of genes according to their parent from whom they are inherited. About 1% of human genes are normally expressed from only the maternally or paternally inherited gene copy. Since numerous imprinted genes are involved in (embryonic) growth and development, disturbance of their balanced expression can adversely affect these processes.
OBJECTIVE AND RATIONALE
This review summarises current our understanding of genomic imprinting in relation to human ontogenesis and pregnancy and its relevance for reproductive medicine.
SEARCH METHODS
Literature databases (Pubmed, Medline) were thoroughly searched for the role of imprinting in human reproductive failure. In particular, the terms ‘multilocus imprinting disturbances, SCMC, NLRP/NALP, imprinting and reproduction’ were used in various combinations.
OUTCOMES
A range of molecular changes to specific groups of imprinted genes are associated with imprinting disorders, i.e. syndromes with recognisable clinical features including distinctive prenatal features. Whereas the majority of affected individuals exhibit alterations at single imprinted loci, some have multi-locus imprinting disturbances (MLID) with less predictable clinical features. Imprinting disturbances are also seen in some nonviable pregnancy outcomes, such as (recurrent) hydatidiform moles, which can therefore be regarded as a severe form of imprinting disorders. There is growing evidence that MLID can be caused by variants in the maternal genome altering the imprinting status of the oocyte and the embryo, i.e. maternal effect mutations. Pregnancies of women carrying maternal affect mutations can have different courses, ranging from miscarriages to birth of children with clinical features of various imprinting disorders.
WIDER IMPLICATIONS
Increasing understanding of imprinting disturbances and their clinical consequences have significant impacts on diagnostics, counselling and management in the context of human reproduction. Defining criteria for identifying pregnancies complicated by imprinting disorders facilitates early diagnosis and personalised management of both the mother and offspring. Identifying the molecular lesions underlying imprinting disturbances (e.g. maternal effect mutations) allows targeted counselling of the family and focused medical care in further pregnancies.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl Oliver Kagan
- Obstetrics and Gynaecology, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Kühnel T, Heinz HSB, Utz N, Božić T, Horsthemke B, Steenpass L. A human somatic cell culture system for modelling gene silencing by transcriptional interference. Heliyon 2020; 6:e03261. [PMID: 32021933 PMCID: PMC6994850 DOI: 10.1016/j.heliyon.2020.e03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional interference and transcription through regulatory elements (transcriptional read-through) are implicated in gene silencing and the establishment of DNA methylation. Transcriptional read-through is needed to seed DNA methylation at imprinted genes in the germ line and can lead to aberrant gene silencing by DNA methylation in human disease. To enable the study of parameters and factors influencing transcriptional interference and transcriptional read-through at human promoters, we established a somatic cell culture system. At two promoters of imprinted genes (UBE3A and SNRPN) and two promoters shown to be silenced by aberrant transcriptional read-through in human disease (MSH2 and HBA2) we tested, if transcriptional read-through is sufficient for gene repression and the acquisition of DNA methylation. Induction of transcriptional read-through from the doxycycline-inducible CMV promoter resulted in consistent repression of all downstream promoters, independent of promoter type and orientation. Repression was dependent on ongoing transcription, since withdrawal of induction resulted in reactivation. DNA methylation was not acquired at any of the promoters. Overexpression of DNMT3A and DNMT3L, factors needed for DNA methylation establishment in oocytes, was still not sufficient for the induction of DNA methylation. This indicates that induction of DNA methylation has more complex requirements than transcriptional read-through and the presence of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Helena Sophie Barbara Heinz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Nadja Utz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Present address: Institute of Neuropathology, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Tanja Božić
- Helmholtz Institute for Biomedical Engineering, Division of Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Corresponding author.
| |
Collapse
|
29
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Wesseler K, Kraft F, Eggermann T. Molecular and Clinical Opposite Findings in 11p15.5 Associated Imprinting Disorders: Characterization of Basic Mechanisms to Improve Clinical Management. Int J Mol Sci 2019; 20:ijms20174219. [PMID: 31466347 PMCID: PMC6747273 DOI: 10.3390/ijms20174219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell and Beckwith-Wiedemann syndromes (SRS, BWS) are rare congenital human disorders characterized by opposite growth disturbances. With the increasing knowledge on the molecular basis of SRS and BWS, it has become obvious that the disorders mirror opposite alterations at the same genomic loci in 11p15.5. In fact, these changes directly or indirectly affect the expression of IGF2 and CDKN1C and their associated pathways, and thereby, cause growth disturbances as key features of both diseases. The increase of knowledge has become possible with the development and implementation of new and comprehensive assays. Whereas, in the beginning molecular testing was restricted to single chromosomal loci, many tests now address numerous loci in the same run, and the diagnostic implementation of (epi)genome wide assays is only a question of time. These high-throughput approaches will be complemented by the analysis of other omic datasets (e.g., transcriptome, metabolome, proteome), and it can be expected that the integration of these data will massively improve the understanding of the pathobiology of imprinting disorders and their diagnostics. Especially long-read sequencing methods, e.g., nanopore sequencing, allowing direct detection of native DNA modification, will strongly contribute to a better understanding of genomic imprinting in the near future. Thereby, new genomic loci and types of pathogenic variants will be identified, resulting in more precise discrimination into different molecular subgroups. These subgroups serve as the basis for (epi)genotype-phenotype correlations, allowing a more directed prognosis, counseling, and therapy. By deciphering the pathophysiological consequences of SRS and BWS and their molecular disturbances, future therapies will be available targeting the basic cause of the disease and respective pathomechanisms and will complement conventional therapeutic strategies.
Collapse
Affiliation(s)
- Katharina Wesseler
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany.
| |
Collapse
|
31
|
Gazzin A, Carli D, Sirchia F, Molinatto C, Cardaropoli S, Palumbo G, Zampino G, Ferrero GB, Mussa A. Phenotype evolution and health issues of adults with Beckwith-Wiedemann syndrome. Am J Med Genet A 2019; 179:1691-1702. [PMID: 31339634 DOI: 10.1002/ajmg.a.61301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) phenotype usually mitigates with age and data on adulthood are limited. Our study aims at reporting phenotype evolution and health issues in adulthood. METHODS 34 patients (16 males), aged 18-58 years (mean 28.5) with BWS were enrolled. RESULTS 26 patients were molecularly confirmed, 5 tested negative, and 3 were not tested. Final tall stature was present in 44%. Four patients developed Wilms' Tumor (2, 3, 5, and 10 years, respectively); one hepatoblastoma (22 years); one acute lymphoblastic leukemia (21 years); one adrenal adenoma and testicular Sertoli cell tumor (22 and 24 years, respectively); and three benign tumors (hepatic haemangioma, uterine myoma, and mammary fibroepithelioma). Surgery for BWS-related features was required in 85%. Despite surgical correction several patients presented morbidity and sequelae of BWS pediatric issues: pronunciation/swallow difficulties (n = 9) due to macroglossia, painful scoliosis (n = 4) consistent with lateralized overgrowth, recurrent urolithiasis (n = 4), azoospermia (n = 4) likely consequent to cryptorchidism, severe intellectual disability (n = 2) likely related to neonatal asphyxia and diabetes mellitus (n = 1) due to subtotal pancreatectomy for intractable hyperinsulinism. Four patients (two males) had healthy children (three physiologically conceived and one through assisted reproductive technology). CONCLUSIONS Adult health conditions in BWS are mostly consequent to pediatric issues, underlying the preventive role of follow-up strategies in childhood. Malignancy rate observed in early adulthood in this small cohort matches that observed in the first decade of life, cumulatively raising tumor rate in BWS to 20% during the observation period. Further studies are warranted in this direction.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Fabio Sirchia
- Institute for Maternal Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Cristina Molinatto
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | | | - Giuseppe Zampino
- Department of Woman and Child Health, Center for Rare Diseases and Birth Defects, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
32
|
Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019; 20:235-248. [PMID: 30647469 DOI: 10.1038/s41576-018-0092-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.
Collapse
|
33
|
Anvar Z, Acurzio B, Roma J, Cerrato F, Verde G. Origins of DNA methylation defects in Wilms tumors. Cancer Lett 2019; 457:119-128. [PMID: 31103718 DOI: 10.1016/j.canlet.2019.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Wilms tumor is an embryonic renal cancer that typically presents in early childhood and accounts for 7% of all paediatric cancers. Different genetic alterations have been described in this malignancy, however, only a few of them are associated with a majority of Wilms tumors. Alterations in DNA methylation, in contrast, are frequent molecular defects observed in most cases of Wilms tumors. How these epimutations are established in this tumor is not yet completely clear. The recent identification of the molecular actors required for the epigenetic reprogramming during embryogenesis suggests novel possible mechanisms responsible for the DNA methylation defects in Wilms tumor. Here, we provide an overview of the DNA methylation alterations observed in this malignancy and discuss the distinct molecular mechanisms by which these epimutations can arise.
Collapse
Affiliation(s)
- Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Josep Roma
- Vall d'Hebron Research Institute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Gaetano Verde
- Faculty of Medicine and Health Sciences, International University of Catalonia, Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|