1
|
Cao Y, Feng X, Ding B, Huo H, Abdullah M, Hong J, Jiang L, Wang H, Li R, Cai Y, Li X, Xia Z, Varshney RK, Hu H, Lin M, Shen F. Gap-free genome assemblies of two Pyrus bretschneideri cultivars and GWAS analyses identify a CCCH zinc finger protein as a key regulator of stone cell formation in pear fruit. PLANT COMMUNICATIONS 2025; 6:101238. [PMID: 40071379 PMCID: PMC11956113 DOI: 10.1016/j.xplc.2024.101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 04/04/2025]
Abstract
The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions. Here, we generated two high-quality, gap-free genome assemblies for 'Dangshansu' (DS; 503.92 Mb) and 'Lianglizaosu' (ZS; 509.01 Mb), each anchored to 17 chromosomes, achieving a benchmarking universal single-copy ortholog completeness score of nearly 99.0%. Our genome-wide association studies explored the associations between genetic variations and stone cell traits, revealing a significant association peak on DS chromosome 3 and identifying a novel non-tandem CCCH-type zinc finger gene, designated PbdsZF. Through genetic transformation, we verified the pivotal role of PbdsZF in regulation of both lignin biosynthesis and stone cell formation, as it transcriptionally activates multiple genes involved in these processes. By binding to the CT-rich motifs CT1 (CTTTTTTCT) and CT2 (CTCTTTTT), PbdsZF significantly influences the transcription of genes essential for lignin production, underscoring its regulatory importance in plant lignin metabolism. Our study illuminates the complex biology of fruit development and delineates the gene regulatory networks that influence stone cell and lignocellulose formation, thereby enriching genetic resources and laying the groundwork for the molecular breeding of perennial trees.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Xiaofeng Feng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education and Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Muhammad Abdullah
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 7 Brisbane, Brisbane, QLD, Australia
| | - Jiayi Hong
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Han Wang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230000, China
| | - Risheng Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102209, China
| | - Zhichao Xia
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China.
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Gu C, Xu Y, Wu L, Wang X, Qi K, Qiao X, Wang Z, Li Q, He M, Zhang S. Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus. MOLECULAR HORTICULTURE 2025; 5:13. [PMID: 40022260 PMCID: PMC11871771 DOI: 10.1186/s43897-024-00132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
The S-RNase-based self-incompatibility locus (S-locus) in Petunia species contains 16-20 F-box genes, which collaboratively function in the recognition and subsequent degradation of non-self S-RNases, while distinguishing them from self S-RNase. However, the number of S-locus F-box genes (SFBBs) physically interacted with non-self S-RNases remains uncertain in Pyrus species. Utilizing Pacbio long-read sequencing, we successfully assembled the genome of pear cultivar 'Yali' (Pyrus bretschneideri), and identified 19 SFBBs from the Pyrus S17-locus spanning approximately 1.78 Mb. Additionally, we identified 17-21 SFBBs from other Pyrus and Malus S-loci spanning a range of 1.35 to 2.64 Mb. Based on the phylogenetic analysis, it was determined that Pyrus and Malus SFBBs could be classified into 22 groups, denoted as I to XXII. At amino acid level, SFBBs within a given group exhibited average identities ranged from 88.9% to 97.9%. Notably, all 19 SFBBs from the S17-locus co-segregated with S17-RNase, with 18 of them being specifically expressed in pollen. Consequently, these 18 pollen-specifically expressed SFBBs are considered potential candidates for the pollen-S determinant. Intriguingly, out of the 18 pollen-specifically expressed SFBBs, eight demonstrated interactions with at least one non-self S-RNase, while the remaining SFBBs failed to recognize any S-RNase. These findings provide compelling evidence supporting the existence of a collaborative non-self-recognition system governing self-incompatibility in pear species.
Collapse
Affiliation(s)
- Chao Gu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| | - Ying Xu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lei Wu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Xueping Wang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Kaijie Qi
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Xin Qiao
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Zewen Wang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Qionghou Li
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Min He
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Shaoling Zhang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| |
Collapse
|
3
|
Xu G, He M, Yan S, Lyu D, Cheng C, Zhao D, Qin S. Galactinol synthase gene 5 (MdGolS5) enhances the cold resistance of apples by promoting raffinose family oligosaccharide accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109416. [PMID: 39765124 DOI: 10.1016/j.plaphy.2024.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025]
Abstract
Low-temperature stress is a limiting factor affecting the safe overwintering and stable production of apples. Galactinol, produced by galactinol synthase (GolS), is an important plant cryoprotectant. This study showed for the first time that exogenous spraying of apple saplings with 100 mg mL-1 galactinol could effectively alleviate the damage from low-temperature stress. Further, we found that transgenic apple callus and tobacco overexpressing MdGolS5 showed strong cold tolerance. Specifically, the activities of antioxidant enzymes such as superoxide dismutase and GolS in transgenic tobacco overexpressing MdGolS5 increased under low-temperature treatment at -2 °C, and the contents of malondialdehyde, superoxide anion, and hydrogen peroxide were significantly lower than those of wild type tobacco. Moreover, large amounts of proline, galactinol, and raffinose were accumulated. In addition, the expression levels of cold-responsive genes MdCBF1, MdCBF2, MdCBF3, and MdCOR47 were significantly up-regulated in transgenic tobacco, further confirming the important role of MdGolS5 in regulating plant cold adaptation. In summary, this study not only revealed the direct effect of exogenous galactinol on the low-temperature protection of apple saplings for the first time, but also explored a new mechanism of raffinose family oligosaccharides anabolism in plant low-temperature adaptation through overexpression of MdGolS5. These results provide a theoretical basis for the genetic improvement of apple cold resistance.
Collapse
Affiliation(s)
- Gongxun Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China; College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China
| | - Meiqi He
- College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China
| | - Shuai Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China
| | - Cungang Cheng
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China
| | - Deying Zhao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, 125100, China.
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
4
|
Zhang L, Du W, Tu J, Zhu H, Li X. Light-mediated activation of PpPSY enhances β-carotene accumulation in pear fruit peel. FRONTIERS IN PLANT SCIENCE 2025; 16:1542830. [PMID: 40093606 PMCID: PMC11906342 DOI: 10.3389/fpls.2025.1542830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Light is a key environmental factor that regulates fruit development and influences several important quality traits, including pericarp color. In pear fruits, carotenoids are the primary determinant of pericarp color. However, the molecular mechanisms underlying light-mediated carotenoid accumulation remain poorly understood. This study investigated the carotenoid contents in the peels of non-bagged (light-exposed) and bagged (shaded) pear fruits (Cuiguan, Pyrus pyrifolia) and revealed a significant differences in β-carotene content between the two treatments. Transcriptome analysis revealed that the expression of phytoene synthase (PSY) was downregulated in bagged fruits, highlighting the regulatory role of PSY in carotenoid metabolism. To further validate this, we transiently overexpressed PSY, which resulted in a marked increase in β-carotene levels at the injection site. Conversely, transient silencing of PSY led to a significant reduction in the β-carotene content, confirming the pivotal role of PSY in regulating β-carotene accumulation. Promoter analysis revealed that agamous-like 8 (AGL8) directly binds to the PSY promoter to activate its transcription. Protein-protein interaction assays demonstrated that AGL8 interacts with LEAFY (LFY), thereby increasing PSY expression. In conclusion, the AGL8-LFY complex coactivates PSY expression, regulating β-carotene accumulation in pear fruit. This study provides new insights into the regulatory network governing fruit peel coloration, with potential applications for cultivation strategies to improve fruit quality.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Du
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junfan Tu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongyan Zhu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xianming Li
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Guan H, Zhao Y, Chen Q, Zhang Q, Yang P, Sun S, Chen G. Integrated metabolome and transcriptome analysis reveals potential mechanism during the bud dormancy transition of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. FRONTIERS IN PLANT SCIENCE 2025; 15:1483538. [PMID: 39906223 PMCID: PMC11790638 DOI: 10.3389/fpls.2024.1483538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025]
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (AMM) is an important medicinal plant that is used for both medicine and food. It is widely used in Asia and South Asia. It is normally cultivated by transplanting the annual rhizomes. Understanding the dormancy of underground buds of AMM is essential for its harvest and transplantation. Despite thorough research on bud dormancy in perennial woody plants, perennial herbs, and especially medicinal plants, such as AMM, have rarely been studied. We analyzed the transcriptome and non-targeted metabolome of dormant buds stage-by-stage to investigate the regulatory mechanism of the transition from endo- to ecodormancy. A total of 1,069 differentially accumulated metabolites (DAMs) participated in amino acid and carbohydrate metabolism. Transcriptome analysis revealed 16,832 differentially expressed genes (DEGs). Functional enrichment analysis indicated that carbohydrate metabolism, hormone signaling pathways, and amino acid metabolism contributed to the transition from endo- to ecodormancy. Starch and sucrose metabolism and hormone signaling pathways were mainly analyzed in the transition between different dormancy states. During the transition from endo- to ecodormancy, the highest content of indole-3-acetic acid (IAA) and the highest number of DEGs enriched in the IAA signaling pathway demonstrated that IAA may play a key role in this process. We obtained candidate genes through co-expression network analysis, such as BGL, GN, glgC, and glgB, which are involved in starch and sucrose metabolism. The transcription factors MYB, ERF, bHLH, zinc finger, and MADS-box may regulate the genes involved in hormone signal transduction and starch and sucrose metabolism, which are critical for regulating the transition from endo- to ecodormancy in AMM buds. In summary, these results provide insights into the novel regulatory mechanism of the transition of endo- to ecodormancy in underground buds of AMM and offer new analytical strategies for breaking dormancy in advance and shortening breeding time.
Collapse
Affiliation(s)
- Huan Guan
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Inner Mongolia University, Hohhot, China
| | - Yuhuan Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Inner Mongolia University, Hohhot, China
| | - Qing Chen
- Spallation Neutron Source Science Center, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, China
| | - Qianqian Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Inner Mongolia University, Hohhot, China
| | - Pengpeng Yang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Inner Mongolia University, Hohhot, China
| | - Shuying Sun
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Inner Mongolia University, Hohhot, China
| | - Guilin Chen
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- The Good Agriculture Practice Engineering Technology Research Center of Chinese and Mongolian Medicine in Inner Mongolia, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Jiang D, Li Y, Zhuge F, Zhou Q, Zong W, Liu X, Shen X. The telomere-to-telomere genome of flowering cherry (Prunus campanulata) reveals genomic evolution of the subgenus Cerasus. Gigascience 2025; 14:giaf009. [PMID: 39982852 PMCID: PMC11843098 DOI: 10.1093/gigascience/giaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Prunus campanulata, a species of ornamental cherry, holds significant genetic and horticultural value. Despite the availability of various cherry genomes, a fully resolved telomere-to-telomere (T2T) assembly for this species has been lacking. Recent advancements in long-read sequencing technologies have made it possible to generate gap-free genome assemblies, providing comprehensive insights into genomic structures that were previously inaccessible. FINDINGS We present the first T2T genome assembly for P. campanulata "Lianmeiren" (v2.0), achieved through the integration of PacBio HiFi, ultra-long Oxford Nanopore Technologies, Illumina, and Hi-C sequencing. The assembly resulted in a highly contiguous genome with a total size of 266.23 Mb and a contig N50 of 31.6 Mb. The genome exhibits remarkable completeness (98.9% BUSCO) and high accuracy (quality value of 48.75). Additionally, 13 telomeres and putative centromere regions were successfully identified across the 8 pseudochromosomes. Comparative analysis with the previous v1.0 assembly revealed 336,943 single nucleotide polymorphisms, 107,521 indels, and 1,413 structural variations, along with the annotation of 1,402 new genes. CONCLUSIONS This T2T genome assembly of P. campanulata "Lianmeiren" provides a critical reference for understanding the genetic architecture of the species. It enhances our ability to study structural variations, gene function, and evolutionary biology within the Prunus genus.
Collapse
Affiliation(s)
- Dongyue Jiang
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yingang Li
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Fei Zhuge
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Qi Zhou
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Wenjin Zong
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xinhong Liu
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xin Shen
- Institute of Tree Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China
| |
Collapse
|
7
|
Hsiang TF, Yamane H, Lin YJ, Sugimori M, Nishiyama S, Nagasaka K, Nakano R, Tao R. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. DNA Res 2024; 32:dsae034. [PMID: 39656749 PMCID: PMC11747360 DOI: 10.1093/dnares/dsae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear. In this study, we first assembled the genome of 'Nanko', the leading P. mume cultivar in Japan, in a haplotype-resolved manner. Using an F1 segregating population from a cross between 'Nanko' (high-chill) and 'SC' (low-chill), a cultivar adapted to subtropical conditions, we identified quantitative trait loci (QTLs) for vegetative bud dormancy traits on chromosome 4 (LG4 QTLs) in the 'Nanko' genome and for CR and HR on chromosome 7 (LG7 QTL) in the 'SC' genome. A notable 5.6 Mb chromosome inversion was overlapped with LG4 QTL interval in one of the 'Nanko' haplotypes. We also identified candidate genes based on haplotyping, differential expression between the parents or the presence of trait-correlated variants in coding regions. Notably, genes such as PmuMAIN, PmuNAC2, PmuDOG1, PmuSUI1, PmuATG8CL, PmubZIP44, and PmuSAUR50 were identified. This study provides valuable insights into the genetic regulation of vegetative bud dormancy in Prunus species.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuan-Jui Lin
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Miku Sugimori
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | - Kyoka Nagasaka
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Silva HG, Sobral R, Alhinho AT, Afonso HR, Ribeiro T, Silva PMA, Bousbaa H, Morais-Cecílio L, Costa MMR. Genetic and epigenetic control of dormancy transitions throughout the year in the monoecious cork oak. PHYSIOLOGIA PLANTARUM 2024; 176:e14620. [PMID: 39528435 DOI: 10.1111/ppl.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Bud dormancy plays a vital role in flowering regulation and fruit production, being highly regulated by endogenous and environmental cues. Deployment of epigenetic modifications and differential gene expression control bud dormancy/break cycles. Information on how these genetic and epigenetic mechanisms are regulated throughout the year is still scarce for temperate trees such as Quercus suber. Here, the expression levels of CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) during seasonal cycles of bud development, suggesting that QsCENL may be implicated in growth cessation in Q. suber and that QsDYL1 is a good dormancy marker. As gene expression can be regulated by the activity of chromatin modifiers, we have analysed the expression of these genes and the deposition of epigenetic marks in dormant versus non-dormant bud meristems. The DNA methyl transferases CHROMOMEHTYLASE 3 (QsCMT3) and METHYLTRANSFERASE 1 (QsMET1) were more expressed in the transition between dormancy to bud swelling. QsCMT3 was also highly expressed during the late stages of active bud formation. Conversely, the HISTONE ACETYLTRANSFERASE 1 (QsHAC1) was up-regulated during growth cessation and dormancy when compared to bud swelling. These results indicate that epigenetic regulation is implicated in how bud development progresses in Q. suber, which can be observed in the different profile deposition of the repressive and active marks, 5mC and H3K18Ac/H3K4me, respectively. The identification of bud-specific genetic and epigenetic profiling opens new possibilities to predict the relative rate of dormancy/growth of the bud stages, providing tools to understand how trees respond to the current challenges posed by climate change.
Collapse
Affiliation(s)
- Helena Gomes Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Rómulo Sobral
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
- new address: Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ana Teresa Alhinho
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Hugo Ricardo Afonso
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Teresa Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - Patrícia M A Silva
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - Leonor Morais-Cecílio
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | | |
Collapse
|
9
|
Jiang S, Zhang J, Wang X, Shi C, Luo J. Identification of Candidate Genes Associated with Flesh Firmness by Combining QTL Mapping and Transcriptome Profiling in Pyrus pyrifolia. Int J Mol Sci 2024; 25:11347. [PMID: 39518899 PMCID: PMC11545808 DOI: 10.3390/ijms252111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Flesh firmness is an important quality of pear fruits. Breeding cultivars with suitably low flesh firmness is one of the popular pear breeding goals. At present, SNP markers related to pear flesh firmness and genes affecting flesh firmness are still uncertain. In this study, a QTL analysis was performed, and the result showed that the position of 139.857 cM in lineage group 14 (LG14) had the highest average logarithm of odds (3.41) over two years. This newly discovered locus was identified as a flesh firmness-related QTL (qFirmness-LG14). The 'C/T' SNP was found in corresponding Marker1512129. The 'C' genotype is the high-firmness genotype, which is a dominant trait. The average firmness of fruits with genotype C is 21.4% higher than genotype without the C genotype. Transcriptome profiling was obtained between 'Zaoshengxinshui' and 'Qiushui' at five time points. Three candidate genes in the interval of qFirmness-LG14 might affect firmness. A gene of xyloglucan endotransglucosylase 1 (PpXTH1) was upregulated in 'Qiushui' at all five time points. Two transcription factors (PpHY5 and PpERF113) were upregulated in 'Zaoshengxinshui', which might be negative regulatory genes for high flesh firmness. The transcriptome results also isolated a large number of cell wall-related genes (e.g., Pectate lyase, Pectin acetylesterase, Pectin methylesterase, and 4-coumarate-CoA ligase) and transcription factors (e.g., ERF, WRKY). These genes are all potential upstream and downstream genes related to flesh firmness. In conclusion, this study provides valuable insights into the QTLs and molecular mechanisms associated with fruit firmness in Pyrus pyrifolia.
Collapse
Affiliation(s)
| | | | | | | | - Jun Luo
- Shanghai Key Lab of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Jinqi Road 1000, Fengxian District, Shanghai 201403, China; (S.J.); (J.Z.); (X.W.); (C.S.)
| |
Collapse
|
10
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Zhang W, Liao L, Wan B, Han Y. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:70. [PMID: 39391168 PMCID: PMC11461438 DOI: 10.1007/s11032-024-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Bud endodormancy in deciduous fruit trees is an adaptive trait evolved by selection for the capacity to survive unfavorable environmental conditions. Deciduous trees require a certain amount of winter chill named chilling requirement (CR) to promote bud endodormancy release. In recent decades, global warming has endangered the chill accumulation in deciduous fruit trees. Developing low-CR cultivars is a practical way to neutralize the effect of climate changes on the cultivation and distribution of deciduous fruit trees. In this review, we focus on the effect of chilling accumulation on bud endodormancy release and the genetic mechanisms underlying the chilling requirement in deciduous fruit trees. Additionally, we put forth a regulatory model for bud endodormancy and provide prospective directions for future research in deciduous fruit trees.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Baoxiong Wan
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004 Guangxi China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
12
|
Zhang L, Wang L, Fang Y, Gao Y, Yang S, Su J, Ni J, Teng Y, Bai S. Phosphorylated transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis in pear exposed to high light. THE PLANT CELL 2024; 36:3562-3583. [PMID: 38842382 PMCID: PMC11371158 DOI: 10.1093/plcell/koae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Plants are increasingly vulnerable to environmental stresses because of global warming and climate change. Stress-induced reactive oxygen species (ROS) accumulation results in plant cell damage, even cell death. Anthocyanins are important antioxidants that scavenge ROS to maintain ROS homeostasis. However, the mechanism underlying ROS-induced anthocyanin accumulation is unclear. In this study, we determined that the HD-Zip I family member transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis under high-light stress in pear (Pyrus ussuriensis). Specifically, PuHB40 induces the PuMYB123-like-PubHLH3 transcription factor complex for anthocyanin biosynthesis. The PuHB40-mediated transcriptional activation depends on its phosphorylation level, which is regulated by protein phosphatase PP2A. Elevated ROS content maintains high PuHB40 phosphorylation levels while also enhancing the PuHB40-induced PuMYB123-like transcription by decreasing the PuPP2AA2 expression, ultimately leading to increased anthocyanin biosynthesis. Our study reveals a pathway regulating the ROS-induced anthocyanin biosynthesis in pears, further clarifying the mechanism underlying the abiotic stress-induced anthocyanin biosynthesis, which may have implications for improving plant stress tolerance.
Collapse
Affiliation(s)
- Lu Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
13
|
Wang B, Xiao Y, Yan M, Fan W, Zhu Y, Li W, Li T. Gene Duplication and Functional Diversification of MADS-Box Genes in Malus × domestica following WGD: Implications for Fruit Type and Floral Organ Evolution. Int J Mol Sci 2024; 25:8962. [PMID: 39201650 PMCID: PMC11354807 DOI: 10.3390/ijms25168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The evolution of the MADS-box gene family is essential for the rapid differentiation of floral organs and fruit types in angiosperms. Two key processes drive the evolution of gene families: gene duplication and functional differentiation. Duplicated copies provide the material for variation, while advantageous mutations can confer new functions on gene copies. In this study, we selected the Rosaceae family, which includes a variety of fruit types and flower organs, as well as species that existed before and after whole-genome duplication (WGD). The results indicate that different fruit types are associated with different copies of MADS-box gene family duplications and WGD events. While most gene copies derived from WGD have been lost, MADS-box genes not only retain copies derived from WGD but also undergo further gene duplication. The sequences, protein structures, and expression patterns of these gene copies have undergone significant differentiation. This work provides a clear example of MADS-box genes in the context of gene duplication and functional differentiation, offering new insights into the evolution of fruit types and floral organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (B.W.); (Y.X.); (M.Y.); (W.F.); (Y.Z.); (W.L.)
| |
Collapse
|
14
|
Niu J, Shi Y, Gao Z, Sun Z, Tian S, Chen X, Luan M. The β-galactosidase gene AtrBGAL2 regulates Akebia trifoliata fruit cracking. Int J Biol Macromol 2024; 275:133313. [PMID: 38936569 DOI: 10.1016/j.ijbiomac.2024.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Cracking of Akebia trifoliata fruit at maturity is problematic for the cultivation of the horticultural crop, shortening shelf-life quality and compromising commercial value. However, the molecular mechanisms underlying this feature of A. trifoliata are not known. Genes involved in cell wall metabolism were identified by genome and transcriptome sequencing, which may play important roles in fruit cracking. One of the galactose metabolism related genes, β-galactosidase (AtrBGAL2), was identified in A. trifoliata, and overexpression (OE) of AtrBGAL2 resulted in early fruit cracking, higher water-soluble pectin contents, and lower acid-soluble pectin, cellulose, and hemicellulose content compared to the wild type. Whereas silencing of AtrBGAL2 in trifoliata by virus induced gene silencing showed opposite trends. The levels of AtrBGAL2 transcripts were 24.6 and 66.0-fold higher in OE A. trifoliata and tomato fruits, respectively, and the cell wall-related genes were also gradually greater than in control plants during fruit ripening. Whereas the expression levels of AtrBGAL2 was significantly down-regulated by 54.1 % and 73.7 % in gene silenced A. trifoliata and CRISPR/Cas9 tomato mutant plants, respectively, and cell wall-related genes were also significantly reduced. These results demonstrate that AtrBGAL2 plays important roles in regulating fruit cracking during fruit ripening.
Collapse
Affiliation(s)
- Juan Niu
- Jingdezhen University, Jingdezhen 333032, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Yingying Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Zexin Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Shuang Tian
- Jingdezhen University, Jingdezhen 333032, China.
| | | | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China.
| |
Collapse
|
15
|
Guo H, Li S, Liu Y, Yang Q. Catechin promotes the germination of Pistacia chinensis seeds via GA biosynthesis. ANNALS OF BOTANY 2024; 134:233-246. [PMID: 38682952 PMCID: PMC11232523 DOI: 10.1093/aob/mcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS Chinese pistachio (Pistacia chinensis), an important horticultural plant species, holds great ornamental value with beautiful leaves and fruits. Seedling propagation of this tree species is restricted by its erratic seed germination; however, the germination mechanism is ambiguous. The aim of this study was to determine the germination mechanism from a novel perspective based on the multi-omics data. METHODS The multi-omics technique combined with hormone content measurement was applied to seed germination of Chinese pistachio. KEY RESULTS Due to its great accumulation during seed germination, catechin stood out from the identified metabolites in a broadly targeted metabolomic analysis. Exogenous catechin at 10 mg L-1 significantly improved the germination of Chinese pistachio seeds. An interesting result of hormone analysis was that the improving effect of catechin could be attributed to an increase in gibberellic acid 3 (GA3) content rather than a decrease in abscisic acid (ABA) content before germination. Treatments with paclobutrazol (PAC, a GA biosynthesis inhibitor) and PAC + catechin also showed that the promoting effect of catechin on seed germination depends on GA biosynthesis. Transcriptome analysis and qRT‒PCR further revealed that catechin induced the expression of PcGA20ox5 to activate GA biosynthesis. Several transcription factors were induced by catechin and GA treatments, such as TCP, bZIP and C3H, which may play an important regulatory role in GA biosynthesis in a catechin-mediated way. CONCLUSIONS Catechin promotes seed germination via GA biosynthesis in Chinese pistachios. This study proposes a novel mechanism by which catechin promotes seed germination via the GA pathway, which provides new insight into a comprehensive understanding of seed dormancy and germination.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| | - Shiqin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| |
Collapse
|
16
|
Jiu S, Lv Z, Liu M, Xu Y, Chen B, Dong X, Zhang X, Cao J, Manzoor MA, Xia M, Li F, Li H, Chen L, Zhang X, Wang S, Dong Y, Zhang C. Haplotype-resolved genome assembly for tetraploid Chinese cherry ( Prunus pseudocerasus) offers insights into fruit firmness. HORTICULTURE RESEARCH 2024; 11:uhae142. [PMID: 38988622 PMCID: PMC11233885 DOI: 10.1093/hr/uhae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/11/2024] [Indexed: 07/12/2024]
Abstract
Chinese cherry (Prunus pseudocerasus) holds considerable importance as one of the primary stone fruit crops in China. However, artificially improving its traits and genetic analysis are challenging due to lack of high-quality genomic resources, which mainly result from difficulties associated with resolving its tetraploid and highly heterozygous genome. Herein, we assembled a chromosome-level, haplotype-resolved genome of the cultivar 'Zhuji Duanbing', comprising 993.69 Mb assembled into 32 pseudochromosomes using PacBio HiFi, Oxford Nanopore, and Hi-C. Intra-haplotype comparative analyses revealed extensive intra-genomic sequence and expression consistency. Phylogenetic and comparative genomic analyses demonstrated that P. pseudocerasus was a stable autotetraploid species, closely related to wild P. pusilliflora, with the two diverging ~18.34 million years ago. Similar to other Prunus species, P. pseudocerasus underwent a common whole-genome duplication event that occurred ~139.96 million years ago. Because of its low fruit firmness, P. pseudocerasus is unsuitable for long-distance transportation, thereby restricting its rapid development throughout China. At the ripe fruit stage, P. pseudocerasus cv. 'Zhuji Duanbing' was significantly less firm than P. avium cv. 'Heizhenzhu'. The difference in firmness is attributed to the degree of alteration in pectin, cellulose, and hemicellulose contents. In addition, comparative transcriptomic analyses identified GalAK-like and Stv1, two genes involved in pectin biosynthesis, which potentially caused the difference in firmness between 'Zhuji Duanbing' and 'Heizhenzhu'. Transient transformations of PpsGalAK-like and PpsStv1 increase protopectin content and thereby enhance fruit firmness. Our study lays a solid foundation for functional genomic studies and the enhancement of important horticultural traits in Chinese cherries.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Moyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiao Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingxu Xia
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangdong Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Hongwen Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Lijuan Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Tang X, Lu F, Xiao Z, Wang Y, Hu G, Cai K, Yin R, Song W, Xie L, Guo G, Wang W, Liu L, Liu L, Ye Z, Heng W, Guo X, Wang D, Jia B. Determination of anthracnose (Colletotrichum fructicola) resistance mechanism using transcriptome analysis of resistant and susceptible pear (Pyrus pyrifolia). BMC PLANT BIOLOGY 2024; 24:619. [PMID: 38937683 PMCID: PMC11212231 DOI: 10.1186/s12870-024-05077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.
Collapse
Affiliation(s)
- Xiaomei Tang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Fen Lu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ziwen Xiao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guoqing Hu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Kexin Cai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ruichang Yin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Song
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Luoluo Xie
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guoling Guo
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wenming Wang
- Sation of Science and Technology of Shexian, Huangshan, Anhui Province, China
| | - Lun Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Li Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenfeng Ye
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Heng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xianping Guo
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, 450002, China
| | - Dongsheng Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, 450002, China.
| | - Bing Jia
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
18
|
Jiu S, Manzoor MA, Chen B, Xu Y, Abdullah M, Zhang X, Lv Z, Zhu J, Cao J, Liu X, Wang J, Liu R, Wang S, Dong Y, Zhang C. Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae. MOLECULAR HORTICULTURE 2024; 4:25. [PMID: 38898491 PMCID: PMC11186256 DOI: 10.1186/s43897-024-00101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Yang Q, Li J, Wang Y, Wang Z, Pei Z, Street NR, Bhalerao RP, Yu Z, Gao Y, Ni J, Jiao Y, Sun M, Yang X, Chen Y, Liu P, Wang J, Liu Y, Li G. Genomic basis of the distinct biosynthesis of β-glucogallin, a biochemical marker for hydrolyzable tannin production, in three oak species. THE NEW PHYTOLOGIST 2024; 242:2702-2718. [PMID: 38515244 DOI: 10.1111/nph.19711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that β-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for β-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different β-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding β-glucogallin and HT biosynthesis in closely related oak species.
Collapse
Affiliation(s)
- Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Jinjin Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zefu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 90754, Sweden
- SciLifeLab, Umeå University, Umeå, 90754, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187, Umeå, Sweden
| | - Zhaowei Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Jiao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Puyuan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxi Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| | - Guolei Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
20
|
Yang G, Sun M, Brewer L, Tang Z, Nieuwenhuizen N, Cooney J, Xu S, Sheng J, Andre C, Xue C, Rebstock R, Yang B, Chang W, Liu Y, Li J, Wang R, Qin M, Brendolise C, Allan AC, Espley RV, Lin‐Wang K, Wu J. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1468-1490. [PMID: 38169146 PMCID: PMC11123420 DOI: 10.1111/pbi.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.
Collapse
Affiliation(s)
- Guangyan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Manyi Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Lester Brewer
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Zikai Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Shaozhuo Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiawen Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Christelle Andre
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Ria Rebstock
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Bo Yang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Wenjing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueyuan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiaming Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Runze Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Mengfan Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Cyril Brendolise
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Kui Lin‐Wang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| |
Collapse
|
21
|
Yang Y, Liu JF, Jiang XF. A chromosome-level genome assembly of Chinese quince ( Pseudocydonia sinensis). FRONTIERS IN PLANT SCIENCE 2024; 15:1368861. [PMID: 38887462 PMCID: PMC11180997 DOI: 10.3389/fpls.2024.1368861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Introduction Pseudocydonia sinensis, also known as Chinese quince, is a perennial shrub or small tree highly valued for its edibility and medicinal properties. Method This study presents the first chromosome-level genome assembly of P. sinensis, achieved using HiFi sequencing and Hi-C scaffolding technology. Results The assembly resulted in a high-quality genome of 576.39 Mb in size. The genome was anchored to 17 pseudo-chromosomes, with a contig N50 of 27.6 Mb and a scaffold N50 of 33.8 Mb. Comprehensive assessment using BUSCO, CEGMA and BWA tools indicates the high completeness and accuracy of the genome assembly. Our analysis identified 116 species-specific genes, 1196 expanded genes and 1109 contracted genes. Additionally, the distribution of 4DTv values suggests that the most recent duplication event occurred before the divergence of P. sinensis from both Chaenomeles pinnatifida and Pyrus pyrifolia. Discussion The assembly of this high-quality genome provides a valuable platform for the genetic breeding and cultivation of P. sinensis, as well as for the comparison of the genetic complexity of P. sinensis with other important crops in the Rosaceae family.
Collapse
Affiliation(s)
- Ying Yang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Jin Feng Liu
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Xian Feng Jiang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yunnan, China
| |
Collapse
|
22
|
Gabay G, Flaishman MA. Genetic and molecular regulation of chilling requirements in pear: breeding for climate change resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1347527. [PMID: 38736438 PMCID: PMC11082341 DOI: 10.3389/fpls.2024.1347527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Pear (Pyrus spp.) is a deciduous fruit tree that requires exposure to sufficient chilling hours during the winter to establish dormancy, followed by favorable heat conditions during the spring for normal vegetative and floral budbreak. In contrast to most temperate woody species, apples and pears of the Rosaceae family are insensitive to photoperiod, and low temperature is the major factor that induces growth cessation and dormancy. Most European pear (Pyrus Communis L.) cultivars need to be grown in regions with high chilling unit (CU) accumulation to ensure early vegetative budbreak. Adequate vegetative budbreak time will ensure suitable metabolite accumulation, such as sugars, to support fruit set and vegetative development, providing the necessary metabolites for optimal fruit set and development. Many regions that were suitable for pear production suffer from a reduction in CU accumulation. According to climate prediction models, many temperate regions currently suitable for pear cultivation will experience a similar accumulation of CUs as observed in Mediterranean regions. Consequently, the Mediterranean region can serve as a suitable location for conducting pear breeding trials aimed at developing cultivars that will thrive in temperate regions in the decades to come. Due to recent climatic changes, bud dormancy attracts more attention, and several studies have been carried out aiming to discover the genetic and physiological factors associated with dormancy in deciduous fruit trees, including pears, along with their related biosynthetic pathways. In this review, current knowledge of the genetic mechanisms associated with bud dormancy in European pear and other Pyrus species is summarized, along with metabolites and physiological factors affecting dormancy establishment and release and chilling requirement determination. The genetic and physiological insights gained into the factors regulating pear dormancy phase transition and determining chilling requirements can accelerate the development of new pear cultivars better suited to both current and predicted future climatic conditions.
Collapse
Affiliation(s)
- Gilad Gabay
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Moshe A. Flaishman
- Institute of Plant Sciences, Volcani Research Center, Rishon Lezion, Israel
| |
Collapse
|
23
|
Song B, Yu J, Li X, Li J, Fan J, Liu H, Wei W, Zhang L, Gu K, Liu D, Zhao K, Wu J. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biol 2024; 25:87. [PMID: 38581061 PMCID: PMC10996114 DOI: 10.1186/s13059-024-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.
Collapse
Affiliation(s)
- Bobo Song
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jinshan Yu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jing Fan
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Hainan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weilin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Lingchao Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Dongliang Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kejiao Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
24
|
Wang X, Wei J, Wu J, Shi B, Wang P, Alabd A, Wang D, Gao Y, Ni J, Bai S, Teng Y. Transcription factors BZR2/MYC2 modulate brassinosteroid and jasmonic acid crosstalk during pear dormancy. PLANT PHYSIOLOGY 2024; 194:1794-1814. [PMID: 38036294 DOI: 10.1093/plphys/kiad633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Bud dormancy is an important physiological process during winter. Its release requires a certain period of chilling. In pear (Pyrus pyrifolia), the abscisic acid (ABA)-induced expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes represses bud break, whereas exogenous gibberellin (GA) promotes dormancy release. However, with the exception of ABA and GA, the regulatory effects of phytohormones on dormancy remain largely uncharacterized. In this study, we confirmed brassinosteroids (BRs) and jasmonic acid (JA) contribute to pear bud dormancy release. If chilling accumulation is insufficient, both 24-epibrassinolide (EBR) and methyl jasmonic acid (MeJA) can promote pear bud break, implying that they positively regulate dormancy release. BRASSINAZOLE RESISTANT 2 (BZR2), which is a BR-responsive transcription factor, inhibited PpyDAM3 expression and accelerated pear bud break. The transient overexpression of PpyBZR2 increased endogenous GA, JA, and JA-Ile levels. In addition, the direct interaction between PpyBZR2 and MYELOCYTOMATOSIS 2 (PpyMYC2) enhanced the PpyMYC2-mediated activation of Gibberellin 20-oxidase genes PpyGA20OX1L1 and PpyGA20OX2L2 transcription, thereby increasing GA3 contents and accelerating pear bud dormancy release. Interestingly, treatment with 5 μm MeJA increased the bud break rate, while also enhancing PpyMYC2-activated PpyGA20OX expression and increasing GA3,4 contents. The 100 μm MeJA treatment decreased the PpyMYC2-mediated activation of the PpyGA20OX1L1 and PpyGA20OX2L2 promoters and suppressed the inhibitory effect of PpyBZR2 on PpyDAM3 transcription, ultimately inhibiting pear bud break. In summary, our data provide insights into the crosstalk between the BR and JA signaling pathways that regulate the BZR2/MYC2-mediated pathway in the pear dormancy release process.
Collapse
Affiliation(s)
- Xuxu Wang
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Jiahao Wu
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Baojing Shi
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Peihui Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Ahmed Alabd
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
- Department of Pomology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Duanni Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| | - Yuanwen Teng
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, PR China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, PR China
| |
Collapse
|
25
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
26
|
Chu X, Wang M, Fan Z, Li J, Yin H. Molecular Mechanisms of Seasonal Gene Expression in Trees. Int J Mol Sci 2024; 25:1666. [PMID: 38338945 PMCID: PMC10855862 DOI: 10.3390/ijms25031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.
Collapse
Affiliation(s)
- Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| |
Collapse
|
27
|
Chen Z, Chen Y, Shi L, Wang L, Li W. Interaction of Phytohormones and External Environmental Factors in the Regulation of the Bud Dormancy in Woody Plants. Int J Mol Sci 2023; 24:17200. [PMID: 38139028 PMCID: PMC10743443 DOI: 10.3390/ijms242417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bud dormancy and release are essential phenomena that greatly assist in adapting to adverse growing conditions and promoting the holistic growth and development of perennial plants. The dormancy and release process of buds in temperate perennial trees involves complex interactions between physiological and biochemical processes influenced by various environmental factors, representing a meticulously orchestrated life cycle. In this review, we summarize the role of phytohormones and their crosstalk in the establishment and release of bud dormancy. External environmental factors, such as light and temperature, play a crucial role in regulating bud germination. We also highlight the mechanisms of how light and temperature are involved in the regulation of bud dormancy by modulating phytohormones. Moreover, the role of nutrient factors, including sugar, in regulating bud dormancy is also discussed. This review provides a foundation for enhancing our understanding of plant growth and development patterns, fostering agricultural production, and exploring plant adaptive responses to adversity.
Collapse
Affiliation(s)
| | | | | | | | - Weixing Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.C.); (Y.C.); (L.S.); (L.W.)
| |
Collapse
|
28
|
Sun M, Yao C, Shu Q, He Y, Chen G, Yang G, Xu S, Liu Y, Xue Z, Wu J. Telomere-to-telomere pear ( Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. HORTICULTURE RESEARCH 2023; 10:uhad201. [PMID: 38023478 PMCID: PMC10681005 DOI: 10.1093/hr/uhad201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
Previously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; Pyrus pyrifolia), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin. The YH1 genome is 501.20 Mb long with a contig N50 length of 29.26 Mb. All 17 chromosomes were assembled to the T2T level with 34 characterized telomeres. The 17 centromeres were predicted and mainly consist of centromeric-specific monomers (CEN198) and long terminal repeat (LTR) Gypsy elements (≥74.73%). By filling all unclosed gaps, the integrity of YH1 is markedly improved over previous P. pyrifolia genomes ('Cuiguan' and 'Nijisseiki'). A total of 1531 segmental duplication (SD) driven duplicated genes were identified and enriched in stress response pathways. Intrachromosomal SDs drove the expansion of disease resistance genes, suggesting the potential of SDs in adaptive pear evolution. A large proportion of duplicated gene pairs exhibit dosage effects or sub-/neo-functionalization, which may affect agronomic traits like stone cell content, sugar content, and fruit skin russet. Furthermore, as core regulators of anthocyanin biosynthesis, we found that MYB10 and MYB114 underwent various gene duplication events. Multiple copies of MYB10 and MYB114 displayed obvious dosage effects, indicating role differentiation in the formation of red-skinned pear fruit. In summary, the T2T gap-free pear genome provides invaluable resources for genome evolution and functional genomics.
Collapse
Affiliation(s)
- Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Chenjie Yao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yingyun He
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yueyuan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
29
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
30
|
He S, Weng D, Zhang Y, Kong Q, Wang K, Jing N, Li F, Ge Y, Xiong H, Wu L, Xie DY, Feng S, Yu X, Wang X, Shu S, Mei Z. A telomere-to-telomere reference genome provides genetic insight into the pentacyclic triterpenoid biosynthesis in Chaenomeles speciosa. HORTICULTURE RESEARCH 2023; 10:uhad183. [PMID: 37927407 PMCID: PMC10623406 DOI: 10.1093/hr/uhad183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/03/2023] [Indexed: 11/07/2023]
Abstract
Chaenomeles speciosa (2n = 34), a medicinal and edible plant in the Rosaceae, is commonly used in traditional Chinese medicine. To date, the lack of genomic sequence and genetic studies has impeded efforts to improve its medicinal value. Herein, we report the use of an integrative approach involving PacBio HiFi (third-generation) sequencing and Hi-C scaffolding to assemble a high-quality telomere-to-telomere genome of C. speciosa. The genome comprised 650.4 Mb with a contig N50 of 35.5 Mb. Of these, 632.3 Mb were anchored to 17 pseudo-chromosomes, in which 12, 4, and 1 pseudo-chromosomes were represented by a single contig, two contigs, and four contigs, respectively. Eleven pseudo-chromosomes had telomere repeats at both ends, and four had telomere repeats at a single end. Repetitive sequences accounted for 49.5% of the genome, while a total of 45 515 protein-coding genes have been annotated. The genome size of C. speciosa was relatively similar to that of Malus domestica. Expanded or contracted gene families were identified and investigated for their association with different plant metabolisms or biological processes. In particular, functional annotation characterized gene families that were associated with the biosynthetic pathway of oleanolic and ursolic acids, two abundant pentacyclic triterpenoids in the fruits of C. speciosa. Taken together, this telomere-to-telomere and chromosome-level genome of C. speciosa not only provides a valuable resource to enhance understanding of the biosynthesis of medicinal compounds in tissues, but also promotes understanding of the evolution of the Rosaceae.
Collapse
Affiliation(s)
- Shaofang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Wuhan Carboncode Biotechnologies Co., Ltd., Wuhan 430070, China
| | - Duanyang Weng
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430070, China
| | - Yipeng Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiusheng Kong
- College of Horticulture & Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyue Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Naliang Jing
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengfeng Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuebin Ge
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan 430074, China
| | - Hui Xiong
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan 430074, China
| | - Lei Wu
- Wuhan Carboncode Biotechnologies Co., Ltd., Wuhan 430070, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Shengqiu Feng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuekui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaohua Shu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Tomes S, Gunaseelan K, Dragulescu M, Wang YY, Guo L, Schaffer RJ, Varkonyi-Gasic E. A MADS-box gene-induced early flowering pear ( Pyrus communis L.) for accelerated pear breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1235963. [PMID: 37818320 PMCID: PMC10560987 DOI: 10.3389/fpls.2023.1235963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023]
Abstract
There have been a considerable number of studies that have successfully sped up the flowering cycle in woody perennial horticultural species. One particularly successful study in apple (Malus domestica) accelerated flowering using a silver birch (Betula pendula) APETALA1/FRUITFULL MADS-box gene BpMADS4, which yielded a good balance of vegetative growth to support subsequent flower and fruit development. In this study, BpMADS4 was constitutively expressed in European pear (Pyrus communis) to establish whether this could be used as a tool in a rapid pear breeding program. Transformed pear lines flowered within 6-18 months after grafting onto a quince (Cydonia oblonga) rootstock. Unlike the spindly habit of early flowering apples, the early flowering pear lines displayed a normal tree-like habit. Like apple, the flower appearance was normal, and the flowers were fertile, producing fruit and seed upon pollination. Seed from these transformed lines were germinated and 50% of the progeny flowered within 3 months of sowing, demonstrating a use for these in a fast breeding program.
Collapse
Affiliation(s)
- Sumathi Tomes
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Auckland, New Zealand
| | | | - Monica Dragulescu
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Auckland, New Zealand
| | - Yen-Yi Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Auckland, New Zealand
| | - Lindy Guo
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Auckland, New Zealand
| | - Robert J. Schaffer
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Motueka, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Auckland, New Zealand
| |
Collapse
|
32
|
Chen S, Sun M, Xu S, Xue C, Wei S, Zheng P, Gu K, Qiao Z, Liu Z, Zhang M, Wu J. The pear genomics database (PGDB): a comprehensive multi-omics research platform for Pyrus spp. BMC PLANT BIOLOGY 2023; 23:430. [PMID: 37710163 PMCID: PMC10503127 DOI: 10.1186/s12870-023-04406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Pears are among the most important temperate fruit trees in the world, with significant research efforts increasing over the last years. However, available omics data for pear cannot be easily and quickly retrieved to enable further studies using these biological data. DESCRIPTION Here, we present a publicly accessible multi-omics pear resource platform, the Pear Genomics Database (PGDB). We collected and collated data on genomic sequences, genome structure, functional annotation, transcription factor predictions, comparative genomics, and transcriptomics. We provide user-friendly functional modules to facilitate querying, browsing and usage of these data. The platform also includes basic and useful tools, including JBrowse, BLAST, phylogenetic tree building, and additional resources providing the possibility for bulk data download and quick usage guide services. CONCLUSIONS The Pear Genomics Database (PGDB, http://pyrusgdb.sdau.edu.cn ) is an online data analysis and query resource that integrates comprehensive multi-omics data for pear. This database is equipped with user-friendly interactive functional modules and data visualization tools, and constitutes a convenient platform for integrated research on pear.
Collapse
Affiliation(s)
- Shulin Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Manyi Sun
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaozhuo Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Cheng Xue
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai'an, 271000, China
| | - Pengfei Zheng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhiwen Qiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhiying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mingyue Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jun Wu
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
33
|
Wang H, Xu K, Li X, Blanco-Ulate B, Yang Q, Yao G, Wei Y, Wu J, Sheng B, Chang Y, Jiang CZ, Lin J. A pear S1-bZIP transcription factor PpbZIP44 modulates carbohydrate metabolism, amino acid, and flavonoid accumulation in fruits. HORTICULTURE RESEARCH 2023; 10:uhad140. [PMID: 37575657 PMCID: PMC10421730 DOI: 10.1093/hr/uhad140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
Fruit quality is defined by attributes that give value to a commodity. Flavor, texture, nutrition, and shelf life are key quality traits that ensure market value and consumer acceptance. In pear fruit, soluble sugars, organic acids, amino acids, and total flavonoids contribute to flavor and overall quality. Transcription factors (TFs) regulate the accumulation of these metabolites during development or in response to the environment. Here, we report a novel TF, PpbZIP44, as a positive regulator of primary and secondary metabolism in pear fruit. Analysis of the transient overexpression or RNAi-transformed pear fruits and stable transgenic tomato fruits under the control of the fruit-specific E8 promoter demonstrated that PpZIP44 substantially affected the contents of soluble sugar, organic acids, amino acids, and flavonoids. In E8::PpbZIP44 tomato fruit, genes involved in carbohydrate metabolism, amino acid, and flavonoids biosynthesis were significantly induced. Furthermore, in PpbZIP44 overexpression or antisense pear fruits, the expression of genes in the related pathways was significantly impacted. PpbZIP44 directly interacted with the promoter of PpSDH9 and PpProDH1 to induce their expression, thereby depleting sorbitol and proline, decreasing citrate and malate, and enhancing fructose contents. PpbZIP44 also directly bound to the PpADT and PpF3H promoters, which led to the carbon flux toward phenylalanine metabolites and enhanced phenylalanine and flavonoid contents. These findings demonstrate that PpbZIP44 mediates multimetabolism reprogramming by regulating the gene expression related to fruit quality compounds.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Kexin Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Bárbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Qingsong Yang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiduo Wei
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jun Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
| | - Baolong Sheng
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, 95616, USA
| | - Jing Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
34
|
Li R, Ma R, Zheng Y, Zhao Q, Zong Y, Zhu Y, Chen W, Li Y, Guo W. A Study of the Molecular Regulatory Network of VcTCP18 during Blueberry Bud Dormancy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2595. [PMID: 37514210 PMCID: PMC10385817 DOI: 10.3390/plants12142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
BRANCHED1 (BRC1) is a crucial member of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) gene family and is well known for playing a central role in shoot branching by controlling buds' paradormancy. However, the expression characteristics and molecular regulatory mechanism of BRC1 during blueberry bud dormancy are unclear. To shed light on these topics, shoots of three blueberry cultivars with different chilling requirements (CRs) were decapitated in summer to induce paradormancy release and subjected to different levels of chilling in winter to induce endodormancy release. The results showed that the high-CR cultivar 'Chandler' had the strongest apical dominance among the three cultivars; additionally, the expression of VcTCP18, which is homologous to BRC1, was the highest under both the decapitation treatment and low-temperature treatment. The 'Emerald' cultivar, with a low CR, demonstrated the opposite trend. These findings suggest that VcTCP18 plays a negative regulatory role in bud break and that there may be a correlation between the CR and tree shape. Through yeast 1-hybrid (Y1H) assays, we finally screened 21 upstream regulatory genes, including eight transcription factors: zinc-finger homeodomain protein 1/4/5/9, MYB4, AP2-like ethylene-responsive transcription factor AINTEGUMENTA (ANT), ASIL2-like, and bHLH035. It was found that these upstream regulatory genes positively or negatively regulated the expression of VcTCP18 based on the transcriptome expression profile. In summary, this study enriched our understanding of the regulatory network of BRCl during bud dormancy and provided new insights into the function of BRC1.
Collapse
Affiliation(s)
- Ruixue Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Rui Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Yuling Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Qi Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Youyin Zhu
- School of Agricultural, Jinhua Polytechinc, Jinhua 321007, China;
| | - Wenrong Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (R.L.); (R.M.); (Y.Z.); (Q.Z.); (Y.Z.); (W.C.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
35
|
Hu J, Huang B, Yin H, Qi K, Jia Y, Xie Z, Gao Y, Li H, Li Q, Wang Z, Zou Y, Zhang S, Qiao X. PearMODB: a multiomics database for pear (Pyrus) genomics, genetics and breeding study. Database (Oxford) 2023; 2023:baad050. [PMID: 37410918 PMCID: PMC10325485 DOI: 10.1093/database/baad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Pear (Pyrus ssp.) belongs to Rosaceae and is an important fruit tree widely cultivated around the world. Currently, challenges to cope with the burgeoning sets of multiomics data are rapidly increasing. Here, we constructed the Pear Multiomics Database (PearMODB) by integrating genome, transcriptome, epigenome and population variation data, and aimed to provide a portal for accessing and analyzing pear multiomics data. A variety of online tools were built including gene search, BLAST, JBrowse, expression heatmap, synteny analysis and primer design. The information of DNA methylation sites and single-nucleotide polymorphisms can be retrieved through the custom JBrowse, providing an opportunity to explore the genetic polymorphisms linked to phenotype variation. Moreover, different gene families involving transcription factors, transcription regulators and disease resistance (nucleotide-binding site leucine-rich repeat) were identified and compiled for quick search. In particular, biosynthetic gene clusters (BGCs) were identified in pear genomes, and specialized webpages were set up to show detailed information of BGCs, laying a foundation for studying metabolic diversity among different pear varieties. Overall, PearMODB provides an important platform for pear genomics, genetics and breeding studies. Database URL http://pearomics.njau.edu.cn.
Collapse
Affiliation(s)
- Jian Hu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Baisha Huang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Jia
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxiang Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zou
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Jiu S, Chen B, Dong X, Lv Z, Wang Y, Yin C, Xu Y, Zhang S, Zhu J, Wang J, Liu X, Sun W, Yang G, Li M, Li S, Zhang Z, Liu R, Wang L, Manzoor MA, José QG, Wang S, Lei Y, Yang L, Dirlewanger E, Dong Y, Zhang C. Chromosome-scale genome assembly of Prunus pusilliflora provides novel insights into genome evolution, disease resistance, and dormancy release in Cerasus L. HORTICULTURE RESEARCH 2023; 10:uhad062. [PMID: 37220556 PMCID: PMC10200261 DOI: 10.1093/hr/uhad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Prunus pusilliflora is a wild cherry germplasm resource distributed mainly in Southwest China. Despite its ornamental and economic value, a high-quality assembled P. pusilliflora genome is unavailable, hindering our understanding of its genetic background, population diversity, and evolutionary processes. Here, we de novo assembled a chromosome-scale P. pusilliflora genome using Oxford Nanopore, Illumina, and chromosome conformation capture sequencing. The assembled genome size was 309.62 Mb, with 76 scaffolds anchored to eight pseudochromosomes. We predicted 33 035 protein-coding genes, functionally annotated 98.27% of them, and identified repetitive sequences covering 49.08% of the genome. We found that P. pusilliflora is closely related to Prunus serrulata and Prunus yedoensis, having diverged from them ~41.8 million years ago. A comparative genomic analysis revealed that P. pusilliflora has 643 expanded and 1128 contracted gene families. Furthermore, we found that P. pusilliflora is more resistant to Colletotrichum viniferum, Phytophthora capsici, and Pseudomonas syringae pv. tomato (Pst) DC3000 infections than cultivated Prunus avium. P. pusilliflora also has considerably more nucleotide-binding site-type resistance gene analogs than P. avium, which explains its stronger disease resistance. The cytochrome P450 and WRKY families of 263 and 61 proteins were divided into 42 and 8 subfamilies respectively in P. pusilliflora. Furthermore, 81 MADS-box genes were identified in P. pusilliflora, accompanying expansions of the SVP and AGL15 subfamilies and loss of the TM3 subfamily. Our assembly of a high-quality P. pusilliflora genome will be valuable for further research on cherries and molecular breeding.
Collapse
Affiliation(s)
| | | | - Xiao Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunjin Yin
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sen Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, 200231, P. R. China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoqian Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Meng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 200037, P. R. China
| | - Shufeng Li
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Zhuo Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Quero-García José
- INRAe, UMR 1332 de Biologie du Fruit et Pathologie, 33140 Villenave d'Ornon, France
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yahui Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Ling Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | | | | | | |
Collapse
|
37
|
Wang P, Wu X, Shi Z, Tao S, Liu Z, Qi K, Xie Z, Qiao X, Gu C, Yin H, Cheng M, Gu X, Liu X, Tang C, Cao P, Xu S, Zhou B, Gu T, Bian Y, Wu J, Zhang S. A large-scale proteogenomic atlas of pear. MOLECULAR PLANT 2023; 16:599-615. [PMID: 36733253 DOI: 10.1016/j.molp.2023.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pear is an important fruit tree that is widely distributed around the world. The first pear genome map was reported from our laboratory approximately 10 years ago. To further study global protein expression patterns in pear, we generated pear proteome data based on 24 major tissues. The tissue-resolved profiles provided evidence of the expression of 17 953 proteins. We identified 4294 new coding events and improved the pear genome annotation via the proteogenomic strategy based on 18 090 peptide spectra with peptide spectrum matches >1. Among the eight randomly selected new short coding open reading frames that were expressed in the style, four promoted and one inhibited the growth of pear pollen tubes. Based on gene coexpression module analysis, we explored the key genes associated with important agronomic traits, such as stone cell formation in fruits. The network regulating the synthesis of lignin, a major component of stone cells, was reconstructed, and receptor-like kinases were implicated as core factors in this regulatory network. Moreover, we constructed the online database PearEXP (http://www.peardb.org.cn) to enable access to the pear proteogenomic resources. This study provides a paradigm for in-depth proteogenomic studies of woody plants.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shutian Tao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Cheng
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Cao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Tingting Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Bian
- College of Life Sciences, Northwest University, Xi'an 710127, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Brůna T, Aryal R, Dudchenko O, Sargent DJ, Mead D, Buti M, Cavallini A, Hytönen T, Andrés J, Pham M, Weisz D, Mascagni F, Usai G, Natali L, Bassil N, Fernandez GE, Lomsadze A, Armour M, Olukolu B, Poorten T, Britton C, Davik J, Ashrafi H, Aiden EL, Borodovsky M, Worthington M. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. "Hillquist"). G3 (BETHESDA, MD.) 2023; 13:jkac289. [PMID: 36331334 PMCID: PMC9911083 DOI: 10.1093/g3journal/jkac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, Kent, UK
- Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Daniel Mead
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Owlstone Medical Ltd, Cambridge CB4 0GJ, UK
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - David Weisz
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Gina E Fernandez
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Alexandre Lomsadze
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Mitchell Armour
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, N-1431 Ås, Norway
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Erez Lieberman Aiden
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Mark Borodovsky
- Department of Biomedical Engineering, School of Computational Science and Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332USA
| | | |
Collapse
|
39
|
Wafula EK, Zhang H, Von Kuster G, Leebens-Mack JH, Honaas LA, dePamphilis CW. PlantTribes2: Tools for comparative gene family analysis in plant genomics. FRONTIERS IN PLANT SCIENCE 2023; 13:1011199. [PMID: 36798801 PMCID: PMC9928214 DOI: 10.3389/fpls.2022.1011199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 05/12/2023]
Abstract
Plant genome-scale resources are being generated at an increasing rate as sequencing technologies continue to improve and raw data costs continue to fall; however, the cost of downstream analyses remains large. This has resulted in a considerable range of genome assembly and annotation qualities across plant genomes due to their varying sizes, complexity, and the technology used for the assembly and annotation. To effectively work across genomes, researchers increasingly rely on comparative genomic approaches that integrate across plant community resources and data types. Such efforts have aided the genome annotation process and yielded novel insights into the evolutionary history of genomes and gene families, including complex non-model organisms. The essential tools to achieve these insights rely on gene family analysis at a genome-scale, but they are not well integrated for rapid analysis of new data, and the learning curve can be steep. Here we present PlantTribes2, a scalable, easily accessible, highly customizable, and broadly applicable gene family analysis framework with multiple entry points including user provided data. It uses objective classifications of annotated protein sequences from existing, high-quality plant genomes for comparative and evolutionary studies. PlantTribes2 can improve transcript models and then sort them, either genome-scale annotations or individual gene coding sequences, into pre-computed orthologous gene family clusters with rich functional annotation information. Then, for gene families of interest, PlantTribes2 performs downstream analyses and customizable visualizations including, (1) multiple sequence alignment, (2) gene family phylogeny, (3) estimation of synonymous and non-synonymous substitution rates among homologous sequences, and (4) inference of large-scale duplication events. We give examples of PlantTribes2 applications in functional genomic studies of economically important plant families, namely transcriptomics in the weedy Orobanchaceae and a core orthogroup analysis (CROG) in Rosaceae. PlantTribes2 is freely available for use within the main public Galaxy instance and can be downloaded from GitHub or Bioconda. Importantly, PlantTribes2 can be readily adapted for use with genomic and transcriptomic data from any kind of organism.
Collapse
Affiliation(s)
- Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Huiting Zhang
- Tree Fruit Research Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Gregory Von Kuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | | | - Loren A Honaas
- Tree Fruit Research Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Wenatchee, WA, United States
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
40
|
Xu Y, Li X, Yang X, Wassie M, Shi H. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear (Pyrus pyrifolia). BMC Genomics 2023; 24:32. [PMID: 36658499 PMCID: PMC9854111 DOI: 10.1186/s12864-022-09104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND 'Whangkeumbae' (Pyrus pyrifolia) is a typical climacteric fruit variety of sand pear with excellent taste. However, the rapid postharvest ethylene production limits the shelf life of 'Whangkeumbae' fruit. AP2/ERF superfamily is a large family of transcription factors involved in plant growth and development, including fruit ripening and senescence through the ethylene signaling pathway. The numbers and functions of AP2/ERF superfamily members in sand pear remain largely unknown. RESULTS In this study, a total of 234 AP2/ERF family members were identified through the transcriptome of Pyrus pyrifolia 'Whangkeumbae' (17 genes) and Pyrus pyrifolia genome (223 genes) analyses. Six genes (Accession: EVM0023062.1, EVM0034833.1, EVM0027049.1, EVM0034047.1, EVM0028755.1, EVM0015862.1) identified via genome analysis shared 100% identity with PpERF14-L, PpERF5-L, PpERF3a, PpERF3, PpERF017 and PpERF098, respectively, which were identified from transcriptome sequencing. Further, the AP2/ERF superfamily members were divided into AP2, ERF, and RAV subfamilies, each comprising 38, 188, and 8 members, respectively. Tissue-specific expression analysis showed that PpERF061, PpERF113, PpERF51L-B, PpERF5-L, and PpERF017 were predominantly expressed in fruits than in other tissues. Additionally, PpERF5-L and PpERF017 showed higher expressions at the early stage of fruit development. While, PpERF51B-L exhibited higher expression during the fruit ripening stage. Besides, PpERF061 and PpERF113 had pronounced expressions during fruit senescence. CONCLUSION These results indicate that PpERF061, PpERF113, PpERF51L-B, PpERF5-L, and PpERF017 could play crucial roles in sand pear fruit development, ripening, and senescence. Overall, this study provides valuable information for further functional analysis of the AP2/ERF genes during fruit ripening and senescence in sand pear.
Collapse
Affiliation(s)
- Yue Xu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiaona Li
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiong Yang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Misganaw Wassie
- grid.458515.80000 0004 1770 1110Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Haiyan Shi
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| |
Collapse
|
41
|
Xu Y, Huo L, Zhao K, Li Y, Zhao X, Wang H, Wang W, Shi H. Salicylic acid delays pear fruit senescence by playing an antagonistic role toward ethylene, auxin, and glucose in regulating the expression of PpEIN3a. FRONTIERS IN PLANT SCIENCE 2023; 13:1096645. [PMID: 36714736 PMCID: PMC9875596 DOI: 10.3389/fpls.2022.1096645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Salicylic acid (SA) and ethylene (ET) are crucial fruit senescence hormones. SA inhibited ET biosynthesis. However, the mechanism of SA delaying fruit senescence is less known. ETHYLENE INSENSITIVE 3 (EIN3), a key positive switch in ET perception, functions as a transcriptional activator and binds to the primary ET response element that is present in the promoter of the ETHYLENE RESPONSE FACTOR1 gene. In this study, a gene encoding putative EIN3 protein was cloned from sand pear and designated as PpEIN3a. The deduced PpEIN3a contains a conserved EIN3 domain. The evolutionary analysis results indicated that PpEIN3a belonged to the EIN3 superfamily. Real-time quantitative PCR analysis revealed that the accumulation of PpEIN3a transcripts were detected in all tissues of this pear. Moreover, PpEIN3a expression was regulated during fruit development. Interestingly, the expression of PpEIN3a was downregulated by SA but upregulated by ET, auxin, and glucose. Additionally, the contents of free and conjugated SA were higher than those of the control after SA treatment. While the content of ET and auxin (indole-3-acetic acid, IAA) dramatically decreased after SA treatment compared with control during fruit senescence. The content of glucose increased when fruit were treated by SA for 12 h and then there were no differences between SA treatment and control fruit during the shelf life. SA also delayed the decrease in sand pear (Pyrus pyrifolia Nakai. 'Whangkeumbae') fruit firmness. The soluble solid content remained relatively stable between the SA treated and control fruits. This study showed that SA plays an antagonistic role toward ET, auxin, and glucose in regulating the expression of PpEIN3a to delay fruit senescence.
Collapse
|
42
|
Yang Q, Wu X, Gao Y, Ni J, Li J, Pei Z, Bai S, Teng Y. PpyABF3 recruits the COMPASS-like complex to regulate bud dormancy maintenance via integrating ABA signaling and GA catabolism. THE NEW PHYTOLOGIST 2023; 237:192-203. [PMID: 36151925 DOI: 10.1111/nph.18508] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Bud dormancy is essential for perennial trees that survive the cold winters and to flower on time in the following spring. Histone modifications have been reported to be involved in the control of the dormancy cycle and DAM/SVPs are considered targets. However, how the histone modification marks are added to the specific gene loci during bud dormancy cycle is still unknown. Using yeast-two hybrid library screening and co-immunoprecipitation assays, we found that PpyABF3, a key protein regulating bud dormancy, recruits Complex of Proteins Associated with Set1-like complex via interacting with PpyWDR5a, which increases the H3K4me3 deposition at DAM4 locus. Chromatin immunoprecipitation-quantitative polymerase chain reaction showed that PpyGA2OX1 was downstream gene of PpyABF3 and it was also activated by H3K4me3 deposition. Silencing of GA2OX1 in pear calli and pear buds resulted in a similar phenotype with silencing of ABF3. Furthermore, overexpression of PpyWDR5a increased H3K4me3 levels at DAM4 and GA2OX1 loci and inhibited the growth of pear calli, whereas silencing of PpyWDR5a in pear buds resulted in a higher bud-break percentage. Our findings provide new insights into how H3K4me3 marks are added to dormancy-related genes in perennial woody plants and reveal a novel mechanism by which ABF3 integrates abscisic acid signaling and gibberellic acid catabolism during bud dormancy maintenance.
Collapse
Affiliation(s)
- Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Pei
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
43
|
Wei J, Yang Q, Ni J, Gao Y, Tang Y, Bai S, Teng Y. Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. PLANT PHYSIOLOGY 2022; 190:2739-2756. [PMID: 36200868 PMCID: PMC9706473 DOI: 10.1093/plphys/kiac426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 06/06/2023]
Abstract
Paradormancy of fruit trees occurs in summer and autumn when signals from adjacent organs stimulate buds to develop slowly. This stage has received less attention that the other stages of dormancy, and the underlying mechanism remains uncharacterized. Early defoliation in late summer and early autumn is usually followed by out-of-season blooming in pear (Pyrus spp.), which substantially decreases the number of buds the following spring and negatively affects fruit production. This early bud flush is an example of paradormancy release. Here, we determined that flower bud auxin content is stable after defoliation; however, polar distribution of the pear (Pyrus pyrifolia) PIN-FORMED auxin efflux carrier 1b (PpyPIN1b) implied that auxin tends to be exported from buds. Transcriptome analysis of floral buds after artificial defoliation revealed changes in auxin metabolism, transport, and signal transduction pathways. Exogenous application of a high concentration of the auxin analog 1-naphthaleneacetic acid (300 mg/L) suppressed PpyPIN1b expression and its protein accumulation in the cell membrane, likely leading to decreased auxin efflux from buds, which hindered flower bud sprouting. Furthermore, carbohydrates and additional hormones also influenced out-of-season flowering. Our results indicate that defoliation-induced auxin efflux from buds accelerates bud paradormancy release. This differs from release of apical-dominance-related lateral bud paradormancy after the apex is removed. Our findings and proposed model further elucidate the mechanism underlying paradormancy and will help researchers to develop methods for inhibiting early defoliation-induced out-of-season bud sprouting.
Collapse
Affiliation(s)
- Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yinxin Tang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Yantai Institute, China Agricultural University, Yantai, Shandong 264670, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
44
|
Quesada-Traver C, Lloret A, Carretero-Paulet L, Badenes ML, Ríos G. Evolutionary origin and functional specialization of Dormancy-Associated MADS box (DAM) proteins in perennial crops. BMC PLANT BIOLOGY 2022; 22:473. [PMID: 36199018 PMCID: PMC9533583 DOI: 10.1186/s12870-022-03856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.
Collapse
Affiliation(s)
- Carles Quesada-Traver
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Alba Lloret
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - María Luisa Badenes
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| | - Gabino Ríos
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, Km 10.7, 46113 Moncada, Valencia Spain
| |
Collapse
|
45
|
Comparative Transcriptomic Analysis Provides Insight into the Key Regulatory Pathways and Differentially Expressed Genes in Blueberry Flower Bud Endo- and Ecodormancy Release. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endodormancy is the stage that perennial plants must go through to prepare for the next seasonal cycle, and it is also an adaptation that allows plants to survive harsh winters. Blueberries (Vaccinium spp.) are known to have high nutritional and commercial value. To better understand the molecular mechanisms of bud dormancy release, the transcriptomes of flower buds from the southern highbush blueberry variety “O’Neal” were analyzed at seven time points of the endo- and ecodormancy release processes. Pairwise comparisons were conducted between adjacent time points; five kinds of phytohormone were identified via these processes. A total of 12,350 differentially expressed genes (DEGs) were obtained from six comparisons. Gene Ontology analysis indicated that these DEGs were significantly involved in metabolic processes and catalytic activity. KEGG pathway analysis showed that these DEGs were predominantly mapped to metabolic pathways and the biosynthesis of secondary metabolites in endodormancy release, but these DEGs were significantly enriched in RNA transport, plant hormone signal transduction, and circadian rhythm pathways in the process of ecodormancy release. The contents of abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylate (ACC) decreased in endo- and ecodormancy release, and the jasmonic acid (JA) level first decreased in endodormancy release and then increased in ecodormancy release. Weighted correlation network analysis (WGCNA) of transcriptomic data associated with hormone contents generated 25 modules, 9 of which were significantly related to the change in hormone content. The results of this study have important reference value for elucidating the molecular mechanism of flower bud dormancy release.
Collapse
|
46
|
Tominaga A, Ito A, Sugiura T, Yamane H. How Is Global Warming Affecting Fruit Tree Blooming? "Flowering (Dormancy) Disorder" in Japanese Pear ( Pyrus pyrifolia) as a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 12:787638. [PMID: 35211129 PMCID: PMC8861528 DOI: 10.3389/fpls.2021.787638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Recent climate change has resulted in warmer temperatures. Warmer temperatures from autumn to spring has negatively affected dormancy progression, cold (de)acclimation, and cold tolerance in various temperate fruit trees. In Japan, a physiological disorder known as flowering disorder, which is an erratic flowering and bud break disorder, has recently emerged as a serious problem in the production of the pome fruit tree, Japanese (Asian) pear (Pyrus pyrifolia Nakai). Due to global warming, the annual temperature in Japan has risen markedly since the 1990s. Surveys of flowering disorder in field-grown and greenhouse-grown Japanese pear trees over several years have indicated that flowering disorder occurs in warmer years and cultivation conditions, and the risk of flowering disorder occurrence is higher at lower latitudes than at higher latitudes. Susceptibility to flowering disorder is linked to changes in the transcript levels of putative dormancy/flowering regulators such as DORMANCY-ASSOCIATED MADS-box (DAM) and FLOWERING LOCUS T (FT). On the basis of published studies, we conclude that autumn-winter warm temperatures cause flowering disorder through affecting cold acclimation, dormancy progression, and floral bud maturation. Additionally, warm conditions also decrease carbohydrate accumulation in shoots, leading to reduced tree vigor. We propose that all these physiological and metabolic changes due to the lack of chilling during the dormancy phase interact to cause flowering disorder in the spring. We also propose that the process of chilling exposure rather than the total amount of chilling may be important for the precise control of dormancy progression and robust blooming, which in turn suggests the necessity of re-evaluation of the characteristics of cultivar-dependent chilling requirement trait. A full understanding of the molecular and metabolic regulatory mechanisms of both dormancy completion (floral bud maturation) and dormancy break (release from the repression of bud break) will help to clarify the physiological basis of dormancy-related physiological disorder and also provide useful strategies to mitigate or overcome it under global warming.
Collapse
Affiliation(s)
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshihiko Sugiura
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Wu K, Duan X, Zhu Z, Sang Z, Zhang Y, Li H, Jia Z, Ma L. Transcriptomic Analysis Reveals the Positive Role of Abscisic Acid in Endodormancy Maintenance of Leaf Buds of Magnolia wufengensis. FRONTIERS IN PLANT SCIENCE 2021; 12:742504. [PMID: 34858449 PMCID: PMC8632151 DOI: 10.3389/fpls.2021.742504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
Magnolia wufengensis (Magnoliaceae) is a deciduous landscape species, known for its ornamental value with uniquely shaped and coloured tepals. The species has been introduced to many cities in south China, but low temperatures limit the expansion of this species in cold regions. Bud dormancy is critical for plants to survive in cold environments during the winter. In this study, we performed transcriptomic analysis of leaf buds using RNA sequencing and compared their gene expression during endodormancy, endodormancy release, and ecodormancy. A total of 187,406 unigenes were generated with an average length of 621.82 bp (N50 = 895 bp). In the transcriptomic analysis, differentially expressed genes involved in metabolism and signal transduction of hormones especially abscisic acid (ABA) were substantially annotated during dormancy transition. Our results showed that ABA at a concentration of 100 μM promoted dormancy maintenance in buds of M. wufengensis. Furthermore, the expression of genes related to ABA biosynthesis, catabolism, and signalling pathway was analysed by qPCR. We found that the expression of MwCYP707A-1-2 was consistent with ABA content and the dormancy transition phase, indicating that MwCYP707A-1-2 played a role in endodormancy release. In addition, the upregulation of MwCBF1 during dormancy release highlighted the enhancement of cold resistance. This study provides new insights into the cold tolerance of M. wufengensis in the winter from bud dormancy based on RNA-sequencing and offers fundamental data for further research on breeding improvement of M. wufengensis.
Collapse
Affiliation(s)
- Kunjing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaojing Duan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhonglong Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Ziyang Sang
- Forestry Science Research Institute of Wufeng County, Yichang, China
| | - Yutong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Haiying Li
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| | - Zhongkui Jia
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
- College of Forestry, Engineering Technology Research Center of Pinus tabuliformis of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Luyi Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- Magnolia wufengensis Research Center, Beijing Forestry University, Beijing, China
| |
Collapse
|
48
|
Pan W, Liang J, Sui J, Li J, Liu C, Xin Y, Zhang Y, Wang S, Zhao Y, Zhang J, Yi M, Gazzarrini S, Wu J. ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes (Basel) 2021; 12:genes12101635. [PMID: 34681029 PMCID: PMC8536057 DOI: 10.3390/genes12101635] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.
Collapse
Affiliation(s)
- Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Juanjuan Sui
- Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China;
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yanmin Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Correspondence:
| |
Collapse
|