1
|
Kilic ME, Yilmaz MB. Gastroprotection in Heart Failure and Outcomes: A Systematic Review of Proton Pump Inhibitors and Histamine-2 Receptor Antagonists. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07660-3. [PMID: 39673583 DOI: 10.1007/s10557-024-07660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
PURPOSE The management of heart failure (HF) frequently includes gastroprotection via proton pump inhibitors (PPIs) or histamine-2 receptor antagonists (H2RAs). This systematic review evaluates their impact on HF outcomes, including exacerbation, hospitalization, mortality, and major adverse cardiac events (MACE). METHODS In accordance with PRISMA guidelines, a complete search across databases such as PubMed/Medline, Scopus, and Web of Science was conducted until December 10, 2023. The inclusion criteria covered research on adult patients with HF that focused on the effects of PPI and H2RA usage. The risk of bias was determined via the Newcastle-Ottawa Scale (NOS), and data were synthesized quantitatively. RESULTS Eleven studies encompassing 996,498 participants were analyzed. The data is not consistent across all research; however, some have suggested that PPI use may be linked to an increased risk of cardiovascular illnesses and heart failure aggravation. Conversely, H2RAs appeared to offer potential benefits in certain high-risk groups, potentially reducing all-cause and cardiovascular mortality. However, the limitations of the available studies should be taken into consideration when interpreting these findings. CONCLUSION The review suggests that there may be differences in the impact of PPIs and H2RAs on HF outcomes. While some evidence indicates that PPIs may be linked to increased risks in HF patients, and H2RAs may offer potential benefits, these findings are not definitive and should be interpreted with caution. Further research is necessary to clarify these associations and guide clinical practice. REGISTRATION PROSPERO CRD42023491752.
Collapse
Affiliation(s)
- Mustafa Eray Kilic
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, 15th July Medicine and Art Campus, 35340, İzmir, Türkiye
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, 15th July Medicine and Art Campus, 35340, İzmir, Türkiye.
| |
Collapse
|
2
|
Wang D, Chen H, Luo Y. Histamine H2 Receptor Antagonists in the Treatment and Prevention of Heart Failure. Int J Gen Med 2024; 17:6047-6052. [PMID: 39678682 PMCID: PMC11646443 DOI: 10.2147/ijgm.s499182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Despite advancements in the treatment of heart failure (HF) and modest improvements in survival rates over the past few decades, mortality rate remains significantly high. HF not only imposes a significant economic burden on patients' families but also presents a substantial challenge to society at large. Therefore, effective treatment and prevention strategies are crucial. Numerous studies have demonstrated that histamine H2 receptor antagonists (H2RAs) can benefit patients with HF through various mechanisms. These mechanisms encompass promoting sodium and water excretion, vasodilation, enhancing cardiac output, reducing levels of inflammatory cytokines, improving ventricular remodeling, and reducing mortality rate. Additionally, H2RAs exert beneficial effects on typical risk factors and may prevent the onset of HF. This review aims to elucidate the mechanisms underlying the treatment and prevention of HF using H2RAs. For patients requiring either prevention or management of HF, and who concurrently have acid-related diseases, H2RAs may represent a suitable therapeutic option.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiology, The First People’s Hospital of Shuangliu District (West China Airport Hospital, Sichuan University), Chengdu, People’s Republic of China
| | - Hailan Chen
- Department of Cardiology, The First People’s Hospital of Shuangliu District (West China Airport Hospital, Sichuan University), Chengdu, People’s Republic of China
| | - Yunhao Luo
- Department of Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Nogueira RC, Sanches-Lopes JM, Oliveira-Paula GH, Tanus-Santos JE. Inhibitors of gastric acid secretion increase oxidative stress and matrix metalloproteinase-2 activity leading to vascular remodeling. Mol Cell Biochem 2024; 479:3141-3152. [PMID: 38302836 DOI: 10.1007/s11010-023-04921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The use of inhibitors of gastric acid secretion (IGAS), especially proton pump inhibitors (PPI), has been associated with increased cardiovascular risk. While the mechanisms involved are not known, there is evidence supporting increased oxidative stress, a major activator of matrix metalloproteinases (MMP), as an important player in such effect. However, there is no study showing whether other IGAS such as histamine H2-receptor blockers (H2RB) cause similar effects. This study aimed at examining whether treatment with the H2RB ranitidine promotes oxidative stress resulting in vascular MMP activation and corresponding functional and structural alterations in the vasculature, as compared with those found with the PPI omeprazole. Male Wistar rats were treated (4 weeks) with vehicle (2% tween 20), omeprazole (10 mg/Kg/day; i.p.) or ranitidine (100 mg/Kg/day; gavage). Then the aorta was collected to perform functional, biochemical, and morphometric analysis. Both ranitidine and omeprazole increased gastric pH and oxidative stress assessed in situ with the fluorescent dye dihydroethidium (DHE) and with lucigenin chemiluminescence assay. Both IGAS augmented vascular activated MMP-2. These findings were associated with aortic remodeling (increased media/lumen ratio and number of cells/μm2). Both IGAS also impaired the endothelium-dependent relaxation induced by acetylcholine (isolated aortic ring preparation). This study provides evidence that the H2RB ranitidine induces vascular dysfunction, redox alterations, and remodeling similar to those found with the PPI omeprazole. These findings strongly suggest that IGAS increase oxidative stress and matrix metalloproteinase-2 activity leading to vascular remodeling, which helps to explain the increased cardiovascular risk associated with the use of those drugs.
Collapse
Affiliation(s)
- Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil
| | - Jéssica M Sanches-Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil
| | - Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil.
| |
Collapse
|
4
|
Pan JM, Guo Y, Jiang FF, Xu R, Zhang X, Cai WK, Yin SJ, Wang P, Huang YH, Zhang XS, Li YH, Cai L, He GH. Effect of Histamine H2 Receptor Antagonists on All-Cause Mortality in Critically Ill Patients With Essential Hypertension: A Retrospective Cohort Study. J Clin Pharmacol 2024; 64:1112-1122. [PMID: 38659369 DOI: 10.1002/jcph.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Previous studies found that histamine H2 receptor antagonists (H2RAs) had blood pressure lowering and cardioprotective effects, but the impact of H2RAs on the survival outcomes of critically ill patients with essential hypertension is still unclear. The aim of this study was to investigate the association of H2RAs exposure with all-cause mortality in patients with essential hypertension based on Medical Information Mart for Intensive Care III database. A total of 17,739 patients were included, involving 8482 H2RAs users and 9257 non-H2RAs users. Propensity score matching (PSM) was performed to improve balance between 2 groups that were exposed to H2RAs or not. Kaplan-Meier survival curves were used to compare the cumulative survival rates and multivariable Cox regression models were performed to evaluate the association between H2RAs exposure and all-cause mortality. After 1:1 PSM, 4416 pairs of patients were enrolled. The results revealed potentially significant association between H2RAs exposure and decreased 30-day, 90-day, and 1-year mortalities in multivariate analyses (HR = 0.783, 95% CI: 0.696-0.882 for 30-day; HR = 0.860, 95% CI: 0.778-0.950 for 90-day; and HR = 0.883, 95% CI: 0.811-0.961 for 1-year mortality, respectively). Covariate effect analyses showed that the use of H2RAs was more beneficial in essential hypertension patients with age ≥ 60, BMI ≥ 25 kg/m2, coronary arteriosclerosis, stroke, and acute kidney failure, respectively. In conclusion, H2RAs exposure was related to lower mortalities in critically ill patients with essential hypertension, which provided novel potential strategy for the use of H2RAs in essential hypertension patients.
Collapse
Affiliation(s)
- Jian-Mei Pan
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Yu Guo
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Fang-Fang Jiang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Ran Xu
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Xin Zhang
- Department of Respiratory, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Wen-Ke Cai
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Sun-Jun Yin
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yan-Hua Huang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Xue-Sha Zhang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Yi-Hua Li
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Liao Cai
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
5
|
Brosinsky P, Heger J, Sydykov A, Weiss A, Klatt S, Czech L, Kraut S, Schermuly RT, Schlüter KD, Schulz R. Does Cell-Type-Specific Silencing of Monoamine Oxidase B Interfere with the Development of Right Ventricle (RV) Hypertrophy or Right Ventricle Failure in Pulmonary Hypertension? Int J Mol Sci 2024; 25:6212. [PMID: 38892401 PMCID: PMC11172614 DOI: 10.3390/ijms25116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Disease Models, Animal
- Heart Failure/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Ventricles/pathology
- Heart Ventricles/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Mice, Knockout
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Monoamine Oxidase/deficiency
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Reactive Oxygen Species/metabolism
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
Collapse
Affiliation(s)
- Paulin Brosinsky
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Akylbek Sydykov
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Astrid Weiss
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Stephan Klatt
- Vascular Research Centre, Goethe Universität, 60590 Frankfurt, Germany;
| | - Laureen Czech
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Ralph Theo Schermuly
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| |
Collapse
|
6
|
Zhang XS, Cai WK, Wang P, Xu R, Yin SJ, Huang YH, Guo Y, Jiang FF, Pan JM, Li YH, He GH. Histamine H2 receptor antagonist exhibited comparable all-cause mortality-decreasing effect as β-blockers in critically ill patients with heart failure: a cohort study. Front Pharmacol 2023; 14:1273640. [PMID: 38035020 PMCID: PMC10683642 DOI: 10.3389/fphar.2023.1273640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Our previous study reported that histamine H2 receptor antagonists (H2RAs) exposure was associated with decreased mortality in critically ill patients with heart failure (HF) through the same pharmacological mechanism as β-blockers. However, population-based clinical study directly comparing the efficacy of H2RAs and β-blockers on mortality of HF patients are still lacking. This study aims to compare the association difference of H2RAs and β-blockers on mortality in critically ill patients with HF using the Medical Information Mart for Intensive Care III database (MIMIC-III). Methods: Study population was divided into 4 groups: β-blockers + H2RAs group, β-blockers group, H2RAs group, and Non-β-blockers + Non-H2RAs group. Kaplan-Meier curves and multivariable Cox regression models were employed to evaluate the differences of all-cause mortalities among the 4 groups. Propensity score matching (PSM) was used to increase comparability of four groups. Results: A total of 5593 patients were included. After PSM, multivariate analyses showed that patients in H2RAs group had close all-cause mortality with patients in β-blockers group. Furthermore, 30-day, 1-year, 5-year and 10-year all-mortality of patients in β-blockers + H2RAs group were significantly lower than those of patients in β-blockers group, respectively (HR: 0.64, 95%CI: 0.50-0.82 for 30-day; HR: 0.80, 95%CI: 0.69-0.93 for 1-year mortality; HR: 0.83, 95%CI: 0.74-0.93 for 5-year mortality; and HR: 0.85, 95%CI: 0.76-0.94 for 10-year mortality, respectively). Conclusion: H2RAs exposure exhibited comparable all-cause mortality-decreasing effect as β-blockers; and, furthermore, H2RAs and β-blockers had additive or synergistic interactions to improve survival in critically ill patients with HF.
Collapse
Affiliation(s)
- Xue-Sha Zhang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Wen-Ke Cai
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Ran Xu
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Sun-Jun Yin
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yan-Hua Huang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yu Guo
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Fang-Fang Jiang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Jian-Mei Pan
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Yi-Hua Li
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
- College of Pharmacy, Dali University, Dali, China
| | - Gong-Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
7
|
Huang YH, Cai WK, Yin SJ, Wang P, Li ZR, Yang Q, Zhou T, Meng R, Yang M, Guo Y, He GH. Histamine H2 receptor antagonist exposure was related to decreased all-cause mortality in critical ill patients with heart failure: a cohort study. Eur J Prev Cardiol 2022; 29:1854-1865. [PMID: 35707983 DOI: 10.1093/eurjpc/zwac122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies reported that histamine H2 receptor antagonists (H2RAs) had cardioprotective effects. However, the effect of H2RAs on mortality of critical ill patients with heart failure (HF) remains unclear. The aim of this study was to clarify the association between H2RAs and all-cause mortality of critical ill patients with HF based on Medical Information Mart for Intensive Care III database (MIMIC-III). METHODS Propensity score matching (PSM) was applied to account for the baseline differences between two groups that exposed to H2RAs or not. The study primary outcome was all-cause mortality. Kaplan-Meier curves and multivariable Cox regression models were employed to estimate the effects of H2RAs on mortality of critical ill patients with HF. RESULTS A total of 10 387 patients were included, involving 4440 H2RAs users and 5947 non-H2RAs users. After matching, 3130 pairs of patients were matched between H2RAs users and non-H2RAs users. The results showed significant association between H2RAs exposure and decreased 30-day, 90-day and 1-year mortality in both univariate analyses and multivariate analyses (HR = 0.73, 95%CI: 0.65-0.83 for 30-day; HR = 0.80, 95%CI: 0.72-0.89 for 90-day; and HR = 0.83, 95%CI: 0.76-0.90 for 1-year mortality, respectively) by Cox regression after PSM. Furthermore, stratified analyses revealed that the 30-day, 90-day and 1-year mortality of ranitidine users were significantly lower than those of famotidine users, respectively. CONCLUSIONS H2RAs exposure was associated with lower mortality in critical ill patients with HF. Furthermore, ranitidine might be superior to famotidine in reducing mortality of critical ill patients with HF.
Collapse
Affiliation(s)
- Yan Hua Huang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China.,Dali University, Dali 671000, China
| | - Wen Ke Cai
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Sun Jun Yin
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Ping Wang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Zhi Ran Li
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China.,Dali University, Dali 671000, China
| | - Qin Yang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China.,Dali University, Dali 671000, China
| | - Tao Zhou
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China.,Dali University, Dali 671000, China
| | - Rui Meng
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Mei Yang
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Yu Guo
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China.,Dali University, Dali 671000, China
| | - Gong Hao He
- Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| |
Collapse
|
8
|
Huang L, Zhang X, Feng Y, Liang F, Wang W. High content drug screening of primary cardiomyocytes based on microfluidics and real-time ultra-large-scale high-resolution imaging. LAB ON A CHIP 2022; 22:1206-1213. [PMID: 34870652 DOI: 10.1039/d1lc00740h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High content screening (HCS) plays an important role in biological applications and drug development. Existing techniques fail to simultaneously meet multiple needs of throughput, efficiency in sample and chemical consumption, and real-time imaging of a large view at high resolution. Leveraging advances in microfluidics and imaging technology, we setup a new paradigm of large-scale, high-content drug screening solutions for rapid biological processes, like cardiotoxicity. The designed microfluidic chips enable 10 types of drugs each with 5 concentrations to be assayed simultaneously. The imaging system has 30 Hz video rate for a centimeter filed-of-view at 0.8 μm resolution. Using the HCS system, we assayed 12 small molecules through their effects on the Ca2+ ion signal of cardiomyocytes. Experimental results demonstrated the unparalleled capability of the system in revealing the spatiotemporal patterns of Ca2+ imaging of cardiomyocytes, and validated the cardiotoxicity of certain molecules. We envision that this new HCS paradigm and cutting-edge platform offer the most advanced alternative to well-plate based methods.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xu Zhang
- Beijing Institute of Collaborative Innovation, Beijing, 100094, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Neumann J, Kirchhefer U, Dhein S, Hofmann B, Gergs U. The Roles of Cardiovascular H 2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2022; 12:732842. [PMID: 34987383 PMCID: PMC8720924 DOI: 10.3389/fphar.2021.732842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses pharmacological, structural and functional relationships among H2-histamine receptors and H1-histamine receptors in the mammalian heart. The role of both receptors in the regulation of force and rhythm, including their electrophysiological effects on the mammalian heart, will then be discussed in context. The potential clinical role of cardiac H2-histamine-receptors in cardiac diseases will be examined. The use of H2-histamine receptor agonists to acutely increase the force of contraction will be discussed. Special attention will be paid to the potential role of cardiac H2-histamine receptors in the genesis of cardiac arrhythmias. Moreover, novel findings on the putative role of H2-histamine receptor antagonists in treating chronic heart failure in animal models and patients will be reviewed. Some limitations in our biochemical understanding of the cardiac role of H2-histamine receptors will be discussed. Recommendations for further basic and translational research on cardiac H2-histamine receptors will be offered. We will speculate whether new knowledge might lead to novel roles of H2-histamine receptors in cardiac disease and whether cardiomyocyte specific H2-histamine receptor agonists and antagonists should be developed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Dhein
- Landratsamt Altenburger Land, Altenburg, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
10
|
Levick SP. Histamine receptors in heart failure. Heart Fail Rev 2021; 27:1355-1372. [PMID: 34622365 DOI: 10.1007/s10741-021-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
The biogenic amine, histamine, is found predominantly in mast cells, as well as specific histaminergic neurons. Histamine exerts its many and varied actions via four G-protein-coupled receptors numbered one through four. Histamine has multiple effects on cardiac physiology, mainly via the histamine 1 and 2 receptors, which on a simplified level have opposing effects on heart rate, force of contraction, and coronary vasculature function. In heart failure, the actions of the histamine receptors are complex, the histamine 1 receptor appears to have detrimental actions predominantly in the coronary vasculature, while the histamine 2 receptor mediates adverse effects on cardiac remodeling via actions on cardiomyocytes, fibroblasts, and even endothelial cells. Conversely, there is growing evidence that the histamine 3 receptor exerts protective actions when activated. Little is known about the histamine 4 receptor in heart failure. Targeting histamine receptors as a therapeutic approach for heart failure is an important area of investigation given the over-the-counter access to many compounds targeting these receptors, and thus the relatively straight forward possibility of drug repurposing. In this review, we briefly describe histamine receptor signaling and the actions of each histamine receptor in normal cardiac physiology, before describing in more detail the known role of each histamine receptor in adverse cardiac remodeling and heart failure. This includes information from both clinical studies and experimental animal models. It is the goal of this review article to bring more focus to the possibility of targeting histamine receptors as therapy for heart failure.
Collapse
Affiliation(s)
- Scott P Levick
- Kolling Institute, St Leonards, Australia.
- Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2006, Australia.
| |
Collapse
|
11
|
Potnuri AG, Reddy KP, Suresh P, Husain GM, Kazmi MH, Harishankar N. Obesity Potentiates the Risk of Drug-Induced Long QT Syndrome - Preliminary Evidence from WNIN/Ob Spontaneously Obese Rat. Cardiovasc Toxicol 2021; 21:848-858. [PMID: 34302627 DOI: 10.1007/s12012-021-09675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Drug-induced long QT syndrome (DI-LQTS) is fatal and known to have a higher incidence in women rather than in men. Multiple risk factors potentiate the incidence of DI-LQTS, but the actual contribution of obesity remains largely unexplored. Correspondingly, the present study is aimed to evaluate the susceptibility of DI-LQTS in WNIN/Ob rat in comparison with its lean counterpart using 3-lead electrocardiography. Four- and eight-month-old female WNIN/Ob and their lean controls were used for the experimentation. Non-invasive blood pressure measurement and total body electric conductivity (TOBEC) analysis were carried out. After the baseline evaluations, animals were anesthetized with Ketamine (50 mg/kg). Haloperidol (12.5 mg/kg single dose) was administered intraperitoneally and ECG was taken at 0, 10, 20, 30, 60 min, and 24 h time points. Myocardial lystes were used to assess the BNP, protein carbonylation, and hydroxyproline content. Adiposity, as assessed by TOBEC, is higher in obese rats with elevated mean arterial blood pressure. Baseline-corrected QT interval (QTc) is significantly higher in the obese rat with a wider QRS complex. The incidence of PVC and VT are more intense in the obese rat. Haloperidol-induced QT prolongation in obese rats was rapidly induced than in lean, which was observed to remain till 24 h in obese groups while normalized in lean controls. Higher levels of BNP, protein carbonylation, hydroxyproline content, and relative heart weights indicated the presence of cardiac hypertrophy. The study provides preliminary evidence that obesity can be a potential risk factor for DI-LQTS with faster onset and longer subsistence.
Collapse
Affiliation(s)
- Ajay Godwin Potnuri
- Department of Animal Physiology and Pharmacology, ICMR- National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, 500101, India
| | - Kallamadi Prathap Reddy
- Animal Facility, ICMR- National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Pothani Suresh
- Department of Animal Physiology and Pharmacology, ICMR- National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, 500101, India
| | - Gulam Mohammed Husain
- Pharmacology Research Laboratory, National Research Institute of Unani Medicinefor Skin Disorders, Hyderabad, 500038, India
| | - Munawwar Husain Kazmi
- Pharmacology Research Laboratory, National Research Institute of Unani Medicinefor Skin Disorders, Hyderabad, 500038, India
| | - Nemani Harishankar
- Animal Facility, ICMR- National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India.
| |
Collapse
|
12
|
Potnuri AG, Purushothaman S, Saheera S, Nair RR. Mito-targeted antioxidant prevents cardiovascular remodelling in spontaneously hypertensive rat by modulation of energy metabolism. Clin Exp Pharmacol Physiol 2021; 49:35-45. [PMID: 34459495 DOI: 10.1111/1440-1681.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
Hypertension induced left ventricular hypertrophy (LVH) augments the risk of cardiovascular anomalies. Mitochondrial alterations result in oxidative stress, accompanied by decrease in fatty acid oxidation, leading to the activation of the hypertrophic program. Targeted antioxidants are expected to reduce mitochondrial reactive oxygen species more effectively than general antioxidants. This study was designed to assess whether the mito-targeted antioxidant, Mito-Tempol (Mito-TEMP) is more effective than the general oxidant, Tempol (TEMP) in reduction of hypertension and hypertrophy and prevention of shift in cardiac energy metabolism. Spontaneously hypertensive rats were administered either TEMP (20 mg/kg/day) or Mito-TEMP (2 mg/kg/day) intraperitoneally for 30 days. Post treatment, animals were subjected to 2D-echocardiography. Myocardial lysates were subjected to RPLC - LTQ-Orbitrap-MS analysis. Mid-ventricular sections were probed for markers of energy metabolism and fibrosis. The beneficial effect on cardiovascular structure and function was significantly higher for Mito-TEMP. Increase in mitochondrial antioxidants and stimulation of fatty acid metabolism; with significant improvement in cardiovascular function was apparent in spontaneously hypertensive rats (SHR) treated with Mito-TEMP. The study indicates that Mito-TEMP is superior to its non- targeted isoform in preventing hypertension induced LVH, and the beneficial effects on heart are possibly mediated by reversal of metabolic remodelling.
Collapse
Affiliation(s)
- Ajay Godwin Potnuri
- Department of Animal Physiology, Resource Facility for Biomedical Research, Indian Council for Medical Research - National Animal, Hyderabad, India.,Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| | - Sreeja Purushothaman
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| | - Sherin Saheera
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| | - Renuka R Nair
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| |
Collapse
|
13
|
Saheera S, Potnuri AG, Guha A, Palaniyandi SS, Thandavarayan RA. Histamine 2 receptors in cardiovascular biology: A friend for the heart. Drug Discov Today 2021; 27:234-245. [PMID: 34438076 DOI: 10.1016/j.drudis.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Undermining new mediators involved in the development and progression of cardiovascular diseases (CVDs) is vital for better disease management. Existing studies implicate a crucial role for inflammation and inflammatory cells, particularly mast cells, in cardiac diseases. Interestingly, the mast cell mediator, histamine, and its receptors profoundly impact the pathophysiology of the heart, resulting in hypertension-induced cardiac hypertrophy and other cardiac anomalies. In this review, we provide a detailed description of mast cell activation, mediators, and histamine receptors, with a particular focus on histamine 2 receptors (H2Rs). Preclinical and clinical studies using histamine receptor antagonists report improvement in cardiac function. Insights into the precise function of histamine receptors will aid in developing novel therapies and pave the way for repurposing antihistamines for cardiovascular diseases.
Collapse
Affiliation(s)
- Sherin Saheera
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ajay Godwin Potnuri
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI 48202, USA
| | | |
Collapse
|
14
|
Sudarikova AV, Fomin MV, Yankelevich IA, Ilatovskaya DV. The implications of histamine metabolism and signaling in renal function. Physiol Rep 2021; 9:e14845. [PMID: 33932106 PMCID: PMC8087988 DOI: 10.14814/phy2.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Inflammation is an essential part of the immune response; it has been found to be central to the disruption of kidney function in acute kidney injury, diabetic nephropathy, hypertension, and other renal conditions. One of the well‐known mediators of the inflammatory response is histamine. Histamine receptors are expressed throughout different tissues, including the kidney, and their inhibition has proven to be a viable strategy for the treatment of many inflammation‐associated diseases. Here, we provide an overview of the current knowledge regarding the role of histamine and its metabolism in the kidney. Establishing the importance of histamine signaling for kidney function will enable new approaches for the treatment of kidney diseases associated with inflammation.
Collapse
Affiliation(s)
| | - Mikhail V Fomin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Irina A Yankelevich
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Kakaraparthi A, Godwin Potnuri A, Allakonda L. Beta 1 adrenoceptor blockade promotes angiogenesis in hypertrophied myocardium of transverse aortic constricted mice. Clin Exp Pharmacol Physiol 2021; 48:121-128. [PMID: 32750731 DOI: 10.1111/1440-1681.13389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
Abstract
Left ventricular hypertrophy (LVH) is an adaptive structural remodelling consequent to uncontrolled blood pressure. Impaired angiogenesis plays a vital role in transiting LVH into cardiac failure. Catecholamines modulate myocardial function through beta adrenoceptors, and their blockers (β-AR) reduce cardiovascular morbidity and mortality by decelerating the LVH progression. Nonetheless, the effect of β-AR blockers on myocardial vascular bed remains largely obscure. Hence, this study is focussed on analysing the possible outcomes of β-AR blockers on myocardial vascular remodelling using a surgically induced LVH mice model. Transverse aortic constricted mice and sham-operated mice were administered with metoprolol at a dose of 30 mg/kg/d for 60 days and myocardial vascular endothelial growth factor (VEGF) alpha levels, GSH/GSSG ratio, myocardial protein carbonyl content, hypertrophy index and global myocardial function, trans-aortic fluid dynamics and expression pattern of angiopoietin-1 and VEGF alpha were assessed. These findings were further confirmed by histochemical analysis for myocardial capillary density, perivascular fibrosis ratio and intimal thickening. Sub- chronic β-AR blockade reduced the oxidative stress, hypertrophic index, intimal thickening and perivascular fibrosis ratio. A marked increase in myocardial VEGF, angiopoietin 1, global myocardial function and myocardial capillary density was also observed. There was a reduction in the LVH and upregulation of myocardial angiogenesis concluding that β-AR blockers prevent adverse vascular remodelling which might underlie its concealed mechanism of action.
Collapse
Affiliation(s)
- Ajith Kakaraparthi
- Department of Pharmacology, Malla Reddy College of Pharmacy, Dhoolapally, Hyderabad, Telangana, India
| | - Ajay Godwin Potnuri
- Department of Animal Physiology and Pharmacology, ICMR-National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, Telangana, India
| | - Lingesh Allakonda
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Mehadipatnam, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Sun X, Zhou M, Wen G, Huang Y, Wu J, Peng L, Jiang W, Yuan H, Lu Y, Cai J. Paroxetine Attenuates Cardiac Hypertrophy Via Blocking GRK2 and ADRB1 Interaction in Hypertension. J Am Heart Assoc 2020; 10:e016364. [PMID: 33372534 PMCID: PMC7955481 DOI: 10.1161/jaha.120.016364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background ADRB1 (adrenergic receptor beta 1) responds to neuroendocrine stimulations, which have great implications in hypertension. GRK2 (G protein‐coupled receptor kinase 2) is an essential regulator for many G protein‐coupled receptors and subsequent cell signaling cascades, but its role as a regulator of ADRB1 and associated cardiac hypertrophy in hypertension remains to be elucidated. Methods and Results In this study, we found the expressions of GRK2 and ADRB1 in peripheral blood mononuclear cells were positively associated with blood pressure levels in hypertensive patients and with their expression in heart. In vitro evidence showed a direct interaction in ADRB1 and GRK2 and genetic depletion of GRK2 blocks epinephrine‐induced upregulation of hypertrophic and fibrotic genes in cardiomyocytes. Meanwhile, we discovered a selective serotonin reuptake inhibitor paroxetine specifically blockades GRK2 and ADRB1 interaction. In vivo, paroxetine treatment ameliorates hypertension‐induced cardiac hypertrophy, dysfunction, and fibrosis in animal models. We found that paroxetine suppressed sympathetic overdrive and increased the adrenergic receptor sensitivity to catecholamines. Paroxetine treatment also blocks epinephrine‐induced upregulation of hypertrophic and fibrotic genes as well as ADRB1 internalization in cardiomyocytes. Coadministration of paroxetine further potentiates metoprolol‐induced reductions in blood pressure and heart rate, further attenuating cardiac hypertrophy in spontaneously hypertensive rats. Furthermore, in patients with hypertension accompanied with depression, we observed that cardiac remodeling was less severe in those with paroxetine treatment compared with those with other types of anti‐depressive agents. Conclusions Paroxetine promotes ADRB1 sensitivity and attenuates cardiac hypertrophy partially via blocking GRK2‐mediated ADRB1 activation and internalization in the context of hypertension.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Mengli Zhou
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Gaiyan Wen
- Department of Pharmacy Zhejiang Hospital Hangzhou China
| | - Yun Huang
- Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Junru Wu
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Liping Peng
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Weihong Jiang
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Hong Yuan
- The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| | - Yao Lu
- The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| | - Jingjing Cai
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China.,The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| |
Collapse
|
17
|
Wang Y, Yang W, Zhu Y, Jin N, Wu W, Zheng F. Decreased hypertension in non-obese non-diabetic gastric cancer patients after gastrectomy. Asian J Surg 2020; 43:926-929. [PMID: 32593493 DOI: 10.1016/j.asjsur.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yu Wang
- Department of General Surgery, Dongfang Hospital, Xiamen University, China.
| | - Weijin Yang
- Department of General Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Yuewen Zhu
- Department of General Surgery, Dongfang Hospital, Xiamen University, China.
| | - Na Jin
- Department of General Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Wei Wu
- Department of General Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Feng Zheng
- Department of General Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| |
Collapse
|
18
|
Involvement of Histamine 2 Receptor in Alpha 1 Adrenoceptor Mediated Cardiac Hypertrophy and Oxidative Stress in H9c2 Cardio Myoblasts. J Cardiovasc Transl Res 2020; 14:184-194. [PMID: 32385805 DOI: 10.1007/s12265-020-09967-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
Despite the involvement of ɑ1adrenergic (ɑ1AR) and Histamine 2 receptors (H2R) in cardiac hypertrophy (CH), their relationship is yet to be studied. Our study investigated interrelationship between them using in vitro CH model. H9c2 cardiomyoblasts were exposed to phenylephrine (ɑ1AR agonist-50 μM) in the presence, the absence of famotidine (H2R antagonist-10 μM) and BAY 11-7082 (NF-kB inhibitor-10 μM). The impact of ɑ1AR stimulation on H2R expression and oxidative stress was assessed. Hypertrophic indices were assessed from activities of enzymatic mediators of cardiac hypertrophy, total protein content, BNP levels and cell volume. Additionally, the inverse agonistic property of famotidine and NFkB activity was also studied. ɑ1AR-induced H2R expression, oxidative stress and hypertrophic indices were significantly abolished by famotidine and pharmacological inhibitor of NFkB. Increase in constitutive activity of H2R was noticed correlating with increased receptor population. These results suggest involvement of NFkB-mediated upregulation of H2R in ɑ1AR-mediated CH.
Collapse
|
19
|
Li H, Tang C, Zhu X, Zhang W, Abudupataer M, Ding S, Duan C, Yang X, Ge J. Histamine deficiency facilitates coronary microthrombosis after myocardial infarction by increasing neutrophil-platelet interactions. J Cell Mol Med 2020; 24:3504-3520. [PMID: 32064748 PMCID: PMC7131923 DOI: 10.1111/jcmm.15037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophil‐platelet interactions are responsible for thrombosis as well as inflammatory responses following acute myocardial infarction (AMI). While histamine has been shown to play a crucial role in many physiological and pathological processes, its effects on neutrophil‐platelet interactions in thromboinflammatory complications of AMI remain elusive. In this study, we show a previously unknown mechanism by which neutrophil‐derived histamine protects the infarcted heart from excessive neutrophil‐platelet interactions and redundant arterial thrombosis. Using histamine‐deficient (histidine decarboxylase knockout, HDC−/−) and wild‐type murine AMI models, we demonstrate that histamine deficiency increases the number of microthrombosis after AMI, in accordance with depressed cardiac function. Histamine‐producing myeloid cells, mainly Ly6G+ neutrophils, directly participate in arteriole thrombosis. Histamine deficiency elevates platelet activation and aggregation by enhancing Akt phosphorylation and leads to dysfunctional characteristics in neutrophils which was confirmed by high levels of reactive oxygen species production and CD11b expression. Furthermore, HDC−/− platelets were shown to elicit neutrophil extracellular nucleosomes release, provoke neutrophil‐platelet interactions and promote HDC‐expressing neutrophils recruitment in arteriole thrombosis in vivo. In conclusion, we provide evidence that histamine deficiency promotes coronary microthrombosis and deteriorates cardiac function post‐AMI, which is associated with the enhanced platelets/neutrophils function and neutrophil‐platelet interactions.
Collapse
Affiliation(s)
- Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai JiaoTong University School of medicine (SJTU-SM), Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai JiaoTong University School of medicine (SJTU-SM), Shanghai, China.,Department of Pharmacology and Chemical Biology, Shanghai JiaoTong University School of medicine (SJTU-SM), Shanghai, China
| | - Xiaowei Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caiwen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai JiaoTong University School of medicine (SJTU-SM), Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai JiaoTong University School of medicine (SJTU-SM), Shanghai, China.,Department of Pharmacology and Chemical Biology, Shanghai JiaoTong University School of medicine (SJTU-SM), Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|