1
|
Wang L, Liu D, Jiao X, Wu Q, Wang W. The Serine Acetyltransferase ( SAT) Gene Family in Tea Plant ( Camellia sinensis): Identification, Classification and Expression Analysis under Salt Stress. Int J Mol Sci 2024; 25:9794. [PMID: 39337281 PMCID: PMC11432525 DOI: 10.3390/ijms25189794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cysteine plays a pivotal role in the sulfur metabolism network of plants, intimately influencing the conversion rate of organic sulfur and the plant's capacity to withstand abiotic stresses. In tea plants, the serine acetyltransferase (SAT) genes emerge as a crucial regulator of cysteine metabolism, albeit with a notable lack of comprehensive research. Utilizing Hidden Markov Models, we identified seven CssSATs genes within the tea plant genome. The results of the bioinformatics analysis indicate that these genes exhibit an average molecular weight of 33.22 kD and cluster into three distinct groups. Regarding gene structure, CssSAT1 stands out with ten exons, significantly more than its family members. In the promoter regions, cis-acting elements associated with environmental responsiveness and hormone induction predominate, accounting for 34.4% and 53.1%, respectively. Transcriptome data revealed intricate expression dynamics of CssSATs under various stress conditions (e.g., PEG, NaCl, Cold, MeJA) and their tissue-specific expression patterns in tea plants. Notably, qRT-PCR analysis indicated that under salt stress, CssSAT1 and CssSAT3 expression levels markedly increased, whereas CssSAT2 displayed a downregulatory trend. Furthermore, we cloned CssSAT1-CssSAT3 genes and constructed corresponding prokaryotic expression vectors. The resultant recombinant proteins, upon induction, significantly enhanced the NaCl tolerance of Escherichia coli BL21, suggesting the potential application of CssSATs in bolstering plant stress resistance. These findings have enriched our comprehension of the multifaceted roles played by CssSATs genes in stress tolerance mechanisms, laying a theoretical groundwork for future scientific endeavors and research pursuits.
Collapse
Affiliation(s)
| | | | | | - Qiong Wu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.W.); (D.L.); (X.J.)
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.W.); (D.L.); (X.J.)
| |
Collapse
|
2
|
Zhang F, Feng LY, Lin PF, Jia JJ, Gao LZ. Chromosome-scale genome assembly of oil-tea tree Camellia crapnelliana. Sci Data 2024; 11:599. [PMID: 38849406 PMCID: PMC11161624 DOI: 10.1038/s41597-024-03459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Camellia crapnelliana Tutch., belonging to the Theaceae family, is an excellent landscape tree species with high ornamental values. It is particularly an important woody oil-bearing plant species with high ecological, economic, and medicinal values. Here, we first report the chromosome-scale reference genome of C. crapnelliana with integrated technologies of SMRT, Hi-C and Illumina sequencing platforms. The genome assembly had a total length of ~2.94 Gb with contig N50 of ~67.5 Mb, and ~96.34% of contigs were assigned to 15 chromosomes. In total, we predicted 37,390 protein-coding genes, ~99.00% of which could be functionally annotated. The chromosome-scale genome of C. crapnelliana will become valuable resources for understanding the genetic basis of the fatty acid biosynthesis, and greatly facilitate the exploration and conservation of C. crapnelliana.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Ying Feng
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Pei-Fan Lin
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Ju-Jin Jia
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Zhang Z, Ye F, Hu K, Luo T, Miao Z. New insights into evolution and functional diversification of Camellia sinensis LRR-RLKs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:851-866. [PMID: 38846461 PMCID: PMC11150215 DOI: 10.1007/s12298-024-01458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subgroup of receptor-like kinases (RLKs) in plants. While some LRR-RLK members play a role in regulating various plant growth processes related to morphogenesis, disease resistance, and stress response, the functions of most LRR-RLK genes remain unclear. In this study, we identified 397 LRR-RLK genes from the genome of Camellia sinensis and categorized them into 16 subfamilies. Approximately 62% of CsLRR-RLK genes are situated in regions resulting from segmental duplications, suggesting that the expansion of CsLRR-RLK genes is due to segmental duplications. Analysis of gene expression patterns revealed differential expression of CsLRR-RLK genes across different tissues and in response to stress. Furthermore, we demonstrated that CssEMS1 localizes to the cell membrane and can complement Arabidopsis ems1 mutant. This study is the initial in-depth evolutionary examination of LRR-RLKs in tea and provides a basis for future investigations into their functionality. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01458-1.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang China
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Fan Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Kuanru Hu
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Zhiwei Miao
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| |
Collapse
|
4
|
Hu ZH, Zhang N, Qin ZY, Li JW, Tao JP, Yang N, Chen Y, Kong JY, Luo W, Chen X, Li XH, Xiong AS, Zhuang J. Circadian rhythm response and its effect on photosynthetic characteristics of the Lhcb family genes in tea plant. BMC PLANT BIOLOGY 2024; 24:333. [PMID: 38664694 PMCID: PMC11044350 DOI: 10.1186/s12870-024-04958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Yuan Qin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Yu Kong
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Luo
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Ye YY, Liu DD, Tang RJ, Gong Y, Zhang CY, Mei P, Ma CL, Chen JD. Bulked Segregant RNA-Seq Reveals Different Gene Expression Patterns and Mutant Genes Associated with the Zigzag Pattern of Tea Plants ( Camellia sinensis). Int J Mol Sci 2024; 25:4549. [PMID: 38674133 PMCID: PMC11049935 DOI: 10.3390/ijms25084549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun-Lei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| |
Collapse
|
6
|
Zhang X, Yang X, Zhang Q, Wang J, Zeng T, Xi Y, Shen Q. Genome-wide identification and comparative analysis of YABBY transcription factors in oil tea and tea tree. 3 Biotech 2024; 14:113. [PMID: 38515867 PMCID: PMC10951194 DOI: 10.1007/s13205-024-03940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
The plant-specific transcription factor gene family, YABBY, plays an important role in plant development and stress response. Although YABBY genes have been identified in numerous species, a comprehensive characterization of YABBYs in tea tree and oil tea has been lacking. In this study, ten and three YABBY genes were identified in Camellia sinensis and C. oleifera, respectively. YABBY proteins could be divided into five subfamilies. Most YABBY genes in the same clade had similar structures and conserved motifs. Protein evolutionary analysis revealed that FIL/YAB3 displayed high conservation in all positions, followed by INO, YAB2, YAB5, and CRC. Specific site analysis suggested that the YABBY family was polyphyletic during the evolution. Compared to C. oleifera, two segmentally duplicated gene pairs were formed in C. sinensis during recent WGD events generated 30.69 and 45.08 Mya, respectively. Cis-acting element indicated that most YABBY genes contain box4, ARE, and MYB elements. A total of 120 SSR loci were found within CsYABBYs, consisting of six types, while 48 SSR loci were identified within CoYABBY, consisting of three types. Transcriptome results revealed that CRC and INO clades were specifically expressed in floral organs. The expression of CsYABBY10 and CsYABBY5 was significantly up-regulated under drought and salt treatments, respectively, as confirmed by qRT-PCR. CoYABBY genes were more susceptible to salt stress, as CoYABBY3 increased by about 15-fold. Furthermore, functional differentiation may have occurred in duplicated genes. These discoveries provide important information for further research on YABBYs in tea tree and oil tea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03940-9.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Xianfeng Yang
- College of Tea Sciences, Guizhou University, Guiyang, 550025 China
| | - Qinqin Zhang
- Guizhou Normal University, Guiyang, 550001 China
| | - Jialun Wang
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Tingting Zeng
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Yanan Xi
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Qiang Shen
- Guizhou Tea Research Institute, Guiyang, 550006 China
| |
Collapse
|
7
|
Qiu H, Zhang X, Zhang Y, Jiang X, Ren Y, Gao D, Zhu X, Usadel B, Fernie AR, Wen W. Depicting the genetic and metabolic panorama of chemical diversity in the tea plant. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1001-1016. [PMID: 38048231 PMCID: PMC10955498 DOI: 10.1111/pbi.14241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
As a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5, and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.
Collapse
Affiliation(s)
- Haiji Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Xiaoliang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Youjun Zhang
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yujia Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dawei Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiang Zhu
- Thermo Fisher ScientificShanghaiChina
| | - Björn Usadel
- Institute of Bio‐ and Geosciences, IBG‐4: Bioinformatics, CEPLAS, Forschungszentrum JülichJülichGermany
- Institute for Biological Data ScienceHeinrich Heine UniversityDüsseldorfGermany
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
8
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Chen S, Wang P, Kong W, Chai K, Zhang S, Yu J, Wang Y, Jiang M, Lei W, Chen X, Wang W, Gao Y, Qu S, Wang F, Wang Y, Zhang Q, Gu M, Fang K, Ma C, Sun W, Ye N, Wu H, Zhang X. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. NATURE PLANTS 2023; 9:1986-1999. [PMID: 38012346 DOI: 10.1038/s41477-023-01565-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Tea is one of the world's oldest crops and is cultivated to produce beverages with various flavours. Despite advances in sequencing technologies, the genetic mechanisms underlying key agronomic traits of tea remain unclear. In this study, we present a high-quality pangenome of 22 elite cultivars, representing broad genetic diversity in the species. Our analysis reveals that a recent long terminal repeat burst contributed nearly 20% of gene copies, introducing functional genetic variants that affect phenotypes such as leaf colour. Our graphical pangenome improves the efficiency of genome-wide association studies and allows the identification of key genes controlling bud flush timing. We also identified strong correlations between allelic variants and flavour-related chemistries. These findings deepen our understanding of the genetic basis of tea quality and provide valuable genomic resources to facilitate its genomics-assisted breeding.
Collapse
Affiliation(s)
- Shuai Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pengjie Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kun Chai
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiaxin Yu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenling Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingying Gao
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shenyang Qu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yinghao Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China.
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
11
|
Jia X, Zhang Q, Chen M, Wang Y, Lin S, Pan Y, Cheng P, Li M, Zhang Y, Ye J, Wang H. Analysis of the effect of different withering methods on tea quality based on transcriptomics and metabolomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1235687. [PMID: 37780509 PMCID: PMC10538532 DOI: 10.3389/fpls.2023.1235687] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Withering is very important to the quality of Wuyi rock tea. In this study, transcriptomics and metabolomics were used to analyze the effects of different withering methods on tea quality formation. The results showed that sunlight withering (SW) was most beneficial in increasing the gene expression of ubiquinone and other terpenoid-quinone biosynthesis (ko00130), pyruvate metabolism (ko00620), starch and sucrose metabolism (ko00500), and tryptophan metabolism (ko00380) pathways, and increasing the content of nucleotides and derivatives, terpenoids, organic acids and lipids, thus enhancing the mellowness, fresh and brisk taste and aroma of tea. Withering trough withering (WW) was most beneficial in increasing the gene expression of glutathione metabolism (ko00480), phenylpropanoid biosynthesis (ko00940) pathways, increasing the content of phenolic acids and flavonoids, thus enhancing tea bitterness. A comprehensive evaluation of the metabolite content and taste characteristics of tea leaves showed SW to be the best quality and charcoal fire withering (FW) to be the worst quality. This study provided an important basis for guiding the processing of Wuyi rock tea with different flavors.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Yibin Pan
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
12
|
Li D, Lin HY, Wang X, Bi B, Gao Y, Shao L, Zhang R, Liang Y, Xia Y, Zhao YP, Zhou X, Zhang L. Genome and whole-genome resequencing of Cinnamomum camphora elucidate its dominance in subtropical urban landscapes. BMC Biol 2023; 21:192. [PMID: 37697363 PMCID: PMC10496300 DOI: 10.1186/s12915-023-01692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Lauraceae is well known for its significant phylogenetic position as well as important economic and ornamental value; however, most evergreen species in Lauraceae are restricted to tropical regions. In contrast, camphor tree (Cinnamomum camphora) is the most dominant evergreen broadleaved tree in subtropical urban landscapes. RESULTS Here, we present a high-quality reference genome of C. camphora and conduct comparative genomics between C. camphora and C. kanehirae. Our findings demonstrated the significance of key genes in circadian rhythms and phenylpropanoid metabolism in enhancing cold response, and terpene synthases (TPSs) improved defence response with tandem duplication and gene cluster formation in C. camphora. Additionally, the first comprehensive catalogue of C. camphora based on whole-genome resequencing of 75 accessions was constructed, which confirmed the crucial roles of the above pathways and revealed candidate genes under selection in more popular C. camphora, and indicated that enhancing environmental adaptation is the primary force driving C. camphora breeding and dominance. CONCLUSIONS These results decipher the dominance of C. camphora in subtropical urban landscapes and provide abundant genomic resources for enlarging the application scopes of evergreen broadleaved trees.
Collapse
Affiliation(s)
- Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Han-Yang Lin
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Advanced Study, Taizhou University, Taizhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bo Bi
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yuan Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Runlong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun-Peng Zhao
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
13
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
14
|
Zhang W, Xiong T, Ye F, Chen JH, Chen YR, Cao JJ, Feng ZG, Zhang ZB. The lineage-specific evolution of the oleosin family in Theaceae. Gene 2023; 868:147385. [PMID: 36958508 DOI: 10.1016/j.gene.2023.147385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Oleosins play essential roles in stabilization of lipid droplets (LDs) and seed oil production. However, evolution of this gene family has not been reported in Theaceae, a large plant family that contains many important tea and oil tea species. In this study, a total of 65 oleosin genes were identified in nine genome-sequenced Theaceae species. Among these genomes, the gene number of oleosin showed significant difference, with Camellia sinensis var. sinensis cv. Shuchazao and Camellia lanceoleosa displayed more oleosin numbers than other species. Phylogenetic analyses revealed that Theaceae oleosin genes were classified into three clades (U, SL, SH) respectively. Proteins within the same clade had similar gene structure and motif composition. Segmental duplication was the primary driving force for the evolution of oleosin genes in Shuchazao (SCZ), Huangdan (HD), C.lanceoleosa (Cla), and wild tea (DASZ). Synteny analysis showed that most oleosin genes displayed inter-species synteny among tea and oil tea species. Expression analysis demonstrated that oleosin genes were specifically expressed in seed and kernel of Huangdan (HD) and C.lanceoleosa. Moreover, expression divergence was observed in paralogous pairs and ∼1-2 oleosin genes in each clade have become activate. This study leads to a comprehensive understanding of evolution of oleosin family in Theaceae, and provides a rich resource to further address the functions of oleosin in tea and oil tea species.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China; Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Zhi-Guo Feng
- School of Science, Qiongtai Normal University, Hainan, China.
| | - Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China; Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China.
| |
Collapse
|
15
|
Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, Chen YR, Zhao ZW, Luo T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 2023; 91:156-168. [PMID: 36859501 DOI: 10.1007/s00239-023-10099-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Zi-Wei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
16
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
17
|
A Tea Plant ( Camellia sinensis) FLOWERING LOCUS C-like Gene, CsFLC1, Is Correlated to Bud Dormancy and Triggers Early Flowering in Arabidopsis. Int J Mol Sci 2022; 23:ijms232415711. [PMID: 36555355 PMCID: PMC9779283 DOI: 10.3390/ijms232415711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Flowering and bud dormancy are crucial stages in the life cycle of perennial angiosperms in temperate climates. MADS-box family genes are involved in many plant growth and development processes. Here, we identified three MADS-box genes in tea plant belonging to the FLOWERING LOCUS C (CsFLC) family. We monitored CsFLC1 transcription throughout the year and found that CsFLC1 was expressed at a higher level during the winter bud dormancy and flowering phases. To clarify the function of CsFLC1, we developed transgenic Arabidopsis thaliana plants heterologously expressing 35S::CsFLC1. These lines bolted and bloomed earlier than the WT (Col-0), and the seed germination rate was inversely proportional to the increased CsFLC1 expression level. The RNA-seq of 35S::CsFLC1 transgenic Arabidopsis showed that many genes responding to ageing, flower development and leaf senescence were affected, and phytohormone-related pathways were especially enriched. According to the results of hormone content detection and RNA transcript level analysis, CsFLC1 controls flowering time possibly by regulating SOC1, AGL42, SEP3 and AP3 and hormone signaling, accumulation and metabolism. This is the first time a study has identified FLC-like genes and characterized CsFLC1 in tea plant. Our results suggest that CsFLC1 might play dual roles in flowering and winter bud dormancy and provide new insight into the molecular mechanisms of FLC in tea plants as well as other plant species.
Collapse
|
18
|
Nie S, Tian XC, Kong L, Zhao SW, Chen ZY, Jiao SQ, El-Kassaby YA, Porth I, Yang FS, Zhao W, Mao JF. Potential allopolyploid origin of Ericales revealed with gene-tree reconciliation. FRONTIERS IN PLANT SCIENCE 2022; 13:1006904. [PMID: 36457535 PMCID: PMC9706204 DOI: 10.3389/fpls.2022.1006904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Few incidents of ancient allopolyploidization (polyploidization by hybridization or merging diverged genomes) were previously revealed, although there is significant evidence for the accumulation of whole genome duplications (WGD) in plants. Here, we focused on Ericales, one of the largest and most diverse angiosperm orders with significant ornamental and economic value. Through integrating 24 high-quality whole genome data selected from ~ 200 Superasterids genomes/species and an algorithm of topology-based gene-tree reconciliation, we explored the evolutionary history of in Ericales with ancient complex. We unraveled the allopolyploid origin of Ericales and detected extensive lineage-specific gene loss following the polyploidization. Our study provided a new hypothesis regarding the origin of Ericales and revealed an instructive perspective of gene loss as a pervasive source of genetic variation and adaptive phenotypic diversity in Ericales.
Collapse
Affiliation(s)
- Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao-Yang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, Canada
| | - Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Wang F, Zhang B, Wen D, Liu R, Yao X, Chen Z, Mu R, Pei H, Liu M, Song B, Lu L. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004387. [PMID: 36212364 PMCID: PMC9539759 DOI: 10.3389/fpls.2022.1004387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The tea plant (Camellia sinensis) is an important economic crop, which is becoming increasingly popular worldwide, and is now planted in more than 50 countries. Tea green leafhopper is one of the major pests in tea plantations, which can significantly reduce the yield and quality of tea during the growth of plant. In this study, we report a genome assembly for DuyunMaojian tea plants using a combination of Oxford Nanopore Technology PromethION™ with high-throughput chromosome conformation capture technology and used multi-omics to study how the tea plant responds to infestation with tea green leafhoppers. The final genome was 3.08 Gb. A total of 2.97 Gb of the genome was mapped to 15 pseudo-chromosomes, and 2.79 Gb of them could confirm the order and direction. The contig N50, scaffold N50 and GC content were 723.7 kb, 207.72 Mb and 38.54%, respectively. There were 2.67 Gb (86.77%) repetitive sequences, 34,896 protein-coding genes, 104 miRNAs, 261 rRNA, 669 tRNA, and 6,502 pseudogenes. A comparative genomics analysis showed that DuyunMaojian was the most closely related to Shuchazao and Yunkang 10, followed by DASZ and tea-oil tree. The multi-omics results indicated that phenylpropanoid biosynthesis, α-linolenic acid metabolism, flavonoid biosynthesis and 50 differentially expressed genes, particularly peroxidase, played important roles in response to infestation with tea green leafhoppers (Empoasca vitis Göthe). This study on the tea tree is highly significant for its role in illustrating the evolution of its genome and discovering how the tea plant responds to infestation with tea green leafhoppers will contribute to a theoretical foundation to breed tea plants resistant to insects that will ultimately result in an increase in the yield and quality of tea.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - Baohui Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Xinzhuan Yao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Ren Mu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| |
Collapse
|
20
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
21
|
Cheng L, Li M, Han Q, Qiao Z, Hao Y, Balbuena TS, Zhao Y. Phylogenomics Resolves the Phylogeny of Theaceae by Using Low-Copy and Multi-Copy Nuclear Gene Makers and Uncovers a Fast Radiation Event Contributing to Tea Plants Diversity. BIOLOGY 2022; 11:biology11071007. [PMID: 36101388 PMCID: PMC9311850 DOI: 10.3390/biology11071007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The Theaceae includes more than 300 species of great morphological diversity and has immense economic, cultural, and ornamental values. However, the evolutionary history of this family remains elusive. We integrated 91 genomes and transcriptome datasets of Theaceae and successfully resolved the phylogeny of Theaceae including relatives of cultivated tea plants from both extensive low-copy and multi-copy nuclear gene markers. Bayes-based molecular dating revealed that the ancestor of the tea family originated slightly earlier than the K-Pg boundary (Mass extinction events including the extinction of dinosaurs) with early diversification of three tribes associated with the Early Eocene Climatic Optimum. Further speciation analysis suggested a sole significant diversification shift rate in the common ancestor of Camellia associated with the Mid-Miocene Climatic Optimum. Collectively, polyploidy events, and key morphological innovation characters, such as pericarp with seed coat hardening, could possibly contribute to the Theaceae species diversity. Abstract Tea is one of the three most popular nonalcoholic beverages globally and has extremely high economic and cultural value. Currently, the classification, taxonomy, and evolutionary history of the tea family are largely elusive, including phylogeny, divergence, speciation, and diversity. For understanding the evolutionary history and dynamics of species diversity in Theaceae, a robust phylogenetic framework based on 1785 low-copy and 79,103 multi-copy nuclear genes from 91 tea plant genomes and transcriptome datasets had been reconstructed. Our results maximumly supported that the tribes Stewartieae and Gordonieae are successive sister groups to the tribe Theeae from both coalescent and super matrix ML tree analyses. Moreover, in the most evolved tribe, Theeae, the monophyletic genera Pyrenaria, Apterosperma, and Polyspora are the successive sister groups of Camellia. We also yield a well-resolved relationship of Camellia, which contains the vast majority of Theaceae species richness. Molecular dating suggests that Theaceae originated in the late L-Cretaceous, with subsequent early radiation under the Early Eocene Climatic Optimal (EECO) for the three tribes. A diversification rate shift was detected in the common ancestors of Camellia with subsequent acceleration in speciation rate under the climate optimum in the early Miocene. These results provide a phylogenetic framework and new insights into factors that likely have contributed to the survival of Theaceae, especially a successful radiation event of genus Camellia members to subtropic/tropic regions. These novel findings will facilitate the efficient conservation and utilization of germplasm resources for breeding cultivated tea and oil-tea. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Theaceae.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal 14884-900, Brazil;
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
22
|
Shang X, Han Z, Zhang D, Wang Y, Qin H, Zou Z, Zhou L, Zhu X, Fang W, Ma Y. Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:840350. [PMID: 35845692 PMCID: PMC9284231 DOI: 10.3389/fpls.2022.840350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors TEOSINTE BRANCHED1/CYCLOIDEA/PCF have been suggested to control the cell growth and proliferation in meristems and lateral organs. A total of 37 CsTCP genes were identified and divided into two classes, class I (PCF, group 1) and class II (CIN CYC/TB1, groups 2, and 3). The residues of TEOSINTE BRANCHED1/CYCLOIDEA/PCF of Camellia sinensis (Tea plant) (CsTCP) proteins between class I and class II were definitely different in the loop, helix I, and helix II regions; however, eighteen conserved tandem was found in bHLH. There are a large number of CsTCP homologous gene pairs in three groups. Additionally, most CsTCP proteins have obvious differences in motif composition. The results illuminated that CsTCP proteins in different groups are supposed to have complementary functions, whereas those in the same class seem to display function redundancies. There is no relationship between the number of CsTCP gene members and genome size, and the CsTCP gene family has only expanded since the divergence of monocots and eudicots. WGD/segmental duplication played a vital role in the expansion of the CsTCP gene family in tea plant, and the CsTCP gene family has expanded a lot. Most CsTCP genes of group 1 are more widely and non-specifically expressed, and the CsTCP genes of group 2 are mainly expressed in buds, flowers, and leaves. Most genes of group 1 and some genes of group 2 were up-/downregulated in varying degrees under different stress, CsTCP genes of group 3 basically do not respond to stress. TCP genes involved in abiotic stress response mostly belong to PCF group. Some CsTCP genes may have the same function as the homologous genes in Arabidopsis, but there is functional differentiation.
Collapse
Affiliation(s)
- Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dayan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hao Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Agricultural and Forestry Service Center, Suzhou, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Huang D, Mao Y, Guo G, Ni D, Chen L. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:306. [PMID: 35751024 PMCID: PMC9229754 DOI: 10.1186/s12870-022-03686-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The major aluminum (Al) detoxication mechanism of tea plant (Camellia sinensis), as an Al hyperaccumulator plant, is the fixation of almost 70% of Al in the cell walls. Pectin is the primary constituent of cell walls, a degree of methylation of pectin polysaccharides regulated by the pectin methylesterase (PME) genes can greatly affect the Al binding capacity. The knowledge on PME gene family in tea plant is still poor. RESULTS We identified 66 (CsPME1-CsPME66) PME genes from C. sinensis genome. We studied their protein characterization, conserved motifs, gene structure, systematic evolution and gene expression under Al treatments, to establish a basis for in-depth research on the function of PMEs in tea plant. Gene structures analysis revealed that the majority of PME genes had 2-4 exons. Phylogenetic results pointed out that the PME genes from the same species displayed comparatively high sequence consistency and genetic similarity. Selective pressure investigation suggested that the Ka/Ks value for homologous genes of PME family was less than one. The expression of CsPMEs under three Al concentration treatments was tissue specific, eight PME genes in leaves and 15 in roots displayed a trend similar to of the Al contents and PME activities under Al concentration treatments, indicating that the degree of pectin de-esterification regulated by PME was crucial for Al tolerance of tea plant. CONCLUSIONS Sixty-six CsPME genes were identified for the first time in tea plant. The genome-wide identification, classification, evolutionary and transcription analyses of the PME gene family provided a new direction for further research on the function of PME gene in Al tolerance of tea plant.
Collapse
Affiliation(s)
- Danjuan Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Mao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
24
|
Du Y, Song W, Yin Z, Wu S, Liu J, Wang N, Jin H, Qiao J, Huo YX. Genomic Analysis Based on Chromosome-Level Genome Assembly Reveals an Expansion of Terpene Biosynthesis of Azadirachta indica. FRONTIERS IN PLANT SCIENCE 2022; 13:853861. [PMID: 35528946 PMCID: PMC9069239 DOI: 10.3389/fpls.2022.853861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Azadirachta indica (neem), an evergreen tree of the Meliaceae family, is a source of the potent biopesticide azadirachtin. The lack of a chromosome-level assembly impedes an in-depth understanding of its genome architecture and the comparative genomic analysis of A. indica. Here, a high-quality genome assembly of A. indica was constructed using a combination of data from Illumina, PacBio, and Hi-C technology, which is the first chromosome-scale genome assembly of A. indica. Based on the length of our assembly, the genome size of A. indica is estimated to be 281 Mb anchored to 14 chromosomes (contig N50 = 6 Mb and scaffold N50 = 19 Mb). The genome assembly contained 115 Mb repetitive elements and 25,767 protein-coding genes. Evolutional analysis revealed that A. indica didn't experience any whole-genome duplication (WGD) event after the core eudicot γ event, but some genes and genome segment might likely experienced recent duplications. The secondary metabolite clusters, TPS genes, and CYP genes were also identified. Comparative genomic analysis revealed that most of the A. indica-specific TPS genes and CYP genes were located on the terpene-related clusters on chromosome 13. It is suggested that chromosome 13 may play an important role in the specific terpene biosynthesis of A. indica. The gene duplication events may be responsible for the terpene biosynthesis expansion in A. indica. The genomic dataset and genomic analysis created for A. indica will shed light on terpene biosynthesis in A. indica and facilitate comparative genomic research of the family Meliaceae.
Collapse
Affiliation(s)
- Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Wei Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Shengbo Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiaheng Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
25
|
Genome-Wide Investigation of the MiR166 Family Provides New Insights into Its Involvement in the Drought Stress Responses of Tea Plants (Camellia sinensis (L.) O. Kuntze). FORESTS 2022. [DOI: 10.3390/f13040628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MicroRNA166 (miR166) is a highly conserved plant miRNA that plays a crucial role in plant growth and the resistance to various abiotic stresses. However, the miR166s in tea (Camellia sinensis (L.) O. Kuntze) have not been comprehensively identified and analyzed. This study identified 30 mature miR166s and twelve pre-miR166s in tea plants. An evolutionary analysis revealed that csn-miR166s originating from the 3′ arm of their precursors were more conserved than the csn-miR166s derived from the 5′ arm of their precursors. The twelve pre-miR166s in tea were divided into two groups, with csn-MIR166 Scaffold364-2 separated from the other precursors. The Mfold-based predictions indicated that the twelve csn-MIR166s formed typical and stable structures comprising a stem-loop hairpin, with minimum free energy ranging from −110.90 to −71.80 kcal/mol. An analysis of the CsMIR166 promoters detected diverse cis-acting elements, including those related to light responses, biosynthesis and metabolism, abiotic stress defenses, and hormone responses. There was no one-to-one relationship between the csn-miR166s and their targets, but most csn-miR166s targeted HD-Zip III genes. Physiological characterization of tea plants under drought stress showed that leaf water content proportionally decreased with the aggravation of drought stress. In contrast, tea leaves’ malondialdehyde (MDA) content proportionally increased. Moreover, the cleavage site of the ATHB-15-like transcript was identified according to a modified 5′ RNA ligase-mediated rapid amplification of cDNA ends. The RT-qPCR data indicated that the transcription of nine csn-miR166s was negatively correlated with their target gene.
Collapse
|
26
|
Zhang Q, Zhao L, Folk RA, Zhao JL, Zamora NA, Yang SX, Soltis DE, Soltis PS, Gao LM, Peng H, Yu XQ. Phylotranscriptomics of Theaceae: generic-level relationships, reticulation and whole-genome duplication. ANNALS OF BOTANY 2022; 129:457-471. [PMID: 35037017 PMCID: PMC8944729 DOI: 10.1093/aob/mcac007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Theaceae, with three tribes, nine genera and more than 200 species, are of great economic and ecological importance. Recent phylogenetic analyses based on plastomic data resolved the relationships among the three tribes and the intergeneric relationships within two of those tribes. However, generic-level relationships within the largest tribe, Theeae, were not fully resolved. The role of putative whole-genome duplication (WGD) events in the family and possible hybridization events among genera within Theeae also remain to be tested further. METHODS Transcriptomes or low-depth whole-genome sequencing of 57 species of Theaceae, as well as additional plastome sequence data, were generated. Using a dataset of low-copy nuclear genes, we reconstructed phylogenetic relationships using concatenated, species tree and phylogenetic network approaches. We further conducted molecular dating analyses and inferred possible WGD events by examining the distribution of the number of synonymous substitutions per synonymous site (Ks) for paralogues in each species. For plastid protein-coding sequences , phylogenies were reconstructed for comparison with the results obtained from analysis of the nuclear dataset. RESULTS Based on the 610 low-copy nuclear genes (858 606 bp in length) investigated, Stewartieae was resolved as sister to the other two tribes. Within Theeae, the Apterosperma-Laplacea clade grouped with Pyrenaria, leaving Camellia and Polyspora as sister. The estimated ages within Theaceae were largely consistent with previous studies based mainly on plastome data. Two reticulation events within Camellia and one between the common ancestor of Gordonia and Schima were found. All members of the tea family shared two WGD events, an older At-γ and a recent Ad-β; both events were also shared with the outgroups (Diapensiaceae, Pentaphylacaceae, Styracaceae and Symplocaceae). CONCLUSIONS Our analyses using low-copy nuclear genes improved understanding of phylogenetic relationships at the tribal and generic levels previously proposed based on plastome data, but the phylogenetic position of the Apterosperma-Laplacea clade needs more attention. There is no evidence for extensive intergeneric hybridization within Theeae or for a Theaceae-specific WGD event. Land bridges (e.g. the Bering land bridge) during the Late Oligocene may have permitted the intercontinental plant movements that facilitated the putative ancient introgression between the common ancestor of Gordonia and Schima.
Collapse
Affiliation(s)
- Qiong Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Nelson A Zamora
- National Herbarium of Costa Rica (CR), Natural History Department of National Museum of Costa Rica, San José, Costa Rica
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Lijiang Forest Ecosystem National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| | | | | |
Collapse
|
27
|
Mishra B, Ulaszewski B, Meger J, Aury JM, Bodénès C, Lesur-Kupin I, Pfenninger M, Da Silva C, Gupta DK, Guichoux E, Heer K, Lalanne C, Labadie K, Opgenoorth L, Ploch S, Le Provost G, Salse J, Scotti I, Wötzel S, Plomion C, Burczyk J, Thines M. A Chromosome-Level Genome Assembly of the European Beech ( Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Front Genet 2022; 12:691058. [PMID: 35211148 PMCID: PMC8862710 DOI: 10.3389/fgene.2021.691058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Bartosz Ulaszewski
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Meger
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Isabelle Lesur-Kupin
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
- HelixVenture, Mérignac, France
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Corinne Da Silva
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | | | - Katrin Heer
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
- Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Lars Opgenoorth
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | | | | | - Stefan Wötzel
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | | | - Jaroslaw Burczyk
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
28
|
Shen TF, Huang B, Xu M, Zhou PY, Ni ZX, Gong C, Wen Q, Cao FL, Xu LA. The reference genome of camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhab083. [PMID: 35039868 PMCID: PMC8789033 DOI: 10.1093/hr/uhab083] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 05/02/2023]
Abstract
Camellia oil extracted from Camellia seeds is rich in unsaturated fatty acids (UFAs) and secondary metabolites beneficial to human health. However, no oil-tea tree genome has yet been published, which is a major obstacle to investigating the heredity improvement of oil-tea trees. Here, using both Illumina and PicBio sequencing technologies, we present the first chromosome-level genome sequence of the oil-tea tree species Camellia chekiangoleosa Hu. (CCH). The assembled genome consists of 15 pseudochromosomes with a genome size of 2.73 Gb and a scaffold N50 of 185.30 Mb. At least 2.16 Gb of the genome assembly consists of repetitive sequences, and the rest involves a high-confidence set of 64 608 protein-coding gene models. Comparative genomic analysis revealed that the CCH genome underwent a whole-genome duplication (WGD) event shared across the Camellia genus at ~57.48 MYA and a γ-WGT event shared across all core eudicot plants at ~120 MYA. Gene family clustering revealed that the genes involved in terpenoid biosynthesis have undergone rapid expansion. Furthermore, we determined the expression patterns of oleic acid accumulation- and terpenoid biosynthesis-associated genes in six tissues. We found that these genes tend to be highly expressed in leaves, pericarp tissues, roots, and seeds. The first chromosome-level genome of oil-tea trees will provide valuable resources for determining Camellia evolution and utilizing the germplasm of this taxon.
Collapse
Affiliation(s)
- Teng-fei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, Jiangxi 330047, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Peng-yan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhou-xian Ni
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Chun Gong
- Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, Jiangxi 330047, China
| | - Qiang Wen
- Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, Jiangxi 330047, China
| | - Fu-liang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
29
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
30
|
Parmar R, Seth R, Sharma RK. Genome-wide identification and characterization of functionally relevant microsatellite markers from transcription factor genes of Tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2022; 12:201. [PMID: 34996959 PMCID: PMC8742041 DOI: 10.1038/s41598-021-03848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Tea, being one of the most popular beverages requires large set of molecular markers for genetic improvement of quality, yield and stress tolerance. Identification of functionally relevant microsatellite or simple sequence repeat (SSR) marker resources from regulatory “Transcription factor (TF) genes” can be potential targets to expedite molecular breeding efforts. In current study, 2776 transcripts encoding TFs harbouring 3687 SSR loci yielding 1843 flanking markers were identified from traits specific transcriptome resource of 20 popular tea cultivars. Of these, 689 functionally relevant SSR markers were successfully validated and assigned to 15 chromosomes (Chr) of CSS genome. Interestingly, 589 polymorphic markers including 403 core-set of TF-SSR markers amplified 2864 alleles in key TF families (bHLH, WRKY, MYB-related, C2H2, ERF, C3H, NAC, FAR1, MYB and G2-like). Their significant network interactions with key genes corresponding to aroma, quality and stress tolerance suggests their potential implications in traits dissection. Furthermore, single amino acid repeat reiteration in CDS revealed presence of favoured and hydrophobic amino acids. Successful deployment of markers for genetic diversity characterization of 135 popular tea cultivars and segregation in bi-parental population suggests their wider utility in high-throughput genotyping studies in tea.
Collapse
Affiliation(s)
- Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
31
|
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. HORTICULTURE RESEARCH 2022; 9:6510850. [PMID: 35040977 PMCID: PMC8788373 DOI: 10.1093/hr/uhab029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
Free amino acids are one of the main chemical components in tea, and they contribute to the pleasant flavor, function, and quality of tea, notably the level of theanine. Here, a high-density genetic map was constructed to characterize quantitative trait loci (QTLs) for free amino acid content. A total of 2688 polymorphic SNP markers were obtained using genotyping-by-sequencing (GBS) based on 198 individuals derived from a pseudotestcross population of "Longjing 43" × "Baijiguan", which are elite and albino tea cultivars, respectively. The 1846.32 cM high-density map with an average interval of 0.69 cM was successfully divided into 15 linkage groups (LGs) ranging from 93.41 cM to 171.28 cM. Furthermore, a total of 4 QTLs related to free amino acid content (theanine, glutamate, glutamine, aspartic acid and arginine) identified over two years were mapped to LG03, LG06, LG11 and LG14. The phenotypic variation explained by these QTLs ranged from 11.8% to 23.7%, with an LOD score from 3.56 to 7.7. Furthermore, several important amino acid metabolic pathways were enriched based on the upregulated differentially expressed genes (DEGs) among the offspring. These results will be essential for fine mapping genes involved in amino acid pathways and diversity, thereby providing a promising avenue for the genetic improvement of tea plants.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jun-Ya Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Corresponding authors: E-mail: ,
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Corresponding authors: E-mail: ,
| |
Collapse
|
32
|
Singh N, Rawal HC, Angadi UB, Sharma TR, Singh NK, Mondal TK. A first-generation haplotype map (HapMap-1) of tea (Camellia sinensis L. O. Kuntz). Bioinformatics 2022; 38:318-324. [PMID: 34601584 DOI: 10.1093/bioinformatics/btab690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Tea is a cross-pollinated woody perennial plant, which is why, application of conventional breeding is limited for its genetic improvement. However, lack of the genome-wide high-density SNP markers and genome-wide haplotype information has greatly hampered the utilization of tea genetic resources toward fast-track tea breeding programs. To address this challenge, we have generated a first-generation haplotype map of tea (Tea HapMap-1). Out-crossing and highly heterozygous nature of tea plants, make them more complicated for DNA-level variant discovery. RESULTS In this study, whole genome re-sequencing data of 369 tea genotypes were used to generate 2,334,564 biallelic SNPs and 1,447,985 InDels. Around 2928.04 million paired-end reads were used with an average mapping depth of ∼0.31× per accession. Identified polymorphic sites in this study will be useful in mapping the genomic regions responsible for important traits of tea. These resources lay the foundation for future research to understand the genetic diversity within tea germplasm and utilize genes that determine tea quality. This will further facilitate the understanding of tea genome evolution and tea metabolite pathways thus, offers an effective germplasm utilization for breeding the tea varieties. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nisha Singh
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa campus, New Delhi 110012, India
| | - Hukam C Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa campus, New Delhi 110012, India
| | - Ulavappa B Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa campus, New Delhi 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa campus, New Delhi 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa campus, New Delhi 110012, India
| |
Collapse
|
33
|
Chen JD, He WZ, Chen S, Chen QY, Ma JQ, Jin JQ, Ma CL, Moon DG, Ercisli S, Yao MZ, Chen L. TeaGVD: A comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1056891. [PMID: 36518520 PMCID: PMC9742251 DOI: 10.3389/fpls.2022.1056891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 05/05/2023]
Affiliation(s)
- Jie-Dan Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Wei-Zhong He
- Tea Research Institute, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Si Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Qi-Yu Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Jian-Qiang Ma
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Ji-Qiang Jin
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Chun-Lei Ma
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
| | - Doo-Gyung Moon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, South Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Ming-Zhe Yao
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Liang Chen, ; Ming-Zhe Yao,
| | - Liang Chen
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Liang Chen, ; Ming-Zhe Yao,
| |
Collapse
|
34
|
Genetic, morphological, and chemical discrepancies between Camellia sinensis (L.) O. Kuntze and its close relatives. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Jiang X, Zhang W, Fernie AR, Wen W. Combining novel technologies with interdisciplinary basic research to enhance horticultural crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:35-46. [PMID: 34699639 DOI: 10.1111/tpj.15553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Horticultural crops mainly include fruits, vegetables, ornamental trees and flowers, and tea trees (Melaleuca alternifolia). They produce a variety of nutrients for the daily human diet in addition to the nutrition provided by staple crops, and some of them additionally possess ornamental and medicinal features. As such, horticultural crops make unique and important contributions to both food security and a colorful lifestyle. Under the current climate change scenario, the growing population and limited arable land means that agriculture, and especially horticulture, has been facing unprecedented challenges to meet the diverse demands of human daily life. Breeding horticultural crops with high quality and adaptability and establishing an effective system that combines cultivation, post-harvest handling, and sales becomes increasingly imperative for horticultural production. This review discusses characteristic and recent research highlights in horticultural crops, focusing on the breeding of quality traits and the mechanisms that underpin them. It additionally addresses challenges and potential solutions in horticultural production and post-harvest practices. Finally, we provide a prospective as to how emerging technologies can be implemented alongside interdisciplinary basic research to enhance our understanding and exploitation of horticultural crops.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Provincial Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
36
|
Liao HZ, Liao WJ, Zou DX, Zhang RQ, Ma JL. Identification and expression analysis of PUB genes in tea plant exposed to anthracnose pathogen and drought stresses. PLANT SIGNALING & BEHAVIOR 2021; 16:1976547. [PMID: 34633911 PMCID: PMC9208792 DOI: 10.1080/15592324.2021.1976547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The plant U-box (PUB) gene family, one of the major ubiquitin ligase families in plants, plays important roles in multiple cellular processes including environmental stress responses and resistance. The function of U-box genes has been well characterized in Arabidopsis and other plants. However, little is known about the tea plant (Camellia sinensis) PUB genes. Here, 89 U-box proteins were identified from the chromosome-scale referenced genome of tea plant. According to the domain organization and phylogenetic analysis, the tea plant PUB family were classified into ten classes, named Class I to X, respectively. Using previously released stress-related RNA-seq data in tea plant, we identified 34 stress-inducible CsPUB genes. Specifically, eight CsPUB genes were expressed differentially under both anthracnose pathogen and drought stresses. Moreover, six of the eight CsPUBs were upregulated in response to these two stresses. Expression profiling performed by qRT-PCR was consistent with the RNA-seq analysis, and stress-related cis-acting elements were identified in the promoter regions of the six upregulated CsPUB genes. These results strongly implied the putative functions of U-box ligase genes in response to biotic and abiotic stresses in tea plant.
Collapse
Affiliation(s)
- Hong-Ze Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, China
| | - Wang-Jiao Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Dong-Xia Zou
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Ri-Qing Zhang
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Lin Ma
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| |
Collapse
|
37
|
Yang J, Gu D, Wu S, Zhou X, Chen J, Liao Y, Zeng L, Yang Z. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:253. [PMID: 34848699 PMCID: PMC8632975 DOI: 10.1038/s41438-021-00679-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 05/26/2023]
Abstract
Tea plants are subjected to multiple stresses during growth, development, and postharvest processing, which affects levels of secondary metabolites in leaves and influences tea functional properties and quality. Most studies on secondary metabolism in tea have focused on gene, protein, and metabolite levels, whereas upstream regulatory mechanisms remain unclear. In this review, we exemplify DNA methylation and histone acetylation, summarize the important regulatory effects that epigenetic modifications have on plant secondary metabolism, and discuss feasible research strategies to elucidate the underlying specific epigenetic mechanisms of secondary metabolism regulation in tea. This information will help researchers investigate the epigenetic regulation of secondary metabolism in tea, providing key epigenetic data that can be used for future tea genetic breeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Shuhua Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
38
|
The Laccase Gene Family Mediate Multi-Perspective Trade-Offs during Tea Plant ( Camellia sinensis) Development and Defense Processes. Int J Mol Sci 2021; 22:ijms222212554. [PMID: 34830436 PMCID: PMC8618718 DOI: 10.3390/ijms222212554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
Laccase (LAC) plays important roles in different plant development and defense processes. In this study, we identified laccase genes (CsLACs) in Camellia sinensis cv ‘Longjing43′ cultivars, which were classified into six subclades. The expression patterns of CsLACs displayed significant spatiotemporal variations across different tissues and developmental stages. Most members in subclades II, IV and subclade I exhibited contrasting expression patterns during leaf development, consistent with a trade-off model for preferential expression in the early and late developmental stages. The extensive transcriptional changes of CsLACs under different phytohormone and herbivore treatment were observed and compared, with the expression of most genes in subclades I, II and III being downregulated but genes in subclades IV, V and VI being upregulated, suggesting a growth and defense trade-off model between these subclades. Taken together, our research reveal that CsLACs mediate multi-perspective trade-offs during tea plant development and defense processes and are involved in herbivore resistance in tea plants. More in-depth research of CsLACs upstream regulation and downstream targets mediating herbivore defense should be conducted in the future.
Collapse
|
39
|
Wang Y, Chen F, Ma Y, Zhang T, Sun P, Lan M, Li F, Fang W. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:176. [PMID: 34333548 PMCID: PMC8325681 DOI: 10.1038/s41438-021-00613-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 05/14/2023]
Abstract
Tea, coffee, and cocoa are the three most popular nonalcoholic beverages in the world and have extremely high economic and cultural value. The genomes of four tea plant varieties have recently been sequenced, but there is some debate regarding the characterization of a whole-genome duplication (WGD) event in tea plants. Whether the WGD in the tea plant is shared with other plants in order Ericales and how it contributed to tea plant evolution remained unanswered. Here we re-analyzed the tea plant genome and provided evidence that tea experienced only WGD event after the core-eudicot whole-genome triplication (WGT) event. This WGD was shared by the Polemonioids-Primuloids-Core Ericales (PPC) sections, encompassing at least 17 families in the order Ericales. In addition, our study identified eight pairs of duplicated genes in the catechins biosynthesis pathway, four pairs of duplicated genes in the theanine biosynthesis pathway, and one pair of genes in the caffeine biosynthesis pathway, which were expanded and retained following this WGD. Nearly all these gene pairs were expressed in tea plants, implying the contribution of the WGD. This study shows that in addition to the role of the recent tandem gene duplication in the accumulation of tea flavor-related genes, the WGD may have been another main factor driving the evolution of tea flavor.
Collapse
Affiliation(s)
- Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taikui Zhang
- College of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Meifang Lan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063099, China
| | - Fang Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Mi X, Yue Y, Tang M, An Y, Xie H, Qiao D, Ma Z, Liu S, Wei C. TeaAS: a comprehensive database for alternative splicing in tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:280. [PMID: 34154536 PMCID: PMC8215737 DOI: 10.1186/s12870-021-03065-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 05/08/2023]
Abstract
Alternative splicing (AS) increases the diversity of transcripts and proteins through the selection of different splice sites and plays an important role in the growth, development and stress tolerance of plants. With the release of the reference genome of the tea plant (Camellia sinensis) and the development of transcriptome sequencing, researchers have reported the existence of AS in tea plants. However, there is a lack of a platform, centered on different RNA-seq datasets, that provides comprehensive information on AS.To facilitate access to information on AS and reveal the molecular function of AS in tea plants, we established the first comprehensive AS database for tea plants (TeaAS, http://www.teaas.cn/index.php ). In this study, 3.96 Tb reads from 66 different RNA-seq datasets were collected to identify AS events. TeaAS supports four methods of retrieval of AS information based on gene ID, gene name, annotation (non-redundant/Kyoto encyclopedia of genes and genomes/gene ontology annotation or chromosomal location) and RNA-seq data. It integrates data pertaining to genome annotation, type of AS event, transcript sequence, and isoforms expression levels from 66 RNA-seq datasets. The AS events resulting from different environmental conditions and that occurring in varied tissue types, and the expression levels of specific transcripts can be clearly identified through this online database. Moreover, it also provides two useful tools, Basic Local Alignment Search Tool and Generic Genome Browser, for sequence alignment and visualization of gene structure.The features of the TeaAS database make it a comprehensive AS bioinformatics platform for researchers, as well as a reference for studying AS events in woody crops. It could also be helpful for revealing the novel biological functions of AS in gene regulation in tea plants.
Collapse
Affiliation(s)
- Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Yi Yue
- School of Information and Computer, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Mengsha Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Zhiyu Ma
- School of Information and Computer, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| |
Collapse
|
41
|
Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, Gao S, Cao H, Zheng Y, Gu M, Chen X, Sun Y, Guo Y, Yang J, Zhang X, Ye N. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. HORTICULTURE RESEARCH 2021; 8:107. [PMID: 33931633 PMCID: PMC8087695 DOI: 10.1038/s41438-021-00542-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
Tea plants (Camellia sinensis) are commercially cultivated in >60 countries, and their fresh leaves are processed into tea, which is the most widely consumed beverage in the world. Although several chromosome-level tea plant genomes have been published, they collapsed the two haplotypes and ignored a large number of allelic variations that may underlie important biological functions in this species. Here, we present a phased chromosome-scale assembly for an elite oolong tea cultivar, "Huangdan", that is well known for its high levels of aroma. Based on the two sets of haplotype genome data, we identified numerous genetic variations and a substantial proportion of allelic imbalance related to important traits, including aroma- and stress-related alleles. Comparative genomics revealed extensive structural variations as well as expansion of some gene families, such as terpene synthases (TPSs), that likely contribute to the high-aroma characteristics of the backbone parent, underlying the molecular basis for the biosynthesis of aroma-related chemicals in oolong tea. Our results uncovered the genetic basis of special features of this oolong tea cultivar, providing fundamental genomic resources to study evolution and domestication for the economically important tea crop.
Collapse
Affiliation(s)
- Pengjie Wang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Wenling Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shuilian Gao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Hongli Cao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Xuejin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Jiangfan Yang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, 350002, Fuzhou, China.
| |
Collapse
|
42
|
Lara LLS, Nascimento VA, Fernandes CC, Forim MR, Cazal CM. Chemical composition and antifungal activity of Zanthoxylum riedelianum stem bark essential oil. Nat Prod Res 2021; 36:1653-1658. [PMID: 33719784 DOI: 10.1080/14786419.2021.1897589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The phytopathogenic fungi Sclerotinia sclerotiorum and Rhizopus stolonifer infect different crop plants. Essential oils have been used as an alternative to chemical control methods. Therefore, the objective of this study was to analyze the essential oil chemical composition of the stem bark of Zanthoxylum riedelianum (ZREO) and evaluate its antifungal potential. The ZREO obtained by hydrodistillation was analyzed using gas chromatography coupled to mass spectrometry and evaluated for in vitro antifungal activity. The major components identified in the chemical analysis were E-nerolidol (67.21%), α-selinene (14.94%), and β-selinene (7.41%). The antifungal potential of ZREO against S. sclerotiorum and R. stolonifer was detected at all concentrations evaluated in a dose-dependent manner. The best results were against R. stolonifer, with the concentration of 150 µLmL-1 inhibiting more than 80% of mycelial growth. On the basis of the current knowledge, this study describes for the first time the chemical composition and their antifungal activity.
Collapse
Affiliation(s)
- Larissa L S Lara
- Ciência e Tecnologia Goiano - Campus Rio verde, Instituto Federal de Educação, Rio Verde, GO, Brazil
| | - Vinícius A Nascimento
- Ciência e Tecnologia Sudeste de Minas Gerais - Campus Barbacena, Instituto Federal de Educação, Barbacena, MG, Brazil
| | - Cássia C Fernandes
- Ciência e Tecnologia Goiano - Campus Rio verde, Instituto Federal de Educação, Rio Verde, GO, Brazil
| | - Moacir R Forim
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Cristiane M Cazal
- Ciência e Tecnologia Sudeste de Minas Gerais - Campus Barbacena, Instituto Federal de Educação, Barbacena, MG, Brazil
| |
Collapse
|
43
|
Bai P, Wang L, Wei K, Ruan L, Wu L, He M, Ni D, Cheng H. Biochemical characterization of specific Alanine Decarboxylase (AlaDC) and its ancestral enzyme Serine Decarboxylase (SDC) in tea plants (Camellia sinensis). BMC Biotechnol 2021; 21:17. [PMID: 33648478 PMCID: PMC7923638 DOI: 10.1186/s12896-021-00674-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00674-x.
Collapse
Affiliation(s)
- Peixian Bai
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liyuan Wang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China
| | - Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China
| | - Li Ruan
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China
| | - Liyun Wu
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China
| | - Mengdi He
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
44
|
Maritim TK, Masand M, Seth R, Sharma RK. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2021; 11:1244. [PMID: 33441891 PMCID: PMC7806957 DOI: 10.1038/s41598-020-80437-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purple-tea, an anthocyanin rich cultivar has recently gained popularity due to its health benefits and captivating leaf appearance. However, the sustainability of purple pigmentation and anthocyanin content during production period is hampered by seasonal variation. To understand seasonal dependent anthocyanin pigmentation in purple tea, global transcriptional and anthocyanin profiling was carried out in tea shoots with two leaves and a bud harvested during in early (reddish purple: S1_RP), main (dark gray purple: S2_GP) and backend flush (moderately olive green: S3_G) seasons. Of the three seasons, maximum accumulation of total anthocyanin content was recorded in S2_GP, while least amount was recorded during S3_G. Reference based transcriptome assembly of 412 million quality reads resulted into 71,349 non-redundant transcripts with 6081 significant differentially expressed genes. Interestingly, key DEGs involved in anthocyanin biosynthesis [PAL, 4CL, F3H, DFR and UGT/UFGT], vacuolar trafficking [ABC, MATE and GST] transcriptional regulation [MYB, NAC, bHLH, WRKY and HMG] and Abscisic acid signaling pathway [PYL and PP2C] were significantly upregulated in S2_GP. Conversely, DEGs associated with anthocyanin degradation [Prx and lac], repressor TFs and key components of auxin and ethylene signaling pathways [ARF, AUX/IAA/SAUR, ETR, ERF, EBF1/2] exhibited significant upregulation in S3_G, correlating positively with reduced anthocyanin content and purple coloration. The present study for the first-time elucidated genome-wide transcriptional insights and hypothesized the involvement of anthocyanin biosynthesis activators/repressor and anthocyanin degrading genes via peroxidases and laccases during seasonal induced leaf color transition in purple tea. Futuristically, key candidate gene(s) identified here can be used for genetic engineering and molecular breeding of seasonal independent anthocyanin-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.,Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Mamta Masand
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
45
|
Liao Y, Zhou X, Zeng L. How does tea ( Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 2021; 62:3751-3767. [PMID: 33401945 DOI: 10.1080/10408398.2020.1868970] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tea (Camellia sinensis) is both a plant and a foodstuff. Many bioactive compounds, which are present in the final tea product and related to its quality or functional properties, are produced during the tea manufacturing process. However, the characteristic secondary metabolites, which give tea its unique qualities and are beneficial to human health, are produced mainly in the leaves during the process of plant growth. Therefore, it is important to understand how tea leaves produce these specialized metabolites. In this review, we first compare the common metabolites and specialized metabolites in tea, coffee, cocoa, and grape and discuss the occurrence of characteristic secondary metabolites in tea. Progress in research into the formation of these characteristic secondary metabolites in tea is summarized, including establishing a biological database and genetic transformation system, and the biosynthesis of characteristic secondary metabolites. Finally, speculation on future research into the characteristic secondary metabolites of tea is provided from the viewpoints of the origin, resources, cultivation, and processing of tea. This review provides an important reference for future research on the specialized metabolites of tea in terms of its characteristics.
Collapse
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
46
|
Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, Zhan D, Weng J, Lin Y, Lai Z, Guo Y. Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea ( Camellia sinensis) during Solar Withering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12749-12767. [PMID: 33112139 DOI: 10.1021/acs.jafc.0c05750] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The unique aroma and flavor of oolong tea develop during the withering stage of postharvest processing. We explored the roles of miRNA-related regulatory networks during tea withering and their effects on oolong tea quality. We conducted transcriptome and miRNA analyses to identify differentially expressed (DE) miRNAs and target genes among fresh leaves, indoor-withered leaves, and solar-withered leaves. We identified 32 DE-miRNAs and 41 target genes involved in phytohormone signal transduction and ABC transporters. Further analyses indicated that these two pathways regulated the accumulation of flavor-related metabolites during tea withering. Flavonoid accumulation was correlated with the miR167d_1-ARF-GH3, miR845-ABCC1-3/ABCC2, miR166d-5p_1-ABCC1-2, and miR319c_3-PIF-ARF modules. Terpenoid content was correlated with the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2 modules. These modules inhibited flavonoid biosynthesis and enhanced terpenoid biosynthesis in solar-withered leaves. Low auxin and gibberellic acid contents and circRNA-related regulatory networks also regulated the accumulation of flavor compounds in solar-withered leaves. Our analyses reveal how solar withering produces high-quality oolong tea.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timur Zaripov
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Zhan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Weng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
47
|
Yu X, Xiao J, Chen S, Yu Y, Ma J, Lin Y, Li R, Lin J, Fu Z, Zhou Q, Chao Q, Chen L, Yang Z, Liu R. Metabolite signatures of diverse Camellia sinensis tea populations. Nat Commun 2020; 11:5586. [PMID: 33149146 PMCID: PMC7642434 DOI: 10.1038/s41467-020-19441-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/14/2020] [Indexed: 01/12/2023] Open
Abstract
The tea plant (Camellia sinensis) presents an excellent system to study evolution and diversification of the numerous classes, types and variable contents of specialized metabolites. Here, we investigate the relationship among C. sinensis phylogenetic groups and specialized metabolites using transcriptomic and metabolomic data on the fresh leaves collected from 136 representative tea accessions in China. We obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) enabling the refined grouping of the sampled tea accessions into five major clades. Untargeted metabolomic analyses detect 129 and 199 annotated metabolites that are differentially accumulated in different tea groups in positive and negative ionization modes, respectively. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides, proanthocyanidin dimers, and phenolic acids. Our results provide insights into the genetic and metabolite diversity and are useful for accelerated tea plant breeding.
Collapse
Affiliation(s)
- Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiajing Xiao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 3888 Chenhua Road, 201602, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Si Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuan Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jianqiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China
| | - Yuzhen Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Ruizi Li
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jun Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhijun Fu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Qiongqiong Zhou
- College of Horticulture, Henan Agricultural University, 450000, Zhengzhou, China
| | - Qianlin Chao
- Wuyi Star Tea Industry Co., Ltd, 354300, Wuyishan, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008, Hangzhou, China.
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA. .,Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA, 92521, USA.
| | - Renyi Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China. .,Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
48
|
Jia X, Zhang W, Fernie AR, Wen W. Camellia sinensis (Tea). Trends Genet 2020; 37:S0168-9525(20)30275-4. [PMID: 34756397 DOI: 10.1016/j.tig.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Xinxin Jia
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
Zheng C, Ma JQ, Ma CL, Yao MZ, Chen JD, Chen L. Identifying Conserved Functional Gene Modules Underlying the Dynamic Regulation of Tea Plant Development and Secondary Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11026-11037. [PMID: 32902975 DOI: 10.1021/acs.jafc.0c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tea plants adjust development and metabolism by integrating environmental and endogenous signals in complex but poorly defined gene networks. Here, we present an integrative analysis framework for the identification of conserved modules controlling important agronomic traits using a comprehensive collection of RNA-seq datasets in Camellia plants including 189 samples. In total, 212 secondary metabolism-, 182 stress response-, and 182 tissue development-related coexpressed modules were revealed. Functional modules (e.g., drought response, theobromine biosynthesis, and new shoot development-related modules) and potential regulators that were highly conserved across diverse genetic backgrounds and/or environmental conditions were then identified by cross-experiment comparisons and consensus clustering. Moreover, we investigate the preservation of gene networks between Camellia sinensis and other Camellia species. This revealed that the coexpression patterns of several recently evolved modules related to secondary metabolism and environmental adaptation were rewired and showed higher connectivity in tea plants. These conserved modules are excellent candidates for modeling the core mechanism of tea plant development and secondary metabolism and should serve as a great resource for hypothesis generation and tea quality improvement.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie-Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|