1
|
Kanbar A, Weinert CH, Kottutz D, Thinh L, Abuslima E, Kabil F, Hazman M, Egert B, Trierweiler B, Kulling SE, Nick P. Cold tolerance of woodland strawberry (Fragaria vesca) is linked to Cold Box Factor 4 and the dehydrin Xero2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5857-5879. [PMID: 39023232 DOI: 10.1093/jxb/erae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Domesticated strawberry is susceptible to sudden frost episodes, limiting the productivity of this cash crop in regions where they are grown during early spring. In contrast, the ancestral woodland strawberry (Fragaria vesca) has successfully colonized many habitats of the Northern Hemisphere. Thus, this species seems to harbour genetic factors promoting cold tolerance. Screening a germplasm established in the frame of the German Gene Bank for Crop Wild Relatives, we identified, among 70 wild accessions, a pair with contrasting cold tolerance. By following the physiological, biochemical, molecular, and metabolic responses of this contrasting pair, we identified the transcription factor Cold Box Factor 4 and the dehydrin Xero2 as molecular markers associated with superior tolerance to cold stress. Overexpression of green fluorescent protein fusions with Xero2 in tobacco BY-2 cells conferred cold tolerance to these recipient cells. A detailed analysis of the metabolome for the two contrasting genotypes allows the definition of metabolic signatures correlated with cold tolerance versus cold stress. This work provides a proof-of-concept for the value of crop wild relatives as genetic resources to identify genetic factors suitable to increase the stress resilience of crop plants.
Collapse
Affiliation(s)
- Adnan Kanbar
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Christoph Hubertus Weinert
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - David Kottutz
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - La Thinh
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Eman Abuslima
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Farida Kabil
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed Hazman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), 9 Gamma-Street, Giza-12619, Egypt
- School of Biotechnology, Nile University, Juhayna Square, 26th of July Corridor, El Sheikh Zayed, Giza, Egypt
| | - Björn Egert
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - Bernhard Trierweiler
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - Sabine Emma Kulling
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Prohaska A, Rey-Serra P, Petit J, Petit A, Perrotte J, Rothan C, Denoyes B. Exploration of a European-centered strawberry diversity panel provides markers and candidate genes for the control of fruit quality traits. HORTICULTURE RESEARCH 2024; 11:uhae137. [PMID: 38988619 PMCID: PMC11233882 DOI: 10.1093/hr/uhae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Fruit quality traits are major breeding targets in cultivated strawberry (Fragaria × ananassa). Taking into account the requirements of both growers and consumers when selecting high-quality cultivars is a real challenge. Here, we used a diversity panel enriched with unique European accessions and the 50 K FanaSNP array to highlight the evolution of strawberry diversity over the past 160 years, investigate the molecular basis of 12 major fruit quality traits by genome-wide association studies (GWAS), and provide genetic markers for breeding. Results show that considerable improvements of key breeding targets including fruit weight, firmness, composition, and appearance occurred simultaneously in European and American cultivars. Despite the high genetic diversity of our panel, we observed a drop in nucleotide diversity in certain chromosomal regions, revealing the impact of selection. GWAS identified 71 associations with 11 quality traits and, while validating known associations (firmness, sugar), highlighted the predominance of new quantitative trait locus (QTL), demonstrating the value of using untapped genetic resources. Three of the six selective sweeps detected are related to glossiness or skin resistance, two little-studied traits important for fruit attractiveness and, potentially, postharvest shelf life. Moreover, major QTL for firmness, glossiness, skin resistance, and susceptibility to bruising are found within a low diversity region of chromosome 3D. Stringent search for candidate genes underlying QTL uncovered strong candidates for fruit color, firmness, sugar and acid composition, glossiness, and skin resistance. Overall, our study provides a potential avenue for extending shelf life without compromising flavor and color as well as the genetic markers needed to achieve this goal.
Collapse
Affiliation(s)
- Alexandre Prohaska
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | - Pol Rey-Serra
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| | - Johann Petit
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| | - Aurélie Petit
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | - Justine Perrotte
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | | | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| |
Collapse
|
3
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
4
|
Sullivan W. Remarkable chromosomes and karyotypes: A top 10 list. Mol Biol Cell 2024; 35:pe1. [PMID: 38517328 PMCID: PMC11064663 DOI: 10.1091/mbc.e23-12-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomes and karyotypes are particularly rich in oddities and extremes. Described below are 10 remarkable chromosomes and karyotypes sprinkled throughout the tree of life. These include variants in chromosome number, structure, and dynamics both natural and engineered. This versatility highlights the robustness and tolerance of the mitotic and meiotic machinery to dramatic changes in chromosome and karyotype architecture. These examples also illustrate that the robustness comes at a cost, enabling the evolution of chromosomes that subvert mitosis and meiosis.
Collapse
Affiliation(s)
- William Sullivan
- Department of MCD Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
5
|
Feldmann MJ, Pincot DDA, Cole GS, Knapp SJ. Genetic gains underpinning a little-known strawberry Green Revolution. Nat Commun 2024; 15:2468. [PMID: 38504104 PMCID: PMC10951273 DOI: 10.1038/s41467-024-46421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The annual production of strawberry has increased by one million tonnes in the US and 8.4 million tonnes worldwide since 1960. Here we show that the US expansion was driven by genetic gains from Green Revolution breeding and production advances that increased yields by 2,755%. Using a California population with a century-long breeding history and phenotypes of hybrids observed in coastal California environments, we estimate that breeding has increased fruit yields by 2,974-6,636%, counts by 1,454-3,940%, weights by 228-504%, and firmness by 239-769%. Using genomic prediction approaches, we pinpoint the origin of the Green Revolution to the early 1950s and uncover significant increases in additive genetic variation caused by transgressive segregation and phenotypic diversification. Lastly, we show that the most consequential Green Revolution breeding breakthrough was the introduction of photoperiod-insensitive, PERPETUAL FLOWERING hybrids in the 1970s that doubled yields and drove the dramatic expansion of strawberry production in California.
Collapse
Affiliation(s)
- Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Osorio-Marín J, Fernandez E, Vieli L, Ribera A, Luedeling E, Cobo N. Climate change impacts on temperate fruit and nut production: a systematic review. FRONTIERS IN PLANT SCIENCE 2024; 15:1352169. [PMID: 38567135 PMCID: PMC10986187 DOI: 10.3389/fpls.2024.1352169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Temperate fruit and nut crops require distinctive cold and warm seasons to meet their physiological requirements and progress through their phenological stages. Consequently, they have been traditionally cultivated in warm temperate climate regions characterized by dry-summer and wet-winter seasons. However, fruit and nut production in these areas faces new challenging conditions due to increasingly severe and erratic weather patterns caused by climate change. This review represents an effort towards identifying the current state of knowledge, key challenges, and gaps that emerge from studies of climate change effects on fruit and nut crops produced in warm temperate climates. Following the PRISMA methodology for systematic reviews, we analyzed 403 articles published between 2000 and 2023 that met the defined eligibility criteria. A 44-fold increase in the number of publications during the last two decades reflects a growing interest in research related to both a better understanding of the effects of climate anomalies on temperate fruit and nut production and the need to find strategies that allow this industry to adapt to current and future weather conditions while reducing its environmental impacts. In an extended analysis beyond the scope of the systematic review methodology, we classified the literature into six main areas of research, including responses to environmental conditions, water management, sustainable agriculture, breeding and genetics, prediction models, and production systems. Given the rapid expansion of climate change-related literature, our analysis provides valuable information for researchers, as it can help them identify aspects that are well understood, topics that remain unexplored, and urgent questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Juliana Osorio-Marín
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Eduardo Fernandez
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Lorena Vieli
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Alejandra Ribera
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco, Chile
| | - Eike Luedeling
- Department of Horticultural Sciences, University of Bonn, Bonn, Germany
| | - Nicolas Cobo
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
7
|
Feldmann MJ, Pincot DDA, Vachev MV, Famula RA, Cole GS, Knapp SJ. Accelerating genetic gains for quantitative resistance to verticillium wilt through predictive breeding in strawberry. THE PLANT GENOME 2024; 17:e20405. [PMID: 37961831 DOI: 10.1002/tpg2.20405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Verticillium wilt (VW), a devastating vascular wilt disease of strawberry (Fragaria × $\times$ ananassa), has caused economic losses for nearly a century. This disease is caused by the soil-borne pathogen Verticillium dahliae, which occurs nearly worldwide and causes disease in numerous agriculturally important plants. The development of VW-resistant cultivars is critically important for the sustainability of strawberry production. We previously showed that a preponderance of the genetic resources (asexually propagated hybrid individuals) preserved in public germplasm collections were moderately to highly susceptible and that genetic gains for increased resistance to VW have been negligible over the last 60 years. To more fully understand the challenges associated with breeding for increased quantitative resistance to this pathogen, we developed and phenotyped a training population of hybrids (n = 564 $n = 564$ ) among elite parents with a wide range of resistance phenotypes. When these data were combined with training data from a population of elite and exotic hybrids (n = 386 $n = 386$ ), genomic prediction accuracies of 0.47-0.48 were achieved and were predicted to explain 70%-75% of the additive genetic variance for resistance. We concluded that breeding values for resistance to VW can be predicted with sufficient accuracy for effective genomic selection with routine updating of training populations.
Collapse
Affiliation(s)
- Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Mishi V Vachev
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Hardigan MA, Feldmann MJ, Carling J, Zhu A, Kilian A, Famula RA, Cole GS, Knapp SJ. A medium-density genotyping platform for cultivated strawberry using DArTag technology. THE PLANT GENOME 2023; 16:e20399. [PMID: 37940627 DOI: 10.1002/tpg2.20399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
Abstract
Genomic prediction in breeding populations containing hundreds to thousands of parents and seedlings is prohibitively expensive with current high-density genetic marker platforms designed for strawberry. We developed mid-density panels of molecular inversion probes (MIPs) to be deployed with the "DArTag" marker platform to provide a low-cost, high-throughput genotyping solution for strawberry genomic prediction. In total, 7742 target single nucleotide polymorphism (SNP) regions were used to generate MIP assays that were tested with a screening panel of 376 octoploid Fragaria accessions. We evaluated the performance of DArTag assays based on genotype segregation, amplicon coverage, and their ability to produce subgenome-specific amplicon alignments to the FaRR1 assembly and subsequent alignment-based variant calls with strong concordance to DArT's alignment-free, count-based genotype reports. We used a combination of marker performance metrics and physical distribution in the FaRR1 assembly to select 3K and 5K production panels for genotyping of large strawberry populations. We show that the 3K and 5K DArTag panels are able to target and amplify homologous alleles within subgenomic sequences with low-amplification bias between reference and alternate alleles, supporting accurate genotype calling while producing marker genotypes that can be treated as functionally diploid for quantitative genetic analysis. The 3K and 5K target SNPs show high levels of polymorphism in diverse F. × ananassa germplasm and UC Davis cultivars, with mean pairwise diversity (π) estimates of 0.40 and 0.32 and mean heterozygous genotype frequencies of 0.35 and 0.33, respectively.
Collapse
Affiliation(s)
- Michael A Hardigan
- USDA-ARS, Horticultural Crops Production and Genetic Improvement Research Unit, Corvallis, Oregon, USA
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Jason Carling
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Anyu Zhu
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Randi A Famula
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
10
|
Zhang M, Kong Z, Fu H, Shu X, Xue Q, Lai H, Guo Q. Rhizosphere microbial ecological characteristics of strawberry root rot. Front Microbiol 2023; 14:1286740. [PMID: 38033596 PMCID: PMC10687216 DOI: 10.3389/fmicb.2023.1286740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Strawberry (Fragaria × ananassa Duch.) holds a preeminent position among small fruits globally due to its delectable fruits and significant economic value. However, strawberry cultivation is hampered by various plant diseases, hindering the sustainable development of the strawberry industry. The occurrence of plant diseases is closely linked to imbalance in rhizosphere microbial community structure. Methods In the present study, a systematic analysis of the differences and correlations among non-culturable microorganisms, cultivable microbial communities, and soil nutrients in rhizosphere soil, root surface soil, and non-rhizosphere soil of healthy and diseased strawberry plants affected by root rot was conducted. The goal was to explore the relationship between strawberry root rot occurrence and rhizosphere microbial community structure. Results According to the results, strawberry root rot altered microbial community diversity, influenced fungal community composition in strawberry roots, reduced microbial interaction network stability, and enriched more endophytic-phytopathogenic bacteria and saprophytic bacteria. In addition, the number of bacteria isolated from the root surface soil of diseased plants was significantly higher than that of healthy plants. Discussion In summary, the diseased strawberry plants changed microbial community diversity, fungal species composition, and enriched functional microorganisms significantly, in addition to reshaping the microbial co-occurrence network. The results provide a theoretical basis for revealing the microecological mechanism of strawberry root rot and the ecological prevention and control of strawberry root rot from a microbial ecology perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Denoyes B, Prohaska A, Petit J, Rothan C. Deciphering the genetic architecture of fruit color in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6306-6320. [PMID: 37386925 PMCID: PMC10627153 DOI: 10.1093/jxb/erad245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Fruits of Fragaria species usually have an appealing bright red color due to the accumulation of anthocyanins, water-soluble flavonoid pigments. Octoploid cultivated strawberry (Fragaria × ananassa) is a major horticultural crop for which fruit color and associated nutritional value are main breeding targets. Great diversity in fruit color intensity and pattern is observed not only in cultivated strawberry but also in wild relatives such as its octoploid progenitor F. chiloensis or the diploid woodland strawberry F. vesca, a model for fruit species in the Rosaceae. This review examines our understanding of fruit color formation in strawberry and how ongoing developments will advance it. Natural variations of fruit color as well as color changes during fruit development or in response to several cues have been used to explore the anthocyanin biosynthetic pathway and its regulation. So far, the successful identification of causal genetic variants has been largely driven by the availability of high-throughput genotyping tools and high-quality reference genomes of F. vesca and F. × ananassa. The current completion of haplotype-resolved genomes of F. × ananassa combined with QTL mapping will accelerate the exploitation of the untapped genetic diversity of fruit color and help translate the findings into strawberry improvement.
Collapse
Affiliation(s)
- Béatrice Denoyes
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Alexandre Prohaska
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- INVENIO, MIN de Brienne, Bordeaux, France
| | - Johann Petit
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Christophe Rothan
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| |
Collapse
|
12
|
Liu Z, Liang T, Kang C. Molecular bases of strawberry fruit quality traits: Advances, challenges, and opportunities. PLANT PHYSIOLOGY 2023; 193:900-914. [PMID: 37399254 DOI: 10.1093/plphys/kiad376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The strawberry is one of the world's most popular fruits, providing humans with vitamins, fibers, and antioxidants. Cultivated strawberry (Fragaria × ananassa) is an allo-octoploid and highly heterozygous, making it a challenge for breeding, quantitative trait locus (QTL) mapping, and gene discovery. Some wild strawberry relatives, such as Fragaria vesca, have diploid genomes and are becoming laboratory models for the cultivated strawberry. Recent advances in genome sequencing and CRISPR-mediated genome editing have greatly improved the understanding of various aspects of strawberry growth and development in both cultivated and wild strawberries. This review focuses on fruit quality traits that are most relevant to the consumers, including fruit aroma, sweetness, color, firmness, and shape. Recently available phased-haplotype genomes, single nucleotide polymorphism (SNP) arrays, extensive fruit transcriptomes, and other big data have made it possible to locate key genomic regions or pinpoint specific genes that underlie volatile synthesis, anthocyanin accumulation for fruit color, and sweetness intensity or perception. These new advances will greatly facilitate marker-assisted breeding, the introgression of missing genes into modern varieties, and precise genome editing of selected genes and pathways. Strawberries are poised to benefit from these recent advances, providing consumers with fruit that is tastier, longer-lasting, healthier, and more beautiful.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Tong Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
13
|
Jin X, Du H, Zhu C, Wan H, Liu F, Ruan J, Mower JP, Zhu A. Haplotype-resolved genomes of wild octoploid progenitors illuminate genomic diversifications from wild relatives to cultivated strawberry. NATURE PLANTS 2023; 9:1252-1266. [PMID: 37537397 DOI: 10.1038/s41477-023-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Strawberry is an emerging model for studying polyploid genome evolution and rapid domestication of fruit crops. Here we report haplotype-resolved genomes of two wild octoploids (Fragaria chiloensis and Fragaria virginiana), the progenitor species of cultivated strawberry. Substantial variation is identified between species and between haplotypes. We redefine the four subgenomes and track the genetic contributions of diploid species by additional sequencing of the diploid F. nipponica genome. We provide multiple lines of evidence that F. vesca and F. iinumae, rather than other described extant species, are the closest living relatives of these wild and cultivated octoploids. In response to coexistence with quadruplicate gene copies, the octoploid strawberries have experienced subgenome dominance, homoeologous exchanges and coordinated expression of homoeologous genes. However, some homoeologues have substantially altered expression bias after speciation and during domestication. These findings enhance our understanding of the origin, genome evolution and domestication of strawberries.
Collapse
Affiliation(s)
- Xin Jin
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chumeng Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
14
|
Muñoz P, Castillejo C, Gómez JA, Miranda L, Lesemann S, Olbricht K, Petit A, Chartier P, Haugeneder A, Trinkl J, Mazzoni L, Masny A, Zurawicz E, Ziegler FMR, Usadel B, Schwab W, Denoyes B, Mezzetti B, Osorio S, Sánchez-Sevilla JF, Amaya I. QTL analysis for ascorbic acid content in strawberry fruit reveals a complex genetic architecture and association with GDP-L-galactose phosphorylase. HORTICULTURE RESEARCH 2023; 10:uhad006. [PMID: 36938573 PMCID: PMC10022485 DOI: 10.1093/hr/uhad006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Strawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.
Collapse
Affiliation(s)
- Pilar Muñoz
- Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140, Málaga, Spain
- PhD program in Advanced Biotechnology, Universidad de Málaga, 29071, Málaga, Spain
| | - Cristina Castillejo
- Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140, Málaga, Spain
| | | | - Luis Miranda
- Finca el Cebollar, Centro IFAPA las Torres, 04745, Huelva, Spain
| | | | | | | | | | - Annika Haugeneder
- Biotechnology of Natural Products, Technische Universität München, 85354, Freising, Germany
| | - Johanna Trinkl
- Biotechnology of Natural Products, Technische Universität München, 85354, Freising, Germany
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Agnieszka Masny
- Department of Horticultural Crop Breeding, the National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| | | | | | - Björn Usadel
- Institute of Bio- and Geosciences, Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354, Freising, Germany
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, France
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29010, Málaga, Spain
| | - José F Sánchez-Sevilla
- Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29010, Málaga, Spain
| | | |
Collapse
|
15
|
Zhang L, Li S, Fang X, An H, Zhang X. Genome-wide analysis of LysM gene family members and their expression in response to Colletotrichum fructicola infection in Octoploid strawberry( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2023; 13:1105591. [PMID: 36756233 PMCID: PMC9900028 DOI: 10.3389/fpls.2022.1105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The cultivated octoploid strawberry (Fragaria × ananassa) is an economically important fruit that is planted worldwide. The lysin motif (LysM) protein family is composed of the major class of plant pattern recognition receptors, which play important roles in sensing pathogen-associated molecular patterns (PAMPs), and subsequently triggers downstream plant immunity. In the present study, a comprehensive, genome-wide analysis of F. × ananassa LysM (FaLysM) genes was performed to investigate gene structures, phylogenic relationships, chromosome location, collinear relationships, transcription factor binding sites, and protein model analysis. We aimed to identify the LysM genes involved in the defense against plant pathogens. A total of 14 FaLysM genes were identified in the F. × ananassa genome and divided into 2 subgroups (LYP and LYK) on the basis of the phylogenetic analysis. The Ka/Ks ratio for the duplicated pair of most FaLysM genes was less than 1, which indicates that the selection pressure was mostly subject to the purifying selection during evolution. The protein model analysis revealed that FaLysM2-10 contain conserved mode of chitin binding, which suggest the potential role of FaLysM2-10 in pathogen perception and plant immunity. The RNA-Seq results showed the differential regulation of 14 FaLysM genes in response to Colletotrichum fructicola infection, implying the complex interaction between C. fructicola and strawberry. Knockout of candidate effector gene CfLysM2, which was previously proved to be highly expressed during C. fructicola infection, resulted in the up-regulation of six FaLysM genes (FaLysM1, FaLysM2, FaLysM3, FaLysM7, FaLysM8, and FaLysM12), indicating the competitive relations between CfLysM2 and FaLysM genes. Overall, this study provides fundamental information on the roles of LysM proteins in octoploid strawberry and its interaction with C. fructicola, laying useful information for further investigation on the C. fructicola-strawberry interaction and strawberry resistance breeding.
Collapse
Affiliation(s)
| | | | | | - Haishan An
- *Correspondence: Haishan An, ; Xueying Zhang,
| | | |
Collapse
|
16
|
Nerva L, Dalla Costa L, Ciacciulli A, Sabbadini S, Pavese V, Dondini L, Vendramin E, Caboni E, Perrone I, Moglia A, Zenoni S, Michelotti V, Micali S, La Malfa S, Gentile A, Tartarini S, Mezzetti B, Botta R, Verde I, Velasco R, Malnoy MA, Licciardello C. The Role of Italy in the Use of Advanced Plant Genomic Techniques on Fruit Trees: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:977. [PMID: 36674493 PMCID: PMC9861864 DOI: 10.3390/ijms24020977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.
Collapse
Affiliation(s)
- Luca Nerva
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Angelo Ciacciulli
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Vera Pavese
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Luca Dondini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elisa Vendramin
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Emilia Caboni
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Vania Michelotti
- Research Center for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola D’Arda, Italy
| | - Sabrina Micali
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Stefano La Malfa
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Alessandra Gentile
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Ignazio Verde
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Riccardo Velasco
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
| | - Mickael Arnaud Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| |
Collapse
|
17
|
Different responses to elevated temperature in the representative strains of strawberry pathogenic Colletotrichum spp.from eastern China. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Wang J, Yin Y, Gao H, Sheng L. Identification of MYB Transcription Factors Involving in Fruit Quality Regulation of Fragaria × ananassa Duch. Genes (Basel) 2022; 14:68. [PMID: 36672809 PMCID: PMC9859318 DOI: 10.3390/genes14010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The cultivated strawberry (Fragaria × ananassa Duch.) is an important horticultural crop. The economic values of strawberry cultivars are decided by their fruit qualities including taste, color and aroma. The important role of MYB transcription factors in fruit quality regulation is recognized increasingly with the identification of MYB genes involved in metabolism. A total of 407 MYB genes of F. × ananassa (FaMYBs) were identified in the genome-wide scale and named according to subgenome locations. The 407 FaMYBs were clustered into 36 groups based on phylogenetic analysis. According to synteny analysis, whole genome duplication and segmental duplication contributed over 90% of the expansion of the FaMYBs family. A total of 101 FaMYB loci with 1-6 alleles were identified by the homologous gene groups on homologous chromosomes. The differentially expressed FaMYB profiles of three cultivars with different fruit quality and fruit ripe processes provided the 8 candidate loci involved in fruit quality regulation. In this experiment, 7, 5, and 4 FaMYBs were screeded as candidate genes involved in the regulation of metabolism/transportation of anthocyanins, sugars or organic acids and 4-hydroxy-2, 5-dimethyl-3(2H)-furanone, respectively. These results pointed out the key FaMYBs for further functional analysis of gene regulation of strawberry fruit quality and would be helpful in the clarification on ofe roles of MYBs in the metabolism of fruit crops.
Collapse
Affiliation(s)
| | | | | | - Lixia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
FaAKR23 Modulates Ascorbic Acid and Anthocyanin Accumulation in Strawberry ( Fragaria × ananassa) Fruits. Antioxidants (Basel) 2022; 11:antiox11091828. [PMID: 36139903 PMCID: PMC9495909 DOI: 10.3390/antiox11091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Strawberry (Fragaria × ananassa) fruits are rich in ascorbic acid (AsA) and anthocyanin, which are essential antioxidants for human health. However, the underlying regulatory mechanism of these antioxidant accumulation, especially AsA accumulation in strawberry fruits, remains largely unknown. In this study, we identified FaAKR23 was a regulator of AsA and anthocyanin accumulation. We transiently expressed FaAKR23 in strawberry fruits and conducted metabolic and molecular analyses to explore the role of FaAKR23 in AsA and anthocyanin accumulation. Transient silencing of FaAKR23 (FaAKR23-RNAi) in strawberry fruits significantly decreased the AsA and anthocyanin contents compared with control (empty vector-RNAi, EV-RNAi). Correspondingly, expression of some structural genes and regulatory factors involved in these two antioxidants’ accumulation was dramatically repressed. In addition, transcriptome analysis of EV-RNAi and FaAKR23-RNAi fruits suggested that FaAKR23 was also involved in starch and sucrose metabolism as well as plant–pathogen interaction. Overall, these results not only provide the coordinated regulatory function of FaAKR23 on AsA and anthocyanin accumulation but also offer a promising candidate gene for strawberry breeding with high antioxidants.
Collapse
|
20
|
Sangiorgio D, Cellini A, Donati I, Ferrari E, Tanunchai B, Fareed Mohamed Wahdan S, Sadubsarn D, Farneti B, Checcucci A, Buscot F, Spinelli F, Purahong W. Taxonomical and functional composition of strawberry microbiome is genotype-dependent. J Adv Res 2022; 42:189-204. [PMID: 36513413 PMCID: PMC9788945 DOI: 10.1016/j.jare.2022.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Specific microbial communities are associated to host plants, influencing their phenotype and fitness.Despite the rising interest in plant microbiome, the role of microbial communities associated with perennial fruit plants remains overlooked. OBJECTIVES This work provides the first comprehensive descriptionof the taxonomical and functional bacterial and fungal microbiota of below- and above-ground organsof three commercially important strawberry genotypes under cultural conditions. METHODS Strawberry-associatedfungal and bacterial microbiomes were characterised by Next-Generation Sequencing and the potential functions expressed by the bacterial microbiome were analysed by both in silico and in vitro characterisation of plant growth-promoting abilities of native bacteria. Additionally, the association between the strawberry microbiome, plant disease tolerance, plant mineral nutrient content, and fruit quality was investigated. RESULTS Results showed that thestrawberry core microbiome included 24 bacteria and 15 fungal operational taxonomicunits (OTUs).However, plant organ and genotype had a significant role in determining the taxonomical and functional composition of microbial communities. Interestingly, the cultivar with the highesttolerance against powdery mildew and leaf spot and the highest fruit productivity was the only one able to ubiquitously recruit the beneficial bacterium, Pseudomonasfluorescens, and to establish a mutualistic symbiosis with the arbuscular mycorrhizaRhizophagus irregularis. CONCLUSION This work sheds light on the interaction of cultivated strawberry genotypes with a variety of microbes and highlights the importance of their applications to increase the sustainability of fruit crop production.
Collapse
Affiliation(s)
- Daniela Sangiorgio
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | | | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Benjawan Tanunchai
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany
| | - Sara Fareed Mohamed Wahdan
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany,Department of Botany, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Dolaya Sadubsarn
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany
| | - Brian Farneti
- Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, 38010, S. Michele all’Adige, TN, Italy
| | - Alice Checcucci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - François Buscot
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, viale Fanin 46, 40127 Bologna, Italy,Corresponding authors.
| | - Witoon Purahong
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany,Corresponding authors.
| |
Collapse
|
21
|
Labadie M, Vallin G, Potier A, Petit A, Ring L, Hoffmann T, Gaston A, Munoz-Blanco J, Caballero JL, Schwab W, Rothan C, Denoyes B. High Resolution Quantitative Trait Locus Mapping and Whole Genome Sequencing Enable the Design of an Anthocyanidin Reductase-Specific Homoeo-Allelic Marker for Fruit Colour Improvement in Octoploid Strawberry ( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2022; 13:869655. [PMID: 35371183 PMCID: PMC8972132 DOI: 10.3389/fpls.2022.869655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/02/2023]
Abstract
Fruit colour is central to the sensorial and nutritional quality of strawberry fruit and is therefore a major target in breeding programmes of the octoploid cultivated strawberry (Fragaria × ananassa). The red colour of the fruit is caused by the accumulation of anthocyanins, which are water-soluble flavonoids. To facilitate molecular breeding, here we have mapped with high resolution fruit colour quantitative trait loci (QTLs) (COLOUR, scored visually as in selection programmes) and associated flavonoid metabolic QTLs (5 anthocyanins compounds together with 8 flavonols and flavan-3-ols) to specific subgenomes of cultivated strawberry. Two main colour-related QTLs were located on the LG3A linkage group (Fragaria vesca subgenome). Genetic mapping, transcriptome analysis and whole genome sequencing enabled the detection of a homoeo-allelic variant of ANTHOCYANIDIN REDUCTASE (ANR) underlying the major male M3A COLOUR and pelargonidin-3-glucoside (PgGs) QTLs (up to ∼20% of explained variance). Consistent with previously published functional studies, ANR transcript abundance was inversely related with PgGs content in contrasted progeny individuals. Genetic segregation analyses further indicated that a molecular marker designed using an 18 bp deletion found in the 5'UTR of the candidate ANR homoeo-allelic variant is effective in identifying genotypes with intense red fruit colour. Our study provides insights into the genetic and molecular control of colour-related traits in strawberry and further defines a genetic marker for marker-assisted selection of new strawberry varieties with improved colour. The QTLs detected and the underlying candidate genes are different from those described to date, emphasising the importance of screening a wide diversity of genetic resources in strawberry.
Collapse
Affiliation(s)
- Marc Labadie
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Guillaume Vallin
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Aline Potier
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | | | - Ludwig Ring
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Amèlia Gaston
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Juan Munoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Christophe Rothan
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
- Christophe Rothan, , orcid.org/0000-0002-6831-2823
| | - Béatrice Denoyes
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
- *Correspondence: Béatrice Denoyes, , orcid.org/0000-0002-0369-9609
| |
Collapse
|
22
|
An Evolutionary Analysis of B-Box Transcription Factors in Strawberry Reveals the Role of FaBBx28c1 in the Regulation of Flowering Time. Int J Mol Sci 2021; 22:ijms222111766. [PMID: 34769196 PMCID: PMC8583817 DOI: 10.3390/ijms222111766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Flowering connects vegetative and generative developmental phases and plays a significant role in strawberry production. The mechanisms that regulate strawberry flowering time are unclear. B-box transcription factors (BBXs) play important roles in the flowering time regulation of plants. Nevertheless, BBXs in octoploid cultivated strawberry (Fragaria ananassa) and their functions in flowering time regulation have not been identified. Here, we identified 51 FaBBXs from cultivated strawberry and 16 FvBBXs from diploid wild strawberry (Fragaria vesca), which were classified into five groups according to phylogenetic analysis. Further evolutionary analysis showed that whole-genome duplication or segmental duplication is a crucial factor that leads to the expansion of the BBX gene family in two strawberry species. Moreover, some loss and acquisition events of FaBBX genes were identified in the genome of cultivated strawberry that could have affected traits of agronomic interest, such as fruit quality. The promoters of FaBBX genes showed an enrichment in light-responsive, cis-regulatory elements, with 16 of these genes showing changes in their transcriptional activity in response to blue light treatment. On the other hand, FaBBX28c1, whose transcriptional activity is reduced in response to blue light, showed a delay in flowering time in Arabidopsis transgenic lines, suggesting its role in the regulation of flowering time in cultivated strawberry. Our results provide new evolutionary insight into the BBX gene family in cultivated strawberry and clues regarding their function in flowering time regulation in plants.
Collapse
|
23
|
Duan K, Zhao YJ, Li ZY, Zou XH, Yang J, Guo CL, Chen SY, Yang XR, Gao QH. A Strategy for the Production and Molecular Validation of Agrobacterium-Mediated Intragenic Octoploid Strawberry. PLANTS 2021; 10:plants10112229. [PMID: 34834592 PMCID: PMC8622968 DOI: 10.3390/plants10112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
Intragenesis is an all-native engineering technology for crop improvement. Using an intragenic strategy to bring genes from wild species to cultivated strawberry could expand the genetic variability. A robust regeneration protocol was developed for the strawberry cv. ‘Shanghai Angel’ by optimizing the dose of Thidiazuron and identifying the most suitable explants. The expression cassette was assembled with all DNA fragments from F. vesca, harboring a sugar transporter gene FvSTP8 driven by a fruit-specific FvKnox promoter. Transformed strawberry was developed through an Agrobacterium-mediated strategy without any selectable markers. Other than PCR selection, probe-based duplex droplet digital PCR (ddPCR) was performed to determine the T-DNA insert. Four independent transformed shoots were obtained with a maximum of 5.3% efficiency. Two lines were confirmed to be chimeras, while the other two were complete transformants with six and 11 copies of the intragene, respectively. The presence of a vector backbone beyond the T-DNA in these transformants indicated that intragenic strawberries were not obtained. The current work optimized the procedures for producing transformed strawberry without antibiotic selection, and accurately determined the insertion copies by ddPCR in the strawberry genome for the first time. These strategies might be promising for the engineering of ‘Shanghai Angel’ and other cultivars to improve agronomic traits.
Collapse
Affiliation(s)
- Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
- Correspondence: (K.D.); (Q.-H.G.)
| | - Ying-Jie Zhao
- Lanzhou New Area Academy of Modern Agricultural Sciences, Lanzhou 730300, China;
| | - Zi-Yi Li
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Cheng-Lin Guo
- Hangzhou Woosen Biotechnology Co., Ltd., Hangzhou 310012, China;
| | - Si-Yu Chen
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China;
| | - Xiu-Rong Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China; (X.-H.Z.); (J.Y.); (X.-R.Y.)
- Correspondence: (K.D.); (Q.-H.G.)
| |
Collapse
|
24
|
Wang W, Dai Z, Li J, Ouyang J, Li T, Zeng B, Kang L, Jia K, Xi Z, Jia W. A Method for Assaying of Protein Kinase Activity In Vivo and Its Use in Studies of Signal Transduction in Strawberry Fruit Ripening. Int J Mol Sci 2021; 22:ijms221910495. [PMID: 34638834 PMCID: PMC8508642 DOI: 10.3390/ijms221910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jie Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Tianyu Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Baozhen Zeng
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Li Kang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Zhiyuan Xi
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
- Correspondence:
| |
Collapse
|
25
|
Chandra S, Oh Y, Han H, Salinas N, Anciro A, Whitaker VM, Chacon JG, Fernandez G, Lee S. Comparative Transcriptome Analysis to Identify Candidate Genes for FaRCg1 Conferring Resistance Against Colletotrichum gloeosporioides in Cultivated Strawberry ( Fragaria × ananassa). Front Genet 2021; 12:730444. [PMID: 34504518 PMCID: PMC8422960 DOI: 10.3389/fgene.2021.730444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum crown rot (CCR) caused by Colletotrichum gloeosporioides is a serious threat to the cultivated strawberry (Fragaria × ananassa). Our previous study reported that a major locus, FaRCg1, increases resistance. However, the genomic structure of FaRCg1 and potential candidate genes associated with the resistance remained unknown. Here, we performed comparative transcriptome analyses of resistant 'Florida Elyana' and susceptible 'Strawberry Festival' after infection and identified candidate genes potentially involved in resistance. In 'Florida Elyana', 6,099 genes were differentially expressed in response to C. gloeosporioides. Gene ontology analysis showed that the most upregulated genes were functionally associated with signaling pathways of plant defense responses. Three genes in the genomic region of FaRCg1 were highly upregulated: a von Willebrand Factor A domain-containing protein, a subtilisin-like protease, and a TIFY 11A-like protein. Subgenome-specific markers developed for the candidate genes were tested with a diverse panel of 219 accessions from University of Florida and North Carolina State University breeding programs. Significant and positive associations were found between the high-resolution melting (HRM) marker genotypes and CCR phenotypes. These newly developed subgenome-specific functional markers for FaRCg1 can facilitate development of resistant varieties through marker-assisted selection.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Youngjae Oh
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Hyeondae Han
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Natalia Salinas
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Ashlee Anciro
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Vance M Whitaker
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Jose Guillermo Chacon
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Gina Fernandez
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Seonghee Lee
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| |
Collapse
|
26
|
Hardigan MA, Lorant A, Pincot DDA, Feldmann MJ, Famula RA, Acharya CB, Lee S, Verma S, Whitaker VM, Bassil N, Zurn J, Cole GS, Bird K, Edger PP, Knapp SJ. Unraveling the Complex Hybrid Ancestry and Domestication History of Cultivated Strawberry. Mol Biol Evol 2021; 38:2285-2305. [PMID: 33507311 PMCID: PMC8136507 DOI: 10.1093/molbev/msab024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cultivated strawberry (Fragaria × ananassa) is one of our youngest domesticates, originating in early eighteenth-century Europe from spontaneous hybrids between wild allo-octoploid species (Fragaria chiloensis and Fragaria virginiana). The improvement of horticultural traits by 300 years of breeding has enabled the global expansion of strawberry production. Here, we describe the genomic history of strawberry domestication from the earliest hybrids to modern cultivars. We observed a significant increase in heterozygosity among interspecific hybrids and a decrease in heterozygosity among domesticated descendants of those hybrids. Selective sweeps were found across the genome in early and modern phases of domestication—59–76% of the selectively swept genes originated in the three less dominant ancestral subgenomes. Contrary to the tenet that genetic diversity is limited in cultivated strawberry, we found that the octoploid species harbor massive allelic diversity and that F. × ananassa harbors as much allelic diversity as either wild founder. We identified 41.8 M subgenome-specific DNA variants among resequenced wild and domesticated individuals. Strikingly, 98% of common alleles and 73% of total alleles were shared between wild and domesticated populations. Moreover, genome-wide estimates of nucleotide diversity were virtually identical in F. chiloensis,F. virginiana, and F. × ananassa (π = 0.0059–0.0060). We found, however, that nucleotide diversity and heterozygosity were significantly lower in modern F. × ananassa populations that have experienced significant genetic gains and have produced numerous agriculturally important cultivars.
Collapse
Affiliation(s)
- Michael A Hardigan
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Charlotte B Acharya
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Seonghee Lee
- IFAS Gulf Coast Research and Education Center, Department of Horticulture, University of Florida, Wimauma, FL 33598, USA
| | - Sujeet Verma
- IFAS Gulf Coast Research and Education Center, Department of Horticulture, University of Florida, Wimauma, FL 33598, USA
| | - Vance M Whitaker
- IFAS Gulf Coast Research and Education Center, Department of Horticulture, University of Florida, Wimauma, FL 33598, USA
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 92182, USA
| | - Jason Zurn
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 92182, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Kevin Bird
- Department of Horticultural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick P Edger
- Department of Horticultural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Pincot DDA, Ledda M, Feldmann MJ, Hardigan MA, Poorten TJ, Runcie DE, Heffelfinger C, Dellaporta SL, Cole GS, Knapp SJ. Social network analysis of the genealogy of strawberry: retracing the wild roots of heirloom and modern cultivars. G3-GENES GENOMES GENETICS 2021; 11:6117203. [PMID: 33772307 PMCID: PMC8022721 DOI: 10.1093/g3journal/jkab015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/12/2020] [Indexed: 01/22/2023]
Abstract
The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three-century-long domestication history of strawberry, we reconstructed the genealogy as deeply as possible—pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying an exclusion analysis to array-genotyped single-nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent–offspring edges in the global pedigree network, we found that selection cycle lengths over the past 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation), but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations, and shed light on forces that have shaped phenotypic diversity in F. × ananassa.
Collapse
Affiliation(s)
- Dominique D A Pincot
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mirko Ledda
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Michael A Hardigan
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Thomas J Poorten
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Christopher Heffelfinger
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Stephen L Dellaporta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Sheng L, Ma C, Chen Y, Gao H, Wang J. Genome-Wide Screening of AP2 Transcription Factors Involving in Fruit Color and Aroma Regulation of Cultivated Strawberry. Genes (Basel) 2021; 12:genes12040530. [PMID: 33916467 PMCID: PMC8067195 DOI: 10.3390/genes12040530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Fragaria × ananassa Duch, which among the youngest fruit crops, comprises many popular cultivars that are famous for their favored color and aroma. The regulation roles of AP2/ERF (APETALA2/ethylene-responsive element-binding factor) transcription factors in fruit flavor and color regulation have been studied in several fruit crops. The AP2 family of strawberry, which was ignored in recent AP2/ERF identification studies, was explored in this study. A total of 64 FaAP2 (Fragaria × ananassa AP2) transcription factors belonging to the euAP2, euANT (AINTEGUMENTA), and baselANT groups were identified with canonical insertion motifs in two AP2 domains. The motif identification illustrated that motifs 1, 5, and 2 indicated a corresponding AP2 domain repeat 1 with a linker region, and motifs 6, 4, 3 indicated a corresponding AP2 domain repeat 2, all of which were highly conserved. By synteny analysis, FaAP2 paralogs were identified in each sub-genome, and FaAP2 gene duplication and loss explained the unequal AP2 loci of sub-genomes. The expression profile in three cultivars indicated that six FaAP2 paralogs—four WRI (WRINKLED) gene homologs and two AP2 gene homologs—were candidate regulators of red fruit color and/or special fruit aroma. All these finds provide a basis for further investigations into role of AP2 in fruit color and aroma and would be helpful in the targeted selection of strawberry fruit quality to improve breeding.
Collapse
|
29
|
Fan Z, Plotto A, Bai J, Whitaker VM. Volatiles Influencing Sensory Attributes and Bayesian Modeling of the Soluble Solids-Sweetness Relationship in Strawberry. FRONTIERS IN PLANT SCIENCE 2021; 12:640704. [PMID: 33815448 PMCID: PMC8010315 DOI: 10.3389/fpls.2021.640704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
Descriptive analysis via trained sensory panels has great power to facilitate flavor improvement in fresh fruits and vegetables. When paired with an understanding of fruit volatile organic compounds, descriptive analysis can help uncover the chemical drivers of sensory attributes. In the present study, 213 strawberry samples representing 56 cultivars and advanced selections were sampled over seven seasons and subjected to both sensory descriptive and chemical analyses. Principal component analysis and K-cluster analyses of sensory data highlighted three groups of strawberry samples, with one classified as superior with high sweetness and strawberry flavor and low sourness and green flavor. Partial least square models revealed 20 sweetness-enhancing volatile organic compounds and two sweetness-reducing volatiles, many of which overlap with previous consumer sensory studies. Volatiles modulating green, sour, astringent, overripe, woody, and strawberry flavors were also identified. The relationship between soluble solids content (SSC) and sweetness was modeled with Bayesian regression, generating probabilities for sweetness levels from varying levels of soluble solids. A hierarchical Bayesian model with month effects indicated that SSC is most correlated to sweetness toward the end of the fruiting season, making this the best period to make phenotypic selections for soluble solids. Comparing effects from genotypes, harvest months, and their interactions on sensory attributes revealed that sweetness, sourness, and firmness were largely controlled by genetics. These findings help formulate a paradigm for improvement of eating quality in which sensory analyses drive the targeting of chemicals important to consumer-desired attributes, which further drive the development of genetic tools for improvement of flavor.
Collapse
Affiliation(s)
- Zhen Fan
- Horticultural Sciences Department, IFAS Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Anne Plotto
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Jinhe Bai
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Vance M. Whitaker
- Horticultural Sciences Department, IFAS Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| |
Collapse
|
30
|
Characteristics of Fragaria vesca Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress. PLANTS 2021; 10:plants10030557. [PMID: 33809648 PMCID: PMC8001689 DOI: 10.3390/plants10030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Plants exposed to drought stress conditions often increase the synthesis of anthocyanins—natural plant pigments and antioxidants. However, water deficit (WD) often causes significant yield loss. The aim of our study was to evaluate the productivity as well as the anthocyanin content and composition of berries from cultivated Fragaria vesca “Rojan” and hybrid No. 17 plants (seedlings) grown under WD. The plants were grown in an unheated greenhouse and fully irrigated (control) or irrigated at 50% and 25%. The number of berries per plant and the berry weight were evaluated every 4 days. The anthocyanin content and composition of berries were evaluated with the same periodicity using HPLC. The effect of WD on the yield parameters of two evaluated F. vesca genotypes differed depending on the harvest time. The cumulative yield of plants under WD was not less than that of the control plants for 20–24 days after the start of the experiment. Additionally, berries accumulated 36–56% (1.5–2.3 times, depending on the harvest time) more anthocyanins compared with fully irrigated plants. Our data show that slight or moderate WD at a stable air temperature of about 20 °C positively affected the biosynthesis of anthocyanins and the yield of F. vesca berries.
Collapse
|
31
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
32
|
Lee HE, Manivannan A, Lee SY, Han K, Yeum JG, Jo J, Kim J, Rho IR, Lee YR, Lee ES, Kang BC, Kim DS. Chromosome Level Assembly of Homozygous Inbred Line 'Wongyo 3115' Facilitates the Construction of a High-Density Linkage Map and Identification of QTLs Associated With Fruit Firmness in Octoploid Strawberry ( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2021; 12:696229. [PMID: 34335662 PMCID: PMC8317996 DOI: 10.3389/fpls.2021.696229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 05/02/2023]
Abstract
Strawberry is an allo-octoploid crop with high genome heterozygosity and complexity, which hinders the sequencing and the assembly of the genome. However, in the present study, we have generated a chromosome level assembly of octoploid strawberry sourced from a highly homozygous inbred line 'Wongyo 3115', using long- and short-read sequencing technologies. The assembly of 'Wongyo 3115' produced 805.6 Mb of the genome with 323 contigs scaffolded into 208 scaffolds with an N50 of 27.3 Mb after further gap filling. The whole genome annotation resulted in 151,892 genes with a gene density of 188.52 (genes/Mb) and validation of a genome, using BUSCO analysis resulted in 94.10% complete BUSCOs. Firmness is one of the vital traits in strawberry, which facilitate the postharvest shelf-life qualities. The molecular and genetic mechanisms that contribute the firmness in strawberry remain unclear. We have constructed a high-density genetic map based on the 'Wongyo 3115' reference genome to identify loci associated with firmness in the present study. For the quantitative trait locus (QTL) identification, the 'BS F2' populations developed from two inbred lines were genotyped, using an Axiom 35K strawberry chip, and marker positions were analyzed based on the 'Wongyo 3115' genome. Genetic maps were constructed with 1,049 bin markers, spanning the 3,861 cM. Using firmness data of 'BS F2' obtained from 2 consecutive years, five QTLs were identified on chromosomes 3-3, 5-1, 6-1, and 6-4. Furthermore, we predicted the candidate genes associated with firmness in strawberries by utilizing transcriptome data and QTL information. Overall, we present the chromosome-level assembly and annotation of a homozygous octoploid strawberry inbred line and a linkage map constructed to identify QTLs associated with fruit firmness.
Collapse
Affiliation(s)
- Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Sun Yi Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Jun-Geol Yeum
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jinkwan Jo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jinhee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Il Rae Rho
- Department of Agronomy, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Ye-Rin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Eun Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, South Korea
- Do-Sun Kim
| |
Collapse
|
33
|
Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, Muñoz P, Triviño JC, Caruana J, Liu Z, Cobo N, Hardigan MA, Knapp SJ, Vallarino JG, Osorio S, Martín-Pizarro C, Posé D, Toivainen T, Hytönen T, Oh Y, Barbey CR, Whitaker VM, Lee S, Olbricht K, Sánchez-Sevilla JF, Amaya I. Allelic Variation of MYB10 Is the Major Force Controlling Natural Variation in Skin and Flesh Color in Strawberry ( Fragaria spp.) Fruit. THE PLANT CELL 2020; 32:3723-3749. [PMID: 33004617 PMCID: PMC7721342 DOI: 10.1105/tpc.20.00474] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 05/02/2023]
Abstract
The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.
Collapse
Affiliation(s)
- Cristina Castillejo
- Laboratorio de Genómica y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, 29140 Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
| | - Veronika Waurich
- Hansabred GmbH & Co. KG, 01108 Dresden, Germany
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Henning Wagner
- Hansabred GmbH & Co. KG, 01108 Dresden, Germany
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Rubén Ramos
- Laboratorio de Genómica y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, 29140 Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
| | - Nicolás Oiza
- Laboratorio de Genómica y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, 29140 Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
| | - Pilar Muñoz
- Laboratorio de Genómica y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, 29140 Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
| | | | - Julie Caruana
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Nicolás Cobo
- Department of Plant Sciences, University of California, Davis, California 95616
- Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco 01145, Chile
| | - Michael A Hardigan
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, California 95616
| | - José G Vallarino
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
- Departmento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos 29071, Málaga, Spain
| | - Sonia Osorio
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
- Departmento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos 29071, Málaga, Spain
| | - Carmen Martín-Pizarro
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
- Departmento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos 29071, Málaga, Spain
| | - David Posé
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
- Departmento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos 29071, Málaga, Spain
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki 00790, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki 00790, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki 00790, Finland
- National Institute of Agricultural Botany East Malling Research (NIAB EMR), Kent ME19 6BJ, United Kingdom
| | - Youngjae Oh
- Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, Wimauma, Florida 33598
| | - Christopher R Barbey
- Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, Wimauma, Florida 33598
| | - Vance M Whitaker
- Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, Wimauma, Florida 33598
| | - Seonghee Lee
- Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, Wimauma, Florida 33598
| | | | - José F Sánchez-Sevilla
- Laboratorio de Genómica y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, 29140 Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
| | - Iraida Amaya
- Laboratorio de Genómica y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, 29140 Málaga, Spain
- Unidad Asociada de I + D + i IFAPA-Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IFAPA-IHSM) Biotecnología y Mejora en Fresa, Málaga 29071, Spain
| |
Collapse
|
34
|
Pincot DDA, Hardigan MA, Cole GS, Famula RA, Henry PM, Gordon TR, Knapp SJ. Accuracy of genomic selection and long-term genetic gain for resistance to Verticillium wilt in strawberry. THE PLANT GENOME 2020; 13:e20054. [PMID: 33217217 DOI: 10.1002/tpg2.20054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 05/17/2023]
Abstract
Verticillium wilt, a soil-borne disease caused by the fungal pathogen Verticillium dahliae, threatens strawberry (Fragaria × ananassa) production worldwide. The development of resistant cultivars has been a persistent challenge, in part because the genetics of resistance is complex. The heritability of resistance and genetic gains in breeding for resistance to this pathogen have not been well documented. To elucidate the genetics, assess long-term genetic gains, and estimate the accuracy of genomic selection for resistance to Verticillium wilt, we analyzed a genetically diverse population of elite and exotic germplasm accessions (n = 984), including 245 cultivars developed since 1854. We observed a full range of phenotypes, from highly susceptible to highly resistant: < 3% were classified as highly resistant, whereas > 50% were classified as moderately to highly susceptible. Broad-sense heritability estimates ranged from 0.70-0.76, whereas narrow-sense genomic heritability estimates ranged from 0.33-0.45. We found that genetic gains in breeding for resistance to Verticillium wilt have been negative over the last 165 years (mean resistance has decreased over time). We identified several highly resistant accessions that might harbor favorable alleles that are either rare or non-existent in modern populations. We did not observe the segregation of large-effect loci. The accuracy of genomic predictions ranged from 0.38-0.53 among years and whole-genome regression methods. We show that genomic selection has promise for increasing genetic gains and accelerating the development of resistant cultivars in strawberry by shortening selection cycles and enabling selection in early developmental stages without phenotyping.
Collapse
Affiliation(s)
- Dominique D A Pincot
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael A Hardigan
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Peter M Henry
- United States Department of Agriculture, 1636 E. Alisal Street, Salinas, CA, 93905, USA
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
35
|
Lei Y, Sun Y, Wang B, Yu S, Dai H, Li H, Zhang Z, Zhang J. Woodland strawberry WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade. HORTICULTURE RESEARCH 2020; 7:137. [PMID: 32922809 PMCID: PMC7458929 DOI: 10.1038/s41438-020-00355-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 05/14/2023]
Abstract
The WRKY proteins are a large family of transcription factors that play important roles in stress responses and plant development. However, the roles of most WRKYs in strawberry are not well known. In this study, FvWRKY71 was isolated from the woodland strawberry 'Ruegen'. FvWRKY71 was highly expressed in the shoot apex and red fruit. Subcellular localization analysis showed that FvWRKY71 was located in the nucleus. Transactivation analysis showed that FvWRKY71 presented transcriptional activation activity in yeast. Overexpression of FvWRKY71 in Arabidopsis and woodland strawberry revealed early flowering in the transgenic plants compared with the wild-type control. Gene expression analysis indicated that the transcript levels of the flowering time and development integrator genes AP1, LFY, FT, AGL42, FUL, FPF1, SEP1, SEP2, and SEP3 were increased in FvWRKY71-overexpressing Arabidopsis and strawberry plants compared with the wild-type controls, which may result in accelerated flowering in transgenic plants. Furthermore, FvWRKY71 was proven to directly bind to the W-boxes (TTGACT/C) of the FvFUL, FvSEP1, FvAGL42, FvLFY, and FvFPF1 promoters in vitro and in vivo. Taken together, our results reveal a transcriptional regulatory cascade of FvWRKY71 involved in promoting flowering in woodland strawberry.
Collapse
Affiliation(s)
- Yingying Lei
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - Yiping Sun
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - Shuang Yu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - Hongyan Dai
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China
| |
Collapse
|