1
|
Elmaihub ES, Alhudiri I, Ramadan AM, Eljilani M, Elzagheid A, Elfagi F, Hassen E. Analysis of BRCA1 germline variants (exons 5, 11 and 20) in breast cancer families from Libya. Libyan J Med 2024; 19:2356906. [PMID: 38785139 PMCID: PMC11210411 DOI: 10.1080/19932820.2024.2356906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) is a leading cause of cancer deaths in Libyan women. BRCA1 variants differ globally due to the diversity of genetic makeup and populations history. Their distribution, prevalence, and significance in Libyans remain largely unexplored. This study investigated the characteristics and distribution of BRCA1 variants in exons 5, 11, and 20 in Libyan families with BC. Thirty-six BC patients at ≤ 45 years, between 46-50 years and with a family history of breast, ovarian, pancreatic or prostate cancer in close relatives, or with triple-negative BC, were selected from 33 unrelated families during 2018-2020 at the National Cancer Institute, Sabratha, Libya. From these 33 families, 20 women (18 BC patients and two unaffected) were screened for BRCA1 exons 5, 11 and 20 using Sanger sequencing. All families completed an epidemiology and family history questionnaire. Twenty-seven variants (26 in exon 11 and 1 in exon 20, minor allele frequency of < 0.01) were detected in 10 of 18 unrelated families (55.6%.) Among the 27 variants, 26 (96%) were heterozygous. A frameshift pathogenic variant, c.2643del, and one novel variant c.1366A>G were identified. Furthermore, seven variants with unknown clinical significance were detected: c.1158T>A, c.1346C>G, c.1174C>G, c.3630 G>T, c.3599A>T, and c.3400 G>C in exon 11, and c.5244T>A in exon 20. Six variants with conflicting pathogenicity interpretations, c. 3460T>A, c. 3572 G>A, c. 3700 G>C, c. 1246C>G, c. 1344C>G, and c. 1054 G>A, were also identified. Twelve benign/likely benign variants were identified. Rare BRCA1 variants that have not been reported in North Africa were found in Libyan patients. These findings provide preliminary insights into the BRCA1 variants that could contribute to hereditary BC risk in Libyans. Further functional, computational, and population analyses are essential to determine their significance and potential impact on BC risk, which could ultimately lead to more personalized management strategies.
Collapse
Affiliation(s)
- Eanas Saleh Elmaihub
- Department of Molecular Biology, Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Sabratha University, Sabratha, Libya
| | - Inas Alhudiri
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Ahmad M. Ramadan
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Mouna Eljilani
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Adam Elzagheid
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Fakria Elfagi
- Department of Oncology, National Cancer Institute, Sabratha, Libya
| | - Elham Hassen
- Department of Molecular Biology, Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
- Laboratory of Molecular Immuno-Oncology, Faculty of Medicine, Monastir University, Monastir, Tunisia
| |
Collapse
|
2
|
Däster K, Hench J, Diepenbruck M, Volkmann K, Rouchon A, Palafox M, Miragaya JG, Preca BT, Kurzeder C, Weber WP, Bentires-Alj M, Soysal SD, Muenst S. BRCA promoter methylation in triple-negative breast cancer is preserved in xenograft models and represents a potential therapeutic marker for PARP inhibitors. Breast Cancer Res Treat 2024:10.1007/s10549-024-07502-8. [PMID: 39392573 DOI: 10.1007/s10549-024-07502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Most triple-negative breast cancers (TNBC) are sporadic in nature and often associated with dysfunction of the BRCA1 or BRCA2 genes. Since somatic BRCA mutations are rare in breast cancer (BC), this dysfunction frequently is the result of BRCA promoter methylation. Despite the phenotypic similarities of these tumors to those with germline or somatic BRCA mutation, the evidence of response to PARP inhibitors is unclear. METHODS We analyzed the prevalence of BRCA promoter methylation in 29 BC metastases through the well-established Illumina Infinium EPIC Human Methylation Bead Chip. In cases with BRCA methylation, the xenograft of the same tumor was tested. Additionally, we compared BC xenografts with an identified BRCA methylation to their matched primary tumors and subsequently investigated the efficacy of PARP inhibitors on tumor organoids from a BRCA2 promoter-methylated BC. RESULTS BRCA2 promotor hypermethylation was identified in one pleural metastasis of a young patient as well as in the xenograft tissue. We also identified five more xenograft models with BRCA2 promotor hypermethylation. Analysis of one matched primary tumor confirmed the same BRCA2 methylation. PARP inhibitor treatment of tumor organoids derived from the BRCA2 methylated xenograft tumor tissue of the young patient showed a significant decline in cell viability, similar to organoids with somatic BRCA1 mutation, while having no effect on organoids with BRCA1 wildtype. CONCLUSION BRCA promotor hypermethylation seems to be a rare event in metastatic BC but is preserved in subsequent xenograft models and might represent an attractive therapeutic marker for PARP inhibitors.
Collapse
Affiliation(s)
- Kavitha Däster
- Breast Center Zurich, Zurich, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Jürgen Hench
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Maren Diepenbruck
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Volkmann
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adelin Rouchon
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marta Palafox
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jorge Gomez Miragaya
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bogdan Tiberius Preca
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Kurzeder
- University of Basel, Basel, Switzerland
- Breast Center, University Hospital Basel, Basel, Switzerland
| | - Walter Paul Weber
- University of Basel, Basel, Switzerland
- Breast Center, University Hospital Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Savas Deniz Soysal
- University of Basel, Basel, Switzerland
- Praxis Chirurgie Im Zentrum, Basel, Switzerland
| | - Simone Muenst
- University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Galli A, Bellè F, Fargnoli A, Caligo MA, Cervelli T. Functional Characterization of the Human BRCA1 ∆11 Splicing Isoforms in Yeast. Int J Mol Sci 2024; 25:7511. [PMID: 39062754 PMCID: PMC11276823 DOI: 10.3390/ijms25147511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BRCA1, a crucial tumor suppressor gene, has several splicing isoforms, including Δ9-11, Δ11, and Δ11q, which lack exon 11, coding for significant portions of the protein. These isoforms are naturally present in both normal and cancerous cells, exhibiting altered activity compared to the full-length BRCA1. Despite this, the impact on cancer risk of the germline intronic variants promoting the exclusive expression of these Δ11 isoforms remains uncertain. Consequently, they are classified as variants of uncertain significance (VUS), posing challenges for traditional genetic classification methods due to their rarity and complexity. Our research utilizes a yeast-based functional assay, previously validated for assessing missense BRCA1 variants, to compare the activity of the Δ11 splicing isoforms with known pathogenic missense variants. This approach allows us to elucidate the functional implications of these isoforms and determine whether their exclusive expression could contribute to increased cancer risk. By doing so, we aim to provide insights into the pathogenic potential of intronic VUS-generating BRCA1 splicing isoforms and improve the classification of BRCA1 variants.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Arcangelo Fargnoli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Oncology, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| |
Collapse
|
4
|
Ustun Yilmaz S, Agaoglu NB, Manto K, Muftuoglu M, Özbek U. Cosmic Whirl: Navigating the Comet Trail in DNA: H2AX Phosphorylation and the Enigma of Uncertain Significance Variants. Genes (Basel) 2024; 15:724. [PMID: 38927659 PMCID: PMC11202575 DOI: 10.3390/genes15060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for effective diagnosis and treatment. We retrospectively analyzed the multi-gene cancer panel results of 922 individuals and performed in silico analysis following ClinVar classification. Then, we selected five breast cancer-diagnosed patients' missense BRCA2 VUSs (T1011R, T1104P/M1168K, R2027K, G2044A, and D2819) for reclassification. The effects of VUSs on BRCA2 function were analyzed using comet and H2AX phosphorylation (γH2AX) assays before and after the treatment of peripheral blood mononuclear cells (PBMCs) of subjects with the double-strand break (DSB) agent doxorubicin (Dox). Before and after Dox-induction, the amount of DNA in the comet tails was similar in VUS carriers; however, notable variations in γH2AX were observed, and according to combined computational and functional analyses, we reclassified T1001R as VUS-intermediate, T1104P/M1168K and D2819V as VUS (+), and R2027K and G2044A as likely benign. These findings highlight the importance of the variability of VUSs in response to DNA damage before and after Dox-induction and suggest that further investigation is needed to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Sevdican Ustun Yilmaz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye; (S.U.Y.); (M.M.)
| | - Nihat Bugra Agaoglu
- Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, 34764 Istanbul, Türkiye;
- IKF-The Frankfurt Institute of Clinical Cancer Research, 60488 Frankfurt am Main, Germany
| | - Karin Manto
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| | - Meltem Muftuoglu
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye; (S.U.Y.); (M.M.)
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Ugur Özbek
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye; (S.U.Y.); (M.M.)
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye
| |
Collapse
|
5
|
Elshwekh H, Alhudiri IM, Elzagheid A, Enattah N, Abbassi Y, Abou Assali L, Marino I, Stuani C, Buratti E, Romano M. Assessing the Impact of Novel BRCA1 Exon 11 Variants on Pre-mRNA Splicing. Cells 2024; 13:824. [PMID: 38786046 PMCID: PMC11119505 DOI: 10.3390/cells13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that the c.2363T>G and c.3192T>C variants could impact both splicing and protein function, resulting in the V340A and V788G mutations, respectively. We further examined their splicing effects using minigene assays in MCF7 and SKBR3 breast cancer cell lines. Interestingly, we found that the c.2363T>G variant significantly altered splicing patterns in MCF7 cells but not in SKBR3 cells. This finding suggests a potential influence of cellular context on the variant's effects. While attempts to correlate in silico predictions with RNA binding factors were inconclusive, this observation underscores the complexity of splicing regulation. Splicing is governed by various factors, including cellular contexts and protein interactions, making it challenging to predict outcomes accurately. Further research is needed to fully understand the functional consequences of the c.2363T>G variant in breast cancer pathogenesis. Integrating computational predictions with experimental data will provide valuable insights into the role of alternative splicing regulation in different breast cancer types and stages.
Collapse
Affiliation(s)
- Halla Elshwekh
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Inas M. Alhudiri
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Adam Elzagheid
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Nabil Enattah
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Yasmine Abbassi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Lubna Abou Assali
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Ilenia Marino
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
6
|
Militello AM, Orsi G, Cavaliere A, Niger M, Avallone A, Salvatore L, Tortora G, Rapposelli IG, Giordano G, Noventa S, Giommoni E, Bozzarelli S, Macchini M, Peretti U, Procaccio L, Puccini A, Cascinu S, Montagna C, Milella M, Reni M. Clinical outcomes and response to chemotherapy in a cohort of pancreatic cancer patients with germline variants of unknown significance (VUS) in BRCA1 and BRCA2 genes. Cancer Chemother Pharmacol 2023; 92:501-510. [PMID: 37725113 DOI: 10.1007/s00280-023-04585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE The clinical outcome and the efficacy of chemotherapy in pancreatic cancer patients with BRCA1/2 Variants of Unknown Significance (VUS) is unknown. We explored the effects of chemotherapy with or without Platinum in non metastatic and metastatic pancreatic cancer patients with BRCA1/2 VUS. METHODS A retrospective analysis of non-metastatic or metastatic pancreatic cancer patients with gBRCA1/2 VUS treated in 13 Italian centers between November 2015 and December 2020 was performed. All patients were assessed for toxicity and RECIST 1.1 response. Metastatic patients were evaluated for survival outcome. RESULTS 30 pancreatic cancer patients with gBRCA1/2 VUS were considered: 20 were M+ and 10 were non-M+. Pl-CT was recommended to 16 patients: 10 M+ (6 FOLFIRINOX and 4 PAXG) and 6 non-M+ (3 FOLFIRINOX and 3 PAXG); 11 patients received Nabpaclitaxel-Gemcitabine (AG; 8 M+) and 3 patients (2 M+) were treated with Gemcitabine (G). The RECIST 1.1 response rate was 27% for AG and 44% for Pl-CT (22% for (m) FOLFIRINOX and 71% PAXG). 1 year Progression-Free Survival was 37.5% for patients treated with AG and 33% in the Pl-CT subgroup. Median Overall Survival (OS) was 23.5 months for patients treated with AG and 14 months for the Pl-CT subgroup. 1 Year and 2 Year OS were numerically better for AG (1 Year OS: 75% vs 60% and 2 Year OS: 50% and 20% in AG and Pl-CT subgroups, respectively) as well. CONCLUSIONS Pl-CT does not seem to be associated with a better outcome compared to AG chemotherapy in PDAC patients with BRCA 1/2 VUS.
Collapse
Affiliation(s)
- Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cavaliere
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS Candiolo, Candiolo, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Antonio Avallone
- Biologia Cellulare e Bioterapie, Istituto Nazionale per lo Studio e la Cura dei Tumori ''Fondazione Giovanni Pascale'' - IRCCS, Naples, Italy
| | - Lisa Salvatore
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Unit of Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario, Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ''Dino Amadori'', Meldola, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Noventa
- Department of Medical Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa Giommoni
- Medical Oncology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Silvia Bozzarelli
- Department of Medical Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Procaccio
- Medical Oncology 1 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Montagna
- Department of Radiation Oncology and Genomic Instability and Cancer Genetics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 60, 20123, Milan, Italy.
- Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Kang M, Kim S, Lee DB, Hong C, Hwang KB. Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants. Sci Rep 2023; 13:10478. [PMID: 37380723 DOI: 10.1038/s41598-023-37698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023] Open
Abstract
Machine learning-based pathogenicity prediction helps interpret rare missense variants of BRCA1 and BRCA2, which are associated with hereditary cancers. Recent studies have shown that classifiers trained using variants of a specific gene or a set of genes related to a particular disease perform better than those trained using all variants, due to their higher specificity, despite the smaller training dataset size. In this study, we further investigated the advantages of "gene-specific" machine learning compared to "disease-specific" machine learning. We used 1068 rare (gnomAD minor allele frequency (MAF) < 0.005) missense variants of 28 genes associated with hereditary cancers for our investigation. Popular machine learning classifiers were employed: regularized logistic regression, extreme gradient boosting, random forests, support vector machines, and deep neural networks. As features, we used MAFs from multiple populations, functional prediction and conservation scores, and positions of variants. The disease-specific training dataset included the gene-specific training dataset and was > 7 × larger. However, we observed that gene-specific training variants were sufficient to produce the optimal pathogenicity predictor if a suitable machine learning classifier was employed. Therefore, we recommend gene-specific over disease-specific machine learning as an efficient and effective method for predicting the pathogenicity of rare BRCA1 and BRCA2 missense variants.
Collapse
Affiliation(s)
- Moonjong Kang
- Research Center, Software Division, NGeneBio, Seoul, 08390, Korea
| | - Seonhwa Kim
- Research Center, Software Division, NGeneBio, Seoul, 08390, Korea
| | - Da-Bin Lee
- Department of Computer Science and Engineering, Graduate School, Soongsil University, Seoul, 06978, Korea
| | - Changbum Hong
- Research Center, Software Division, NGeneBio, Seoul, 08390, Korea.
| | - Kyu-Baek Hwang
- Department of Computer Science and Engineering, Graduate School, Soongsil University, Seoul, 06978, Korea.
| |
Collapse
|
8
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. Am J Hum Genet 2023; 110:940-949. [PMID: 37236177 PMCID: PMC10257006 DOI: 10.1016/j.ajhg.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Luppino F, Adzhubei IA, Cassa CA, Toth-Petroczy A. DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features. Nat Commun 2023; 14:2230. [PMID: 37076482 PMCID: PMC10115847 DOI: 10.1038/s41467-023-37661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Despite the increasing use of genomic sequencing in clinical practice, the interpretation of rare genetic variants remains challenging even in well-studied disease genes, resulting in many patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect Predictors (VEPs) provide valuable evidence in variant assessment, but they are prone to misclassifying benign variants, contributing to false positives. Here, we develop Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for missense variants trained using extensive diagnostic data available in 59 actionable disease genes (American College of Medical Genetics and Genomics Secondary Findings v2.0, ACMG SF v2.0). DeMAG improves performance over existing VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical data, and includes a novel epistatic feature, the 'partners score', which leverages evolutionary and structural partnerships of residues. The 'partners score' provides a general framework for modeling epistatic interactions, integrating both clinical and functional information. We provide our tool and predictions for all missense variants in 316 clinically actionable disease genes (demag.org) to facilitate the interpretation of variants and improve clinical decision-making.
Collapse
Affiliation(s)
- Federica Luppino
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Ivan A Adzhubei
- Brigham and Women's Hospital Division of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher A Cassa
- Brigham and Women's Hospital Division of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
10
|
Wang SM. A global perspective on the ethnic-specific BRCA variation and its implication in clinical application. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:14-20. [PMID: 39036311 PMCID: PMC11256725 DOI: 10.1016/j.jncc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Pathogenic BRCA1 and BRCA2 (BRCA) variation is the genetic predisposition for high cancer risk affecting mostly breast and ovarian. BRCA variation information is widely used in clinical diagnosis, treatment, and prevention of BRCA-related cancer. The positive selection imposed on human BRCA leads to highly ethnic-specific BRCA variation to adapt different living environment on earth. Most of the human BRCA variants identified so far were from the European descendant populations and used as the standard reference for global human populations, whereas BRCA variation in other ethnic populations remains poorly characterized. This review addresses the origin of ethnic-specific BRCA variation, the importance of ethnic-specific BRCA variation in clinical application, the limitation of current BRCA variation data, and potential solutions to fill the gap.
Collapse
Affiliation(s)
- San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
11
|
Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions. Genes (Basel) 2023; 14:genes14020262. [PMID: 36833189 PMCID: PMC9957003 DOI: 10.3390/genes14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.
Collapse
|
12
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.06.23284281. [PMID: 36711752 PMCID: PMC9882564 DOI: 10.1101/2023.01.06.23284281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While pathogenic variants significantly increase disease risk in many genes, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2 , large cohort studies find no significant association between breast cancer and rare germline missense variants collectively. Here we introduce REGatta, a method to improve the estimation of clinical risk in gene segments. We define gene regions using the density of pathogenic diagnostic reports, and then calculate the relative risk in each of these regions using 109,581 exome sequences from women in the UK Biobank. We apply this method in seven established breast cancer genes, and identify regions in each gene with statistically significant differences in breast cancer incidence for rare missense carriers. Even in genes with no significant difference at the gene level, this approach significantly separates rare missense variant carriers at higher or lower risk ( BRCA2 regional model OR=1.46 [1.12, 1.79], p=0.0036 vs. BRCA2 gene model OR=0.96 [0.85,1.07] p=0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare with existing methods and the use of protein domains (Pfam) as regions, and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors which can potentially be used to improve risk assessment and clinical management.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Xiang J, Sun X, Song N, Ramaswamy S, Abou Tayoun AN, Peng Z. Comprehensive interpretation of single-nucleotide substitutions in GJB2 reveals the genetic and phenotypic landscape of GJB2-related hearing loss. Hum Genet 2023; 142:33-43. [PMID: 36048236 DOI: 10.1007/s00439-022-02479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Genetic variants in GJB2 are the most frequent cause of congenital and childhood hearing loss worldwide. The purpose of this study was to delineate the genetic and phenotypic landscape of GJB2 SNV variants. All possible single-nucleotide substitution variants of the coding region of GJB2 (N = 2043) were manually curated following the ACMG/AMP hearing loss guidelines. As a result, 60 (2.9%), 177 (8.7%), 1499 (73.4%), 301 (14.7%) and 6 (0.3%) of the variants were classified as pathogenic, likely pathogenic, variant of uncertain significance, likely benign, and benign, respectively. 53% (84/158) of the pathogenic/likely pathogenic missense variants were not present in ClinVar. The second transmembrane domain and the 310 helix were highly enriched for pathogenic missense variants, while the intracellular loops were tolerant to variation. The N-terminal tail and the extracellular loop showed high clustering of variants that are associated with syndromic or dominant non-syndromic hearing loss. In conclusion, our study interpreted all possible single-nucleotide substitution coding variants, characterized novel clinically significant variants in GJB2, and revealed significant genotype-phenotype correlations at this common hearing loss locus. Our work provides a prototype for other genes with similarly high genetic and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Jiale Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Nana Song
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sathishkumar Ramaswamy
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ahmad N Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates. .,Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Zhiyu Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
14
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
15
|
Familial history and prevalence of BRCA1, BRCA2 and TP53 pathogenic variants in HBOC Brazilian patients from a public healthcare service. Sci Rep 2022; 12:18629. [PMID: 36329109 PMCID: PMC9633799 DOI: 10.1038/s41598-022-23012-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated the cost-effectiveness of genetic testing for surveillance and treatment of carriers of germline pathogenic variants associated with hereditary breast/ovarian cancer syndrome (HBOC). In Brazil, seventy percent of the population is assisted by the public Unified Health System (SUS), where genetic testing is still unavailable. And few studies were performed regarding the prevalence of HBOC pathogenic variants in this context. Here, we estimated the prevalence of germline pathogenic variants in BRCA1, BRCA2 and TP53 genes in Brazilian patients suspected of HBOC and referred to public healthcare service. Predictive power of risk prediction models for detecting mutation carriers was also evaluated. We found that 41 out of 257 tested patients (15.9%) were carriers of pathogenic variants in the analyzed genes. Most frequent pathogenic variant was the founder Brazilian mutation TP53 c.1010G > A (p.Arg337His), adding to the accumulated evidence that supports inclusion of TP53 in routine testing of Brazilian HBOC patients. Surprisingly, BRCA1 c.5266dupC (p.Gln1756fs), a frequently reported pathogenic variant in Brazilian HBOC patients, was not observed. Regarding the use of predictive models, we found that familial history of cancer might be used to improve selection or prioritization of patients for genetic testing, especially in a context of limited resources.
Collapse
|
16
|
Khandakji MN, Mifsud B. Gene-specific machine learning model to predict the pathogenicity of BRCA2 variants. Front Genet 2022; 13:982930. [PMID: 36246618 PMCID: PMC9561395 DOI: 10.3389/fgene.2022.982930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Existing BRCA2-specific variant pathogenicity prediction algorithms focus on the prediction of the functional impact of a subtype of variants alone. General variant effect predictors are applicable to all subtypes, but are trained on putative benign and pathogenic variants and do not account for gene-specific information, such as hotspots of pathogenic variants. Local, gene-specific information have been shown to aid variant pathogenicity prediction; therefore, our aim was to develop a BRCA2-specific machine learning model to predict pathogenicity of all types of BRCA2 variants. Methods: We developed an XGBoost-based machine learning model to predict pathogenicity of BRCA2 variants. The model utilizes general variant information such as position, frequency, and consequence for the canonical BRCA2 transcript, as well as deleteriousness prediction scores from several tools. We trained the model on 80% of the expert reviewed variants by the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium and tested its performance on the remaining 20%, as well as on an independent set of variants of uncertain significance with experimentally determined functional scores. Results: The novel gene-specific model predicted the pathogenicity of ENIGMA BRCA2 variants with an accuracy of 99.9%. The model also performed excellently on predicting the functional consequence of the independent set of variants (accuracy was up to 91.3%). Conclusion: This new, gene-specific model is an accurate method for interpreting the pathogenicity of variants in the BRCA2 gene. It is a valuable addition for variant classification and can prioritize unreviewed variants for functional analysis or expert review.
Collapse
Affiliation(s)
- Mohannad N. Khandakji
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
- Hamad Medical Corporation, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Borbala Mifsud,
| |
Collapse
|
17
|
Kwong A, Ho CYS, Shin VY, Au CH, Chan TL, Ma ESK. How does re-classification of variants of unknown significance (VUS) impact the management of patients at risk for hereditary breast cancer? BMC Med Genomics 2022; 15:122. [PMID: 35641994 PMCID: PMC9158111 DOI: 10.1186/s12920-022-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background The popularity of multigene testing increases the probability of identifying variants of uncertain significance (VUS). While accurate variant interpretation enables clinicians to be better informed of the genetic risk of their patients, currently, there is a lack of consensus management guidelines for clinicians on VUS. Methods Among the BRCA1 and BRCA2 mutations screening in 3,544 subjects, 236 unique variants (BRCA1: 86; BRCA2: 150) identified in 459 patients were being reviewed. These variants consist of 231 VUS and 5 likely benign variants at the initial classification. Results The variants in 31.8% (146/459) patients were reclassified during the review, which involved 26 unique variants (11.0%). Also, 31 probands (6.8%) and their family members were offered high-risk surveillance and related management after these variants were reclassified to pathogenic or likely pathogenic. At the same time, 69 probands (15%) had their VUS downgraded to cancer risk equivalent to the general population level. Conclusion A review of archival variants from BRCA1 and BRCA2 genetic testing changed the management for 31.8% of the families due to increased or reduced risk. We encourage regular updates of variant databases, reference to normal population and collaboration between research laboratories on functional studies to define the clinical significances of VUS better. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01270-4.
Collapse
Affiliation(s)
- Ava Kwong
- Chief of Breast Surgery Division, Department of Surgery, The University of Hong Kong and University of Hong Kong-Shenzhen Hospital, Pokfulam, Hong Kong SAR. .,Department of Surgery, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR. .,Hong Kong Hereditary Breast Cancer Family Registry, Shau Kei Wan, Hong Kong SAR.
| | - Cecilia Yuen Sze Ho
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Vivian Yvonne Shin
- Chief of Breast Surgery Division, Department of Surgery, The University of Hong Kong and University of Hong Kong-Shenzhen Hospital, Pokfulam, Hong Kong SAR
| | - Chun Hang Au
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Shau Kei Wan, Hong Kong SAR.,Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Shau Kei Wan, Hong Kong SAR.,Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| |
Collapse
|
18
|
Dorling L, Carvalho S, Allen J, Parsons MT, Fortuno C, González-Neira A, Heijl SM, Adank MA, Ahearn TU, Andrulis IL, Auvinen P, Becher H, Beckmann MW, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bolla MK, Bremer M, Briceno I, Camp NJ, Campbell A, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dennis J, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Giles GG, Glendon G, Guénel P, Gündert M, Hadjisavvas A, Hahnen E, Hall P, Hamann U, Harkness EF, Hartman M, Hogervorst FBL, Hollestelle A, Hoppe R, Howell A, Jakubowska A, Jung A, Khusnutdinova E, Kim SW, Ko YD, Kristensen VN, Lakeman IMM, Li J, Lindblom A, Loizidou MA, Lophatananon A, Lubiński J, Luccarini C, Madsen MJ, Mannermaa A, Manoochehri M, Margolin S, Mavroudis D, Milne RL, Mohd Taib NA, Muir K, Nevanlinna H, Newman WG, Oosterwijk JC, Park SK, Peterlongo P, Radice P, Saloustros E, Sawyer EJ, Schmutzler RK, Shah M, Sim X, Southey MC, Surowy H, Suvanto M, Tomlinson I, Torres D, Truong T, van Asperen CJ, Waltes R, Wang Q, Yang XR, Pharoah PDP, Schmidt MK, Benitez J, Vroling B, Dunning AM, Teo SH, Kvist A, de la Hoya M, Devilee P, Spurdle AB, Vreeswijk MPG, Easton DF. Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Med 2022; 14:51. [PMID: 35585550 PMCID: PMC9116026 DOI: 10.1186/s13073-022-01052-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. METHODS We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. RESULTS The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. CONCLUSIONS These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.
Collapse
Affiliation(s)
- Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Cristina Fortuno
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | | | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael Bremer
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Ignacio Briceno
- Medical Faculty, Universidad de La Sabana, 140013, Bogota, Colombia
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, , 15706, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Pascal Guénel
- Team "Exposome and Heredity", CESP, Inserm, Gustave Roussy, University Paris-Saclay, UVSQ, Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Andreas Hadjisavvas
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Department of Oncology, 118 83, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elaine F Harkness
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228, Singapore
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GD, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - Anthony Howell
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Division of Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, 07442, Korea
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, 53113, Bonn, Germany
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379, Oslo, Norway
| | - Inge M M Lakeman
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Jingmei Li
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
- Human Genetics Division, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maria A Loizidou
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael J Madsen
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, 118 83, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10, Heraklion, Greece
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Jan C Oosterwijk
- Department of Genetics, University Medical Center Groningen, University Groningen, Groningen, 9713 GZ, The Netherlands
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Convergence Graduate Program in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133, Milan, Italy
| | | | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, 110231, Bogota, Colombia
| | - Thérèse Truong
- Team "Exposome and Heredity", CESP, Inserm, Gustave Roussy, University Paris-Saclay, UVSQ, Villejuif, France
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Regina Waltes
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Biomedical Network On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Bas Vroling
- Bio-Prodict, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Soo Hwang Teo
- Breast Cancer Research Unit, Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 22381, Lund, Sweden
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040, Madrid, Spain
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK.
| |
Collapse
|
19
|
Stella S, Vitale SR, Martorana F, Massimino M, Pavone G, Lanzafame K, Bianca S, Barone C, Gorgone C, Fichera M, Manzella L. Mutational Analysis of BRCA1 and BRCA2 Genes in Breast Cancer Patients from Eastern Sicily. Cancer Manag Res 2022; 14:1341-1352. [PMID: 35411189 PMCID: PMC8994564 DOI: 10.2147/cmar.s348529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Germline mutations of BRCA1 and BRCA2 are associated with a defined lifetime risk of breast (BC), ovarian (OC) and other cancers. Testing BRCA genes is pivotal to assess individual risk, but also to pursue preventive approaches in healthy carriers and tailored treatments in tumor patients. The prevalence of BRCA1 and BRCA2 alterations varies broadly across different geographic regions and, despite data about BRCA pathogenic variants among Sicilian families exist, studies specifically addressing eastern Sicily population are lacking. The aim of our study was to investigate the incidence and distribution of BRCA pathogenic germline alterations in a cohort of BC patients from eastern Sicily and to evaluate their associations with specific BC features. Patients and Methods Mutational status was assessed in a cohort of 389 BC patients, using next generation sequencing. The presence of alterations was correlated with tumor grading and proliferation index. Results Overall, 35 patients (9%) harbored a BRCA pathogenic variant, 17 (49%) in BRCA1 and 18 (51%) in BRCA2. BRCA1 alterations were prevalent among triple negative BC patients, whereas BRCA2 mutations were more common in subjects with luminal B BC. Tumor grading and proliferation index were both significantly higher among subjects with BRCA1 variants compared to non-carriers. Conclusion Our findings provide an overview about BRCA mutational status among BC patients from eastern Sicily and confirm the role of NGS analysis to identify hereditary BC patients. Overall, these data are consistent with previous evidences supporting BRCA screening to properly prevent and treat cancer among mutation carriers.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
- Correspondence: Stefania Stella, Tel +39 095 378 1946, Email ;
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
| | - Giuliana Pavone
- Medical Oncology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
| | - Katia Lanzafame
- Medical Oncology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
| | | | | | - Cristina Gorgone
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, 95123, Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, 95123, Italy
- Oasi Research Institute-IRCCS, Troina, 94018, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, 95123, Italy
| |
Collapse
|
20
|
Tumor BRCA Testing in Epithelial Ovarian Cancers: Past and Future-Five-Years' Single-Institution Experience of 762 Consecutive Patients. Cancers (Basel) 2022; 14:cancers14071638. [PMID: 35406410 PMCID: PMC8996829 DOI: 10.3390/cancers14071638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumor BRCA testing is crucial in the clinical management of women affected by epithelial ovarian cancer (EOC). In the present study, we aimed to report the results of five years of experience in tumor BRCA testing performed in a single-institution diagnostic setting. We profiled 762 consecutive EOC patients with a failure rate of less than 1% and less than two weeks of turnaround time, which is consistent with the clinical needs. We identified 23.4% of cases with pathogenic/likely pathogenic mutations, including 76% of patients affected by germline and 24% by somatic alterations. Here, we proposed a comprehensive and multidisciplinary clinical workflow that could be successfully followed for the identification of somatic as well as germline alterations, maximizing the benefit of BRCA testing both from a therapeutic and risk assessment perspective. Abstract The establishment of PARP inhibitors in the treatment of epithelial ovarian carcinoma (EOC) has prompt BRCA assessment at the time of diagnosis. We described our five years of experience of tumor BRCA testing, as part of a multidisciplinary workflow for the management of EOC patients. We used a BRCA next-generation sequencing (NGS) test for profiling formalin-fixed, paraffin-embedded (FFPE) EOCs of 762 consecutive patients, with a success rate of 99.7% and a median turnaround time of 12 days. We found 178 (23.4%) cases with pathogenic/likely pathogenic (P/LP) mutations, 74 (9.7%) cases with variants of uncertain significance and 508 (66.8%) wild type tumors. Among 174 patients without P/LP mutations and investigated with multiple-ligation probe-amplification analysis on peripheral blood, two (1.1%) were positive for large rearrangements. Patients with P/LP alterations and/or with positive family history were referred to genetic counselling. Comparing tumor and blood NGS test results of 256 patients, we obtained a tumor test negative predictive value of 100% and we defined 76% of P/LP alterations as germline and 24% as somatic variants. The proposed workflow may successfully identify EOC patients with BRCA1/2 alteration, guiding both therapeutic and risk assessment clinical decisions.
Collapse
|
21
|
Lebedeva A, Shaykhutdinova Y, Seriak D, Ignatova E, Rozhavskaya E, Vardhan D, Manicka S, Sharova M, Grigoreva T, Baranova A, Mileyko V, Ivanov M. Incidental germline findings during molecular profiling of tumor tissues for precision oncology: molecular survey and methodological obstacles. J Transl Med 2022; 20:29. [PMID: 35033101 PMCID: PMC8760669 DOI: 10.1186/s12967-022-03230-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background A fraction of patients referred for complex molecular profiling of biopsied tumors may harbor germline variants in genes associated with the development of hereditary cancer syndromes (HCS). Neither the bioinformatic analysis nor the reporting of such incidental germline findings are standardized. Methods Data from Next-Generation Sequencing (NGS) of biopsied tumor samples referred for complex molecular profiling were analyzed for germline variants in HCS-associated genes. Analysis of variant origin was performed employing bioinformatic algorithms followed by manual curation. When possible, the origin of the variant was validated by Sanger sequencing of the sample of normal tissue. The variants’ pathogenicity was assessed according to ACMG/AMP. Results Tumors were sampled from 183 patients (Males: 75 [41.0%]; Females: 108 [59.0%]; mean [SD] age, 57.7 [13.3] years) and analysed by targeted NGS. The most common tumor types were colorectal (19%), pancreatic (13%), and lung cancer (10%). A total of 56 sequence variants in genes associated with HCS were detected in 40 patients. Of them, 17 variants found in 14 patients were predicted to be of germline origin, with 6 variants interpreted as pathogenic (PV) or likely pathogenic (LPV), and 9 as variants of uncertain significance (VUS). For the 41 out of 42 (97%) missense variants in HCS-associated genes, the results of computational prediction of variant origin were concordant with that of experimental examination. We estimate that Sanger sequencing of a sample of normal tissue would be required for ~ 1–7% of the total assessed cases with PV or LPV, when necessity to follow with genetic counselling referral in ~ 2–15% of total assessed cases (PV, LPV or VUS found in HCS genes). Conclusion Incidental findings of pathogenic germline variants are common in data from cancer patients referred for complex molecular profiling. We propose an algorithm for the management of patients with newly detected variants in genes associated with HCS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- Atlas Oncodiagnostics, LLC, Moscow, Russia. .,Sechenov University, Moscow, Russia.
| | | | | | - Ekaterina Ignatova
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Department of chemotherapy №2, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Oncogenetics, Institute of Higher and Additional Professional Education, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Sofia Manicka
- School of Systems Biology, George Mason University, Mannas, VA, USA
| | | | | | - Ancha Baranova
- School of Systems Biology, George Mason University, Mannas, VA, USA
| | | | - Maxim Ivanov
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
22
|
Caputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, Le Gall J, Legendre B, Legrand C, Legros A, Lejeune S, Lidereau R, Lignon N, Limacher JM, Doriane Livon, Lizard S, Longy M, Lortholary A, Macquere P, Mailliez A, Malsa S, Margot H, Mari V, Maugard C, Meira C, Menjard J, Molière D, Moncoutier V, Moretta-Serra J, Muller E, Nevière Z, Nguyen Minh Tuan TV, Noguchi T, Noguès C, Oca F, Popovici C, Prieur F, Raad S, Rey JM, Ricou A, Salle L, Saule C, Sevenet N, Simaga F, Sobol H, Suybeng V, Tennevet I, Tenreiro H, Tinat J, Toulas C, Turbiez I, Uhrhammer N, Vande Perre P, Vaur D, Venat L, Viellard N, Villy MC, Warcoin M, Yvard A, Zattara H, Caron O, Lasset C, Remenieras A, Boutry-Kryza N, Castéra L, Stoppa-Lyonnet D. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. Am J Hum Genet 2021; 108:1907-1923. [PMID: 34597585 DOI: 10.1016/j.ajhg.2021.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Collapse
|
23
|
Tan M, Brusgaard K, Gerdes AM, Mortensen MB, Detlefsen S, Schaffalitzky de Muckadell OB, Joergensen MT. Whole genome sequencing identifies rare germline variants enriched in cancer related genes in first degree relatives of familial pancreatic cancer patients. Clin Genet 2021; 100:551-562. [PMID: 34313325 PMCID: PMC9291090 DOI: 10.1111/cge.14038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
First-degree relatives (FDRs) of familial pancreatic cancer (FPC) patients have increased risk of developing pancreatic ductal adenocarcinoma (PDAC). Investigating and understanding the genetic basis for PDAC susceptibility in FPC predisposed families may contribute toward future risk-assessment and management of high-risk individuals. Using a Danish cohort of 27 FPC families, we performed whole-genome sequencing of 61 FDRs of FPC patients focusing on rare genetic variants that may contribute to familial aggregation of PDAC. Statistical analysis was performed using the gnomAD database as external controls. Through analysis of heterozygous premature truncating variants (PTV), we identified cancer-related genes and cancer-driver genes harboring multiple germline mutations. Association analysis detected 20 significant genes with false discovery rate, q < 0.05 including: PALD1, LRP1B, COL4A2, CYLC2, ZFYVE9, BRD3, AHDC1, etc. Functional annotation showed that the significant genes were enriched by gene clusters encoding for extracellular matrix and associated proteins. PTV genes were over-represented by functions related to transport of small molecules, innate immune system, ion channel transport, and stimuli-sensing channels. In conclusion, FDRs of FPC patients carry rare germline variants related to cancer pathogenesis that may contribute to increased susceptibility to PDAC. The identified variants may potentially be useful for risk prediction of high-risk individuals in predisposed families.
Collapse
Affiliation(s)
- Ming Tan
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ove B Schaffalitzky de Muckadell
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Joergensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
Saied MH, Elkaffash D, Fadl R, Haleem RA, Refeat A, Ibrahim I, Tahoun M, Elkayal A, Tayae E. Preliminary results of targeted sequencing of BRCA1 and BRCA2 in a cohort of breast cancer families: New insight into pathogenic variants in patients and at‑risk relatives. Mol Med Rep 2021; 24:678. [PMID: 34296289 DOI: 10.3892/mmr.2021.12317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide and a major health concern in Egypt. There is a known association between pathogenic variants identified in breast cancer susceptibility gene (BRCA)1 and 2 and the risk of developing BC. However, the number of studies investigating mutations in BRCA1 and BRCA2 in Egypt remains limited. Thus, the aim of the present study was to investigate the frequency of BRCA1 and BRCA2 variants in patients with BC and their relatives. For this purpose, 11 families (11 patients and 16 relatives) were included in the present study. BRCA1 and BRCA2 variants were investigated using the Ion S5 next‑generation sequencer. It was found that pathogenic variants were more frequent in patients with familial BC (FBC) than in those with sporadic BC, with 71% of variants in BRCA2, including the first reported identification of c.9089del, c.5583_5584dup, c.8243G>A and c.7976G>A pathogenic variants in Egyptian patients with BC. Pathogenic variants in relatives were confined to FBC c.1278delA, c.1960_1961del, and c.1224delT, with a higher incidence of variants of uncertain significance (VUS), such as BRCA2 intron 2 c.68‑16delT. Of note, two cold spot benign variants, c.3113A>G and c.4837A>G, were repeatedly found (67%) in patients and relatives. In conclusion, to the best of our knowledge, novel pathogenic variants and VUS in Egyptian patients with BC and their high‑risk relatives were identified for the first time in the present study. These findings should be integrated with other genomic data concerning Egyptian families and carefully interpreted during genetic counseling.
Collapse
Affiliation(s)
- Marwa H Saied
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Dalal Elkaffash
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Reham Fadl
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Reham Abdel Haleem
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Amal Refeat
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Inas Ibrahim
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Mona Tahoun
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Alyaa Elkayal
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Eman Tayae
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| |
Collapse
|
25
|
Naslavsky MS, Scliar MO, Nunes K, Wang JYT, Yamamoto GL, Guio H, Tarazona-Santos E, Duarte YAO, Passos-Bueno MR, Meyer D, Zatz M. Biased pathogenic assertions of loss of function variants challenge molecular diagnosis of admixed individuals. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2021; 187:357-363. [PMID: 34189818 DOI: 10.1002/ajmg.c.31931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 11/06/2022]
Abstract
Diagnosis of individuals affected by monogenic disorders was significantly improved by next-generation sequencing targeting clinically relevant genes. Whole exomes yield a large number of variants that require several filtering steps, prioritization, and pathogenicity classification. Among the criteria recommended by ACMG, those that rely on population databases critically affect analyses of individuals with underrepresented ancestries. Population-specific allelic frequencies need consideration when characterizing potential deleteriousness of variants. An orthogonal input for classification is annotation of variants previously classified as pathogenic as a criterion that provide supporting evidence widely sourced at ClinVar. We used a whole-genome dataset from a census-based cohort of 1,171 elderly individuals from São Paulo, Brazil, highly admixed, and unaffected by severe monogenic disorders, to investigate if pathogenic assertions in ClinVar are enriched with higher proportions of European ancestry, indicating bias. Potential loss of function (pLOF) variants were filtered from 4,250 genes associated with Mendelian disorders and annotated with ClinVar assertions. Over 1,800 single nucleotide pLOF variants were included, 381 had non-benign assertions. Among carriers (N = 463), average European ancestry was significantly higher than noncarriers (N = 708; p = .011). pLOFs in genomic contexts of non-European local ancestries were nearly three times less likely to have any ClinVar entry (OR = 0.353; p <.0001). Independent pathogenicity assertions are useful for variant classification in molecular diagnosis. However, European overrepresentation of assertions can promote distortions when classifying variants in non-European individuals, even in admixed samples with a relatively high proportion of European ancestry. The investigation and deposit of clinically relevant findings of diverse populations is fundamental improve this scenario.
Collapse
Affiliation(s)
- Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jaqueline Y T Wang
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme L Yamamoto
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Orthopedic Research Labs, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Laboratório DASA, São Paulo, São Paulo, Brazil
| | - Heinner Guio
- Instituto Nacional de Salud, Lima, Peru.,Universidad de Huánuco, Huánuco, Peru
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Mosaico Translational Genomics Initiative, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Estudos Avançados Transdisciplinares, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yeda A O Duarte
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, São Paulo, Brazil.,Epidemiology Department, Public Health School, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
27
|
Baughan S, Tainsky MA. K3326X and Other C-Terminal BRCA2 Variants Implicated in Hereditary Cancer Syndromes: A Review. Cancers (Basel) 2021; 13:447. [PMID: 33503928 PMCID: PMC7865497 DOI: 10.3390/cancers13030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Whole genome analysis and the search for mutations in germline and tumor DNAs is becoming a major tool in the evaluation of risk as well as the management of hereditary cancer syndromes. Because of the identification of cancer predisposition gene panels, thousands of such variants have been catalogued yet many remain unclassified, presenting a clinical challenge for the management of hereditary cancer syndromes. Although algorithms exist to estimate the likelihood of a variant being deleterious, these tools are rarely used for clinical decision-making. Here, we review the progress in classifying K3326X, a rare truncating variant on the C-terminus of BRCA2 and review recent literature on other novel single nucleotide polymorphisms, SNPs, on the C-terminus of the protein, defined in this review as the portion after the final BRC repeat (amino acids 2058-3418).
Collapse
Affiliation(s)
- Scott Baughan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Incorvaia L, Fanale D, Bono M, Calò V, Fiorino A, Brando C, Corsini LR, Cutaia S, Cancelliere D, Pivetti A, Filorizzo C, La Mantia M, Barraco N, Cusenza S, Badalamenti G, Russo A, Bazan V. BRCA1/2 pathogenic variants in triple-negative versus luminal-like breast cancers: genotype-phenotype correlation in a cohort of 531 patients. Ther Adv Med Oncol 2020; 12:1758835920975326. [PMID: 33403015 PMCID: PMC7747114 DOI: 10.1177/1758835920975326] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Several available data suggest the association between specific molecular subtypes and BRCA1/2 mutational status. Previous investigations showed the association between BRCA1/2 pathogenic variants (PVs) in specific genomic regions and phenotypic variations of cancer relative risk, while the role of PV type and location in determining the breast cancer (BC) phenotypic features remains still unclear. The aim of this research was to describe the germline BRCA1/2 PVs in triple-negative breast cancer (TNBC) versus luminal-like BC and their potential leverage on BC phenotype. PATIENTS & METHODS We retrospectively collected and analyzed all clinical information of 531 patients with BC genetically tested for germline BRCA1/2 PVs by Next-Generation Sequencing analysis at University Hospital Policlinico "P. Giaccone" of Palermo (Sicily) from January 2016 to February 2020. RESULTS Our results corroborate the evidence that BRCA1-related tumors often have a profile which resembles the TNBC subtype, whereas BRCA2-associated tumors have a profile that resembles luminal-like BC, especially the Luminal B subtype. Interestingly, our findings suggest that the PVs identified in TNBC were not largely overlapping with those in luminal-like tumors. Differences in the frequency of two PVs potentially associated with different molecular tumor subtypes were observed. BRCA1-633delC was detected with relatively higher prevalence in patients with TNBC, whereas BRCA2-1466delT was found mainly in Luminal B tumors, but in no TNBC patient. CONCLUSION Future studies examining the type and location of BRCA1/2 PVs within different molecular subtypes are required to verify our hypothesis and could provide an interesting insight into the complex topic of genotype-phenotype correlations. Additionally, a more in-depth understanding of the potential correlations between BRCA PVs and clinical and phenotypic features of hereditary BC syndrome patients could be the key to develop better strategies of prevention and surveillance in BRCA-positive carriers without disease.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Section of Medical Oncology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valentina Calò
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Sofia Cutaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Clarissa Filorizzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Maria La Mantia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Stefania Cusenza
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Viviana Bazan
- Section of Medical Oncology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| |
Collapse
|
29
|
Lyra PCM, Nepomuceno TC, de Souza MLM, Machado GF, Veloso MF, Henriques TB, Dos Santos DZ, Ribeiro IG, Ribeiro RS, Rangel LBA, Richardson M, Iversen ES, Goldgar D, Couch FJ, Carvalho MA, Monteiro ANA. Integration of functional assay data results provides strong evidence for classification of hundreds of BRCA1 variants of uncertain significance. Genet Med 2020; 23:306-315. [PMID: 33087888 PMCID: PMC7862071 DOI: 10.1038/s41436-020-00991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose BRCA1 pathogenic variant heterozygotes are at a substantially increased risk for breast and ovarian cancer. The widespread uptake of testing has led to a significant increase in the detection of missense variants in BRCA1, the vast majority of which are variants of uncertain clinical significance (VUS), posing a challenge to genetic counseling. Here, we harness a wealth of functional data for thousands of variants to aid in variant classification. Methods We have collected, curated, and harmonized functional data for 2701 missense variants representing 24.5% of possible missense variants in BRCA1. Results were harmonized across studies by converting data into binary categorical variables (functional impact versus no functional impact). Using a panel of reference variants we identified a subset of assays with high sensitivity and specificity (≥80%) and apply the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines to assign evidence criteria for classification. Results Integration of data from validated assays provided ACMG/AMP evidence criteria in favor of pathogenicity for 297 variants or against pathogenicity for 2058 representing 96.2% of current VUS functionally assessed. We also explore discordant results and identify limitations in the approach. Conclusion High quality functional data are available for BRCA1 missense variants and provide evidence for classification of 2355 VUS according to their pathogenicity.
Collapse
Affiliation(s)
- Paulo C M Lyra
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Thales C Nepomuceno
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marcele L M de Souza
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Géssica F Machado
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Mariana F Veloso
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Taciane B Henriques
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Diandra Z Dos Santos
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Iuly G Ribeiro
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Roberto S Ribeiro
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Leticia B A Rangel
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - David Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro, Brazil
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
30
|
Harrison SM, Funke B. Use of “Coldspot” Regions in Variant Classification. Clin Chem 2020; 66:1263-1265. [DOI: 10.1093/clinchem/hvaa133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022]
|
31
|
Qin Z, Kuok CN, Dong H, Jiang L, Zhang L, Guo M, Leong HK, Wang L, Meng G, Wang SM. Can population BRCA screening be applied in non-Ashkenazi Jewish populations? Experience in Macau population. J Med Genet 2020; 58:587-591. [DOI: 10.1136/jmedgenet-2020-107181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
BackgroundPathogenic mutation in BRCA genes causes high cancer risk. Identifying the mutation carriers plays key roles in preventing BRCA mutation-related cancer. Population screening has demonstrated its power for comprehensive identification of the mutation carriers. However, it is only recommended for the Ashkenazi Jewish population with high prevalence of three founder mutations, but not for non-Ashkenazi Jewish populations as the cost-effectiveness could be too low due to their lower mutation prevalence and lack of founder mutation. Population screening would not benefit the majority of the human population for BRCA mutation-related cancer prevention.MethodsWe used population BRCA screening in 6000 residents, 1% of the Macau population, an ethnic Chinese population with unique genetic, linguistic and cultural features, and its BRCA mutation has not been analysed before.ResultsWe called BRCA variants, identified 18 carriers with 14 pathogenic mutations and determined the prevalence of 0.29% in the population (95% CI 0.15% to 0.42%). We compared the testing cost between the Ashkenazi Jewish population, the Sephardi Jewish population and the Macau population, and observed only a few fold differences.ConclusionOur study shows that testing cost is not the most important factor in considering population BRCA screening, at least for the populations in the developed countries/regions, regardless of the status of mutation prevalence and founder mutation.
Collapse
|