1
|
Maalouf CA, Alberti A, Soutourina J. Mediator complex in transcription regulation and DNA repair: Relevance for human diseases. DNA Repair (Amst) 2024; 141:103714. [PMID: 38943827 DOI: 10.1016/j.dnarep.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
The Mediator complex is an essential coregulator of RNA polymerase II transcription. More recent developments suggest Mediator functions as a link between transcription regulation, genome organisation and DNA repair mechanisms including nucleotide excision repair, base excision repair, and homologous recombination. Dysfunctions of these processes are frequently associated with human pathologies, and growing evidence shows Mediator involvement in cancers, neurological, metabolic and infectious diseases. The detailed deciphering of molecular mechanisms of Mediator functions, using interdisciplinary approaches in different biological models and considering all functions of this complex, will contribute to our understanding of relevant human diseases.
Collapse
Affiliation(s)
- Christelle A Maalouf
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France.
| |
Collapse
|
2
|
Wu K, Wang W, Cheng Q, Xiao D, Li Y, Chen M, Zheng X. Rare MED12L Variants Are Associated with Susceptibility to Guttate Psoriasis in the Han Chinese Population. Dermatology 2024; 240:606-614. [PMID: 38735287 DOI: 10.1159/000538805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION According to the common disease/rare variant hypothesis, it is important to study the role of rare variants in complex diseases. The association of rare variants with psoriasis has been demonstrated, but the association between rare variants and specific clinical subtypes of psoriasis has not been investigated. METHODS Gene-based and gene-level meta-analyses were performed on data extracted from our previous study data sets (2,483 patients with guttate psoriasis and 8,292 patients with non-guttate psoriasis) for genotyping. Then, haplotype analysis was performed for rare loss-of-function variants located in MED12L, and protein function prediction was performed for MED12L. Gene-based analysis at each stage had a moderate significance threshold (p < 0.05). A χ2 test was then conducted on the three potential genes, and the merged gene-based analysis was used to confirm the results. We also conducted association analysis and meta-analysis for functional variants located on the identified gene. RESULTS Through these gene-level analyses, we determined that MED12L is a guttate psoriasis susceptibility gene (p = 9.99 × 10-5), and the single-nucleotide polymorphism with the strongest association was rs199780529 (p_combine = 1 × 10-3, p_meta = 2 × 10-3). CONCLUSIONS In our study, a guttate psoriasis-specific subtype-associated susceptibility gene was confirmed in a Chinese Han population. These findings contribute to a better genetic understanding of different subtypes of psoriasis.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wanrong Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Qianhui Cheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Duncheng Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yunxiao Li
- School of Life Science, Shandong University, Qingdao, China
| | - Mengyun Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
3
|
Comeau D, Belliveau J, Bouhamdani N, Amor MB. Expanding the phenotypic spectrum for CDK8-related disease: A case report. Am J Med Genet A 2024; 194:e63537. [PMID: 38193604 DOI: 10.1002/ajmg.a.63537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Cyclin-dependent kinase 8 (CDK8) is part of a regulatory kinase module that regulates the activity of the Mediator complex. The Mediator, a large conformationally flexible protein complex, goes on to regulate RNA polymerase II activity, consequently affecting transcriptional regulation. Thus, inactivating mutations of the genes within the kinase module cause aberrant transcriptional regulation and disease, namely, CDK8-related intellectual developmental disorder with hypotonia and behavioral abnormalities (IDDHBA). CASE PRESENTATION We describe, for the first time, a likely pathogenic heterozygous CDK8 variant c.599G>A, p.(Arg200Gln) inherited from the biological mother. The clinical presentation of the child and mother is within the described clinical spectrum for IDDHBA; however, undocumented progressive contractures of the hips and knees as well as scoliosis were also observed in the child. This phenotype was not found in the mother, highlighting a heterogenous presentation for the same variant within the same family. Furthermore, the described clinical presentation may further support the notion of a module- or Mediator-related syndrome with varying clinical presentation. CONCLUSION This case report documents the first inherited case of IDDHBA and expands the phenotypic spectrum for CDK8-related disease to include undocumented progressive contractures of the hips and knees as well as scoliosis, which may support the notion of a module- or Mediator-related syndrome with varying clinical presentation.
Collapse
Affiliation(s)
- Dominique Comeau
- Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
| | - Jenna Belliveau
- Centre de formation médicale du New-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
| | - Nadia Bouhamdani
- Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
- Centre de formation médicale du New-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
- Medical Genetics Department, Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
| | - Mouna Ben Amor
- Medical Genetics Department, Vitalité Health Network, Dr Georges-L.-Dumont University Hospital Center, Moncton, New Brunswick, Canada
| |
Collapse
|
4
|
Mínguez-Viñas T, Prakash V, Wang K, Lindström SH, Pozzi S, Scott SA, Spiteri E, Stevenson DA, Ashley EA, Gunnarsson C, Pantazis A. Two epilepsy-associated variants in KCNA2 (K V 1.2) at position H310 oppositely affect channel functional expression. J Physiol 2023; 601:5367-5389. [PMID: 37883018 DOI: 10.1113/jp285052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV β1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV β1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.
Collapse
Affiliation(s)
- Teresa Mínguez-Viñas
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Varsha Prakash
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kaiqian Wang
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sarah H Lindström
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Serena Pozzi
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stuart A Scott
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth Spiteri
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - David A Stevenson
- Division of Medical Genetics, Stanford University, Palo Alto, California, USA
| | - Euan A Ashley
- Division of Medical Genetics, Stanford University, Palo Alto, California, USA
| | - Cecilia Gunnarsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Genetics, Linköping University, Linköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Antonios Pantazis
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Maroofian R, Kaiyrzhanov R, Cali E, Zamani M, Zaki MS, Ferla M, Tortora D, Sadeghian S, Saadi SM, Abdullah U, Karimiani EG, Efthymiou S, Yeşil G, Alavi S, Al Shamsi AM, Tajsharghi H, Abdel-Hamid MS, Saadi NW, Al Mutairi F, Alabdi L, Beetz C, Ali Z, Toosi MB, Rudnik-Schöneborn S, Babaei M, Isohanni P, Muhammad J, Khan S, Al Shalan M, Hickey SE, Marom D, Elhanan E, Kurian MA, Marafi D, Saberi A, Hamid M, Spaull R, Meng L, Lalani S, Maqbool S, Rahman F, Seeger J, Palculict TB, Lau T, Murphy D, Mencacci NE, Steindl K, Begemann A, Rauch A, Akbas S, Aslanger AD, Salpietro V, Yousaf H, Ben-Shachar S, Ejeskär K, Al Aqeel AI, High FA, Armstrong-Javors AE, Zahraei SM, Seifi T, Zeighami J, Shariati G, Sedaghat A, Asl SN, Shahrooei M, Zifarelli G, Burglen L, Ravelli C, Zschocke J, Schatz UA, Ghavideldarestani M, Kamel WA, Van Esch H, Hackenberg A, Taylor JC, Al-Gazali L, Bauer P, Gleeson JJ, Alkuraya FS, Lupski JR, Galehdari H, Azizimalamiri R, Chung WK, Baig SM, Houlden H, Severino M. Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders. Brain 2023; 146:5031-5043. [PMID: 37517035 PMCID: PMC10690011 DOI: 10.1093/brain/awad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.
Collapse
Affiliation(s)
- Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Ati Mehr Kasra Genetics Institute, Kianpars, Ahvaz, Iran
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Matteo Ferla
- Wellcome Centre for Human Genetics, University of Oxford and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN UK
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, 44000 Faisalabad, Pakistan
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, 46300 Rawalpindi, Pakistan
| | - Ehsan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
- Molecular and Clinical Sciences Institute, St. George’s, University of London, London SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Gözde Yeşil
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Aisha M Al Shamsi
- Genetic Division, Pediatrics Department, Tawam Hospital, Al Ain, UAE
| | - Homa Tajsharghi
- School of Health Science, Division Biomedicine and Translational Medicine, University of Skovde, SE-541 28 Skovde, Sweden
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt
| | - Nebal Waill Saadi
- College of Medicine, University of Baghdad, 10071 Baghdad, Iraq
- Children Welfare Teaching Hospital, 10071 Baghdad, Iraq
| | - Fuad Al Mutairi
- Genetics and Precision Medicine department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, 22384 Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, 22384 Riyadh, Saudi Arabia
| | - Lama Alabdi
- Department of Zoology, College of Science, King Saud University, 11421 Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 12713 Riyadh, Saudi Arabia
| | | | - Zafar Ali
- Department of Cellular and Molecular Medicine, WJC PANUM, University of Copenhagen, DK-1165 Copenhagen, Denmark
- Centre for Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department Pediatric Ward Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Child Neurology, Children’s Hospital, Paediatric Research Center, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Jameel Muhammad
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, 44000 Faisalabad, Pakistan
- Centre for Regenerative Medicine and Stem Cell Research, Juma Building, Aga Khan University, Karachi 74800, Pakistan
| | - Sheraz Khan
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, 44000 Faisalabad, Pakistan
| | - Maha Al Shalan
- Genetics and Precision Medicine department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, 22384 Riyadh, Saudi Arabia
| | - Scott E Hickey
- Division of Genetic & Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Daphna Marom
- Genetics Institute and Genomic Center, Tel Aviv Sourasky Medical Center, and Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Emil Elhanan
- Nephro-Genetic Clinic, Nephrology Department and Genetics Institute, Tel Aviv Medical Center, Tel Aviv 64239, Israel
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Neurology, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Alihossein Saberi
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Robert Spaull
- Nephro-Genetic Clinic, Nephrology Department and Genetics Institute, Tel Aviv Medical Center, Tel Aviv 64239, Israel
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Linyan Meng
- Department of Neurology, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Seema Lalani
- Department of Neurology, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Shazia Maqbool
- Developmental-Behavioural Paediatrics Department, University of Child Health Sciences & The Children’s Hospital, 54000 Lahore, Pakistan
| | - Fatima Rahman
- Developmental-Behavioural Paediatrics Department, University of Child Health Sciences & The Children’s Hospital, 54000 Lahore, Pakistan
| | - Jürgen Seeger
- Center for Social Pediatrics and Epilepsy Outpatient Clinic Frankfurt Mitte, 60316 Frankfurt am Main, Germany
| | | | - Tracy Lau
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - David Murphy
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Niccolo Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Anais Begemann
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Ayça Dilruba Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Hammad Yousaf
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, 44000 Faisalabad, Pakistan
| | - Shay Ben-Shachar
- Clalit Research Institute, Clalit Health Services, 6578898 Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katarina Ejeskär
- School of Health Science, Division Biomedicine and Translational Medicine, University of Skovde, SE-541 28 Skovde, Sweden
| | - Aida I Al Aqeel
- Department of Pediatrics, Prince Sultan Military Medical City, 12233 Riyadh, Saudi Arabia
- American University of Beirut, 1107 2020 Beirut, Lebanon
- Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Frances A High
- Division of Medical Genetics, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Amy E Armstrong-Javors
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Tahereh Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Ati Mehr Kasra Genetics Institute, Kianpars, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Diabetes Research center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Noroozi Asl
- Department of Pediatrics Endocrinology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohmmad Shahrooei
- Specialized Immunology Laboratory of Dr Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, 3000 Leuven, Belgium
| | | | - Lydie Burglen
- Cerebellar Malformations and Congenital diseases Reference Center and Neurogenetics Lab, Department of Genetics, Armand Trousseau Hospital, AP-HP Sorbonne Université, 75006 Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Claudia Ravelli
- Pediatric Neurology Department, Movement Disorders Center, Armand Trousseau Hospital, AP-HP Sorbonne Université, 75006 Paris, France
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ulrich A Schatz
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, 81675 Munich, Germany
| | | | - Walaa A Kamel
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Faculty of Medicine, Beni-Suef University, 62521 Beni Suef, Egypt
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory for the Genetics of Cognition, Department of Human Genetics, KU Leuven–University of Leuven, 3000 Leuven, Belgium
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford and Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN UK
| | - Lihadh Al-Gazali
- Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | | | - Joseph J Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92025, USA
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Ati Mehr Kasra Genetics Institute, Kianpars, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Wendy K Chung
- Boston Children’s Hospital and Harvard Medical School Boston, MA 02115, USA
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, 44000 Faisalabad, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, 74800 Karachi, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
6
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
7
|
Ferraz MK, Esposito AC, Schmidt C, Lima MA, Vargas FR. Correspondence on "Variants in MED12L, encoding a subunit of the mediator kinase module, are responsible for intellectual disability associated with transcriptional defect" by Nizon et al. Genet Med 2022; 24:2204-2205. [PMID: 35920825 DOI: 10.1016/j.gim.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Marina Kossmann Ferraz
- Medical Genetics Service, Gaffrée and Guinle University Hospital, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; D'Or Institute of Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Ana Carolina Esposito
- Medical Genetics Service, Gaffrée and Guinle University Hospital, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudio Schmidt
- Centro de Genética Médica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Angélica Lima
- Medical Genetics Service, Gaffrée and Guinle University Hospital, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Regla Vargas
- Medical Genetics Service, Gaffrée and Guinle University Hospital, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Birth Defects Epidemiology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Nizon M, Isidor B. Response to Kossmann Ferraz et al. Genet Med 2022; 24:2206. [PMID: 35920824 DOI: 10.1016/j.gim.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mathilde Nizon
- Service de Génétique Médicale and L'institut du Thorax, CHU Nantes, Nantes Université, CNRS, INSERM, Nantes, France.
| | - Bertrand Isidor
- Service de Génétique Médicale and L'institut du Thorax, CHU Nantes, Nantes Université, CNRS, INSERM, Nantes, France
| |
Collapse
|
9
|
Xu NY, Liu ZY, Yang QM, Bian PP, Li M, Zhao X. Genomic Analyses for Selective Signatures and Genes Involved in Hot Adaptation Among Indigenous Chickens From Different Tropical Climate Regions. Front Genet 2022; 13:906447. [PMID: 35979430 PMCID: PMC9377314 DOI: 10.3389/fgene.2022.906447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, especially weather extremes like extreme cold or extreme hot, is a major challenge for global livestock. One of the animal breeding goals for sustainable livestock production should be to breed animals with excellent climate adaptability. Indigenous livestock and poultry are well adapted to the local climate, and they are good resources to study the genetic footprints and mechanism of the resilience to weather extremes. In order to identify selection signatures and genes that might be involved in hot adaptation in indigenous chickens from different tropical climates, we conducted a genomic analysis of 65 indigenous chickens that inhabit different climates. Several important unique positively selected genes (PSGs) were identified for each local chicken group by the cross-population extended haplotype homozygosity (XP-EHH). These PSGs, verified by composite likelihood ratio, genetic differentiation index, nucleotide diversity, Tajima’s D, and decorrelated composite of multiple signals, are related to nerve regulation, vascular function, immune function, lipid metabolism, kidney development, and function, which are involved in thermoregulation and hot adaptation. However, one common PSG was detected for all three tropical groups of chickens via XP-EHH but was not confirmed by other five types of selective sweep analyses. These results suggest that the hot adaptability of indigenous chickens from different tropical climate regions has evolved in parallel by taking different pathways with different sets of genes. The results from our study have provided reasonable explanations and insights for the rapid adaptation of chickens to diverse tropical climates and provide practical values for poultry breeding.
Collapse
Affiliation(s)
- Nai-Yi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhen-Yu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi-Meng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pei-Pei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, QC, Canada
- *Correspondence: Xin Zhao,
| |
Collapse
|
10
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
11
|
Chang KT, Jezek J, Campbell AN, Stieg DC, Kiss ZA, Kemper K, Jiang P, Lee HO, Kruger WD, van Hasselt PM, Strich R. Aberrant cyclin C nuclear release induces mitochondrial fragmentation and dysfunction in MED13L syndrome fibroblasts. iScience 2022; 25:103823. [PMID: 35198885 PMCID: PMC8844603 DOI: 10.1016/j.isci.2022.103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
MED13L syndrome is a haploinsufficiency developmental disorder characterized by intellectual disability, heart malformation, and hypotonia. MED13L controls transcription by tethering the cyclin C-Cdk8 kinase module (CKM) to the Mediator complex. In addition, cyclin C has CKM-independent roles in the cytoplasm directing stress-induced mitochondrial fragmentation and regulated cell death. Unstressed MED13L S1497 F/fs patient fibroblasts exhibited aberrant cytoplasmic cyclin C localization, mitochondrial fragmentation, and a 6-fold reduction in respiration. In addition, the fibroblasts exhibited reduced mtDNA copy number, reduction in mitochondrial membrane integrity, and hypersensitivity to oxidative stress. Finally, transcriptional analysis of MED13L mutant fibroblasts revealed reduced mRNA levels for several genes necessary for normal mitochondrial function. Pharmacological or genetic approaches preventing cyclin C-mitochondrial localization corrected the fragmented mitochondrial phenotype and partially restored organelle function. In conclusion, this study found that mitochondrial dysfunction is an underlying defect in cells harboring the MED13L S1497 F/fs allele and identified cyclin C mis-localization as the likely cause. These results provide a new avenue for understanding this disorder.
Collapse
Affiliation(s)
- Kai-Ti Chang
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jan Jezek
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Alicia N Campbell
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Zachary A Kiss
- Department of Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kevin Kemper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ping Jiang
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Hyung-Ok Lee
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Peter M van Hasselt
- Department of Metabolic and Endocrine Disease, University of Utrecht Medical Center, Utrecht, 3584 CX, the Netherlands
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
12
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
13
|
Zarate YA, Uehara T, Abe K, Oginuma M, Harako S, Ishitani S, Lehesjoki AE, Bierhals T, Kloth K, Ehmke N, Horn D, Holtgrewe M, Anderson K, Viskochil D, Edgar-Zarate CL, Sacoto MJG, Schnur RE, Morrow MM, Sanchez-Valle A, Pappas J, Rabin R, Muona M, Anttonen AK, Platzer K, Luppe J, Gburek-Augustat J, Kaname T, Okamoto N, Mizuno S, Kaido Y, Ohkuma Y, Hirose Y, Ishitani T, Kosaki K. CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants. Genet Med 2021; 23:1050-1057. [PMID: 33495529 DOI: 10.1038/s41436-020-01091-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. METHODS Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19G28R and CDK19Y32H. RESULTS We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). CONCLUSION CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kota Abe
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Oginuma
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Sora Harako
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shizuka Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Ehmke
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Horn
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Holtgrewe
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Katherine Anderson
- Department of Pediatrics, University of Vermont Medical Center, Burlington, VT, USA
| | - David Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - John Pappas
- NYU Grossman School of Medicine, Dept of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Rachel Rabin
- NYU Grossman School of Medicine, Dept of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Mikko Muona
- Folkhälsan Research Center and University of Helsinki, Helsinki, Finland
- Blueprint Genetics, Helsinki, Finland
| | - Anna-Kaisa Anttonen
- Folkhälsan Research Center and University of Helsinki, Helsinki, Finland
- Department of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Luppe
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University Leipzig, Leipzig, Germany
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Developemt, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Yusaku Kaido
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Wen Y, Ding X, Guan Q, Hu W, Wang B, Hu Q, Bigambo FM, Zhou Z, Wang X, Xia Y. Effects of exposure to urban particulate matter SRM 1648a during pregnancy on the neurobehavioral development of offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112142. [PMID: 33740484 DOI: 10.1016/j.ecoenv.2021.112142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The development of the nervous system is crucial to a child's health. However, the nervous system is also susceptible to a variety of factors during development. To date, epidemiological studies have reported controversial results on the relationship between prenatal exposure to particulate matter (PM) and neurobehavioral development. Thus, we investigated the effect of PM exposure during pregnancy on the neurobehavioral development of offsprings. Adult C57BL/6 mice were exposed to PM from gestation day (GD) 0.5-21 by the intratracheal instillation. The daily exposure doses were 250 µg/kg.b.w and 2500 µg/kg.b.w respectively. The offspring mice began behavioral tests at the 5th week. We assessed neurobehavioral development, and the gene expression level changes in the mouse hippocampus using RNA-seq. In the open field test, the movement distance in the central area was significantly decreased in the high-dose group. Serum free triiodothyronine (FT3) levels were significantly increased in male offspring mice with prenatal high-dose PM exposure. The RNA-seq results suggested that the Prkca, Med12l, Ep300, and Slc16a10 in the thyroid hormone signaling pathway were significantly decreased in offspring mice in the high-dose group. Our data showed that prenatal PM exposure caused the offspring mice's anxiety-like behaviors and increased serum FT3 levels. The changes in thyroid hormone pathway-related genes might be the causes of the above series of changes.
Collapse
Affiliation(s)
- Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bingqian Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhu Zhou
- Department of Chemistry, York College, City University of New York, New York 11451, USA
| | - Xu Wang
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
Rogers AP, Friend K, Rawlings L, Barnett CP. A de novo missense variant in MED13 in a patient with global developmental delay, marked facial dysmorphism, macroglossia, short stature, and macrocephaly. Am J Med Genet A 2021; 185:2586-2592. [PMID: 33931951 DOI: 10.1002/ajmg.a.62238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Alice P Rogers
- Women's and Children's Hospital, Paediatric and Reproductive Genetics Unit, North Adelaide, South Australia, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Lesley Rawlings
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Christopher P Barnett
- Women's and Children's Hospital, Paediatric and Reproductive Genetics Unit, North Adelaide, South Australia, Australia
| |
Collapse
|
16
|
van de Plassche SR, de Brouwer APM. MED12-Related (Neuro)Developmental Disorders: A Question of Causality. Genes (Basel) 2021; 12:663. [PMID: 33925166 PMCID: PMC8146938 DOI: 10.3390/genes12050663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.
Collapse
Affiliation(s)
| | - Arjan P. M. de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
17
|
E GX, Zhou DK, Zheng ZQ, Yang BG, Li XL, Li LH, Zhou RY, Nai WH, Jiang XP, Zhang JH, Hong QH, Ma YH, Chu MX, Gao HJ, Zhao YJ, Duan XH, He YM, Na RS, Han YG, Zeng Y, Jiang Y, Huang YF. Identification of a Goat Intersexuality-Associated Novel Variant Through Genome-Wide Resequencing and Hi-C. Front Genet 2021; 11:616743. [PMID: 33633772 PMCID: PMC7901718 DOI: 10.3389/fgene.2020.616743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Polled intersex syndrome (PIS) leads to reproductive disorders in goats and exerts a heavy influence on goat breeding. Since 2001, the core variant of an 11.7 kb deletion at ~129 Mb on chromosome 1 (CHI1) has been widely used as a genetic diagnostic criterion. In 2020, a ~0.48 Mb insertion within the PIS deletion was identified by sequencing in XX intersex goats. However, the suitability of this variation for the diagnosis of intersex goats worldwide and its further molecular genetic mechanism need to be clarified. Results: The whole-genome selective sweep of intersex goats from China was performed with whole-genome next-generation sequencing technology for large sample populations and a case–control study on interbreeds. A series of candidate genes related to the goat intersexuality phenotype were found. We further confirmed that a ~0.48 Mb duplicated fragment (including ERG and KCNJ15) downstream of the ~20 Mb PIS region was reversely inserted into the PIS locus in intersex Chinese goats and was consistent with that in European Saanen and Valais black-necked goats. High-throughput chromosome conformation capture (Hi-C) technology was then used to compare the 3D structures of the PIS variant neighborhood in CHI1 between intersex and non-intersex goats. A newly found structure was validated as an intrachromosomal rearrangement. This inserted duplication changed the original spatial structure of goat CHI1 and caused the appearance of several specific loop structures in the adjacent ~20 kb downstream region of FOXL2. Conclusions: Results suggested that the novel complex PIS variant genome was sufficient as a broad-spectrum clinical diagnostic marker of XX intersexuality in goats from Europe and China. A series of private dense loop structures caused by segment insertion into the PIS deletion might affect the expression of FOXL2 or other neighboring novel candidate genes. However, these structures require further in-depth molecular biological experimental verification. In general, this study provided new insights for future research on the molecular genetic mechanism underlying female-to-male sex reversal in goats.
Collapse
Affiliation(s)
- Guang-Xin E
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dong-Ke Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhu-Qing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bai-Gao Yang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiang-Long Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinghuangdao, China
| | - Lan-Hui Li
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Rong-Yan Zhou
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Wen-Hui Nai
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xun-Ping Jiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qiong-Hua Hong
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hui-Jiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Ju Zhao
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Zhi X, Chen Q, Song S, Gu Z, Wei W, Chen H, Chen X, Weng W, Zhou Q, Cui J, Cao L. Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways. Front Pharmacol 2021; 11:565163. [PMID: 33536903 PMCID: PMC7849192 DOI: 10.3389/fphar.2020.565163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Myostatin is a crucial cytokine that is widely present in skeletal muscle and that negatively regulates the growth and development of muscle cells. Recent research has shown that myostatin might play an essential role in bone metabolism. In RAW264.7 cells and bone marrow monocytes (BMMCs), myostatin activates the expression of the II type receptor ActR II B. Here, we report that myostatin significantly promoted RANKL/M-CSF-induced osteoclastogenesis and activated NF-κB and MAPK pathways in vitro via the Ccdc50 gene. Overexpression of myostatin promoted osteoclastogenesis and osteoclastogenesis-related markers including c-Src, MMP9, CTR, CK, and NFATc1. Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. Our study indicates that myostatin is a promising candidate target for inhibiting RANKL-mediated osteoclastogenesis and might participate in therapy for osteoporosis, and that the Ccdc50 gene plays a significant role in the regulatory process.
Collapse
Affiliation(s)
- Xin Zhi
- Department of Orthopedics, PLA General Hospital, Beijing, China
| | - Qian Chen
- Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Shaojun Song
- Department of Emergency, General Hospital of Central Theather Command, Wuhan, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Wenqiang Wei
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
19
|
Li T, Hu J, Wang S, Zhang H. Super-variants identification for brain connectivity. Hum Brain Mapp 2020; 42:1304-1312. [PMID: 33236465 PMCID: PMC7927294 DOI: 10.1002/hbm.25294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying genetic biomarkers for brain connectivity helps us understand genetic effects on brain function. The unique and important challenge in detecting associations between brain connectivity and genetic variants is that the phenotype is a matrix rather than a scalar. We study a new concept of super‐variant for genetic association detection. Similar to but different from the classic concept of gene, a super‐variant is a combination of alleles in multiple loci but contributing loci can be anywhere in the genome. We hypothesize that the super‐variants are easier to detect and more reliable to reproduce in their associations with brain connectivity. By applying a novel ranking and aggregation method to the UK Biobank databases, we discovered and verified several replicable super‐variants. Specifically, we investigate a discovery set with 16,421 subjects and a verification set with 2,882 subjects, where they are formed according to release date, and the verification set is used to validate the genetic associations from the discovery phase. We identified 12 replicable super‐variants on Chromosomes 1, 3, 7, 8, 9, 10, 12, 15, 16, 18, and 19. These verified super‐variants contain single nucleotide polymorphisms that locate in 14 genes which have been reported to have association with brain structure and function, and/or neurodevelopmental and neurodegenerative disorders in the literature. We also identified novel loci in genes RSPO2 and TMEM74 which may be upregulated in brain issues. These findings demonstrate the validity of the super‐variants and its capability of unifying existing results as well as discovering novel and replicable results.
Collapse
Affiliation(s)
- Ting Li
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Jianchang Hu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Shiying Wang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Stieg DC, Cooper KF, Strich R. The extent of cyclin C promoter occupancy directs changes in stress-dependent transcription. J Biol Chem 2020; 295:16280-16291. [PMID: 32934007 DOI: 10.1074/jbc.ra120.015215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 kinase module (CKM) is a detachable Mediator subunit composed of cyclin C and one each of paralogs Cdk8/Cdk19, Med12/Med12L, and Med13/Med13L. Our previous RNA-Seq studies demonstrated that cyclin C represses a subset of hydrogen peroxide-induced genes under normal conditions but is involved in activating other loci following stress. Here, we show that cyclin C directs this transcriptional reprograming through changes in its promoter occupancy. Following peroxide stress, cyclin C promoter occupancy increased for genes it activates while decreasing at loci it represses under normal conditions. Promoter occupancy of other CKM components generally mirrored cyclin C, indicating that the CKM moves as a single unit. It has previously been shown that some cyclin C leaves the nucleus following cytotoxic stress to induce mitochondrial fragmentation and apoptosis. We observed that CKM integrity appeared compromised at a subset of repressed promoters, suggesting a source of cyclin C that is targeted for nuclear release. Interestingly, mTOR inhibition induced a new pattern of cyclin C promoter occupancy indicating that this control is fine-tuned to the individual stress. Using inhibitors, we found that Cdk8 kinase activity is not required for CKM movement or repression but was necessary for full gene activation. In conclusion, this study revealed that different stress stimuli elicit specific changes in CKM promoter occupancy correlating to altered transcriptional outputs. Finally, although CKM components were recruited or expelled from promoters as a unit, heterogeneity was observed at individual promoters, suggesting a mechanism to generate gene- and stress-specific responses.
Collapse
Affiliation(s)
- David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
21
|
André KM, Sipos EH, Soutourina J. Mediator Roles Going Beyond Transcription. Trends Genet 2020; 37:224-234. [PMID: 32921511 DOI: 10.1016/j.tig.2020.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Dysfunctions of nuclear processes including transcription and DNA repair lead to severe human diseases. Gaining an understanding of how these processes operate in the crowded context of chromatin can be particularly challenging. Mediator is a large multiprotein complex conserved in eukaryotes with a key coactivator role in the regulation of RNA polymerase (Pol) II transcription. Despite intensive studies, the molecular mechanisms underlying Mediator function remain to be fully understood. Novel findings have provided insights into the relationship between Mediator and chromatin architecture, revealed its role in connecting transcription with DNA repair and proposed an emerging mechanism of phase separation involving Mediator condensates. Recent developments in the field suggest multiple functions of Mediator going beyond transcriptional processes per se that would explain its involvement in various human pathologies.
Collapse
Affiliation(s)
- Kévin M André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Eliet H Sipos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Poot M. Mutations in Mediator Complex Genes CDK8, MED12, MED13, and MEDL13 Mediate Overlapping Developmental Syndromes. Mol Syndromol 2019; 10:239-242. [PMID: 32021594 DOI: 10.1159/000502346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
|