1
|
Chen X, Peng S, Liang W, Gan S, Xu Y, Xiang H. Association between community walkability and hypertension: Evidence from the Wuhan Chronic Disease Cohort Study. ENVIRONMENTAL RESEARCH 2024; 263:120071. [PMID: 39362460 DOI: 10.1016/j.envres.2024.120071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
While community walkability is recognized as a key environmental factor for health status, evidence linking it specifically to hypertension is rather limited. To fill the knowledge gap, we concluded a cross-sectional study among 6421 eligible participants from the Wuhan Chronic Disease Cohort. A well-developed algorithm was performed to evaluate community walkability across Wuhan, quantified as Walk Score. We then calculated each participant residential Walk Score using the geographic information system. The logistic and linear regression models were conducted to determine the relationship between walkability, hypertension and blood pressure, respectively. We further performed the mediation analysis to explore potential mechanisms. After adjusting for extra confounders, we observed a higher community walk score was associated with a lower hypertension risk (OR = 0.73; 95% CI: 0.63, 0.84), a lower systolic blood pressure (β = -3.152 mmHg; 95% CI: -4.25, -2.05), a lower diastolic blood pressure (β = -2.237 mmHg; 95% CI: -2.95, -2.53) and a lower mean arterial pressure (β = -2.976 mmHg; 95% CI: -3.75, -2.20). The effect of community walkability on hypertension was partially mediated by body fat rate. Our study indicates a positive correlation between high walkability and a reduced odds of hypertension in China. This highlights the potential role of urban design in hypertension prevention, emphasizes the need for walkability-focused planning strategies to foster healthier communities, and guides future interventions and research to mitigate hypertension.
Collapse
Affiliation(s)
- Xinlan Chen
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, China
| | - Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, China
| | - Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, China
| | - Siyu Gan
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, China
| | - Yanqing Xu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan 430071, Hubei, China; Global Health Institute, Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
2
|
He L, Zuo Q, Ma S, Zhang G, Wang Z, Zhang T, Zhai J, Guo Y. Canagliflozin attenuates kidney injury, gut-derived toxins, and gut microbiota imbalance in high-salt diet-fed Dahl salt-sensitive rats. Ren Fail 2024; 46:2300314. [PMID: 38189082 PMCID: PMC10776083 DOI: 10.1080/0886022x.2023.2300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE To investigate the effects of canagliflozin (20 mg/kg) on Dahl salt-sensitive (DSS) rat gut microbiota and salt-sensitive hypertension-induced kidney injury and further explore its possible mechanism. METHODS Rats were fed a high-salt diet to induce hypertension and kidney injury, and physical and physiological indicators were measured afterwards. This study employed 16S rRNA sequencing technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolic profiling combined with advanced differential and association analyses to investigate the correlation between the microbiome and the metabolome in male DSS rats. RESULTS A high-salt diet disrupted the balance of the intestinal flora and increased toxic metabolites (methyhistidines, creatinine, homocitrulline, and indoxyl sulfate), resulting in severe kidney damage. Canagliflozin contributed to reconstructing the intestinal flora of DSS rats by significantly increasing the abundance of Corynebacterium spp., Bifidobacterium spp., Facklamia spp., Lactobacillus spp., Ruminococcus spp., Blautia spp., Coprococcus spp., and Allobaculum spp. Moreover, the reconstruction of the intestinal microbiota led to significant changes in host amino acid metabolite concentrations. The concentration of uremic toxins, such as methyhistidines, creatinine, and homocitrulline, in the serum of rats was decreased by canagliflozin, which resulted in oxidative stress and renal injury alleviation. CONCLUSION Canagliflozin may change the production of metabolites and reduce the level of uremic toxins in the blood circulation by reconstructing the intestinal flora of DSS rats fed a high-salt diet, ultimately alleviating oxidative stress and renal injury.
Collapse
Affiliation(s)
- Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yifang Guo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
3
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Hu Y, Bao J, Gao Z, Ye L, Wang L. Sodium-Glucose Cotransporter Protein 2 Inhibitors: Novel Application for the Treatment of Obesity-Associated Hypertension. Diabetes Metab Syndr Obes 2024; 17:407-415. [PMID: 38292009 PMCID: PMC10826576 DOI: 10.2147/dmso.s446904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Obesity is becoming increasingly prevalent in China and worldwide and is closely related to the development of hypertension. The pathophysiology of obesity-associated hypertension is complex, including an overactive sympathetic nervous system (SNS), activation of the renin-angiotensin-aldosterone system (RAAS), insulin resistance, hyperleptinemia, renal dysfunction, inflammatory responses, and endothelial function, which complicates treatment. Sodium-glucose cotransporter protein 2 (SGLT-2) inhibitors, novel hypoglycemic agents, have been shown to reduce body weight and blood pressure and may serve as potential novel agents for the treatment of obesity-associated hypertension. This review discusses the beneficial mechanisms of SGLT-2 inhibitors for the treatment of obesity-associated hypertension. SGLT-2 inhibitors can inhibit SNS activity, reduce RAAS activation, ameliorate insulin resistance, reduce leptin secretion, improve renal function, and inhibit inflammatory responses. SGLT-2 inhibitors can, therefore, simultaneously target multiple mechanisms of obesity-associated hypertension and may serve as an effective treatment for obesity-associated hypertension.
Collapse
Affiliation(s)
- Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
6
|
Takata T, Isomoto H. The Versatile Role of Uromodulin in Renal Homeostasis and Its Relevance in Chronic Kidney Disease. Intern Med 2024; 63:17-23. [PMID: 36642527 PMCID: PMC10824655 DOI: 10.2169/internalmedicine.1342-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Uromodulin, also known as the Tamm-Horsfall protein, is predominantly expressed in epithelial cells of the kidney. It is secreted mainly in the urine, although small amounts are also found in serum. Uromodulin plays an important role in maintaining renal homeostasis, particularly in salt/water transport mechanisms and is associated with salt-sensitive hypertension. It also regulates urinary tract infections, kidney stones, and the immune response in the kidneys or extrarenal organs. Uromodulin has been shown to be associated with the renal function, age, nephron volume, and metabolic abnormalities and has been proposed as a novel biomarker for the tubular function or injury. These findings suggest that uromodulin is a key molecule underlying the mechanisms or therapeutic approaches of chronic kidney disease, particularly nephrosclerosis and diabetic nephropathy, which are causes of end-stage renal disease. This review focuses on the current understanding of the role of uromodulin from a biological, physiological, and pathological standpoint.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| |
Collapse
|
7
|
Zhai J, Wang Z, Zhang T, He L, Ma S, Zuo Q, Zhang G, Wang X, Guo Y. Canagliflozin and irbesartan ameliorate renal fibrosis via the TGF-β1/Smad signaling pathway in Dahl salt-sensitive rats. J Int Med Res 2023; 51:3000605231206289. [PMID: 37862678 PMCID: PMC10590049 DOI: 10.1177/03000605231206289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVES This study assessed the antifibrotic effects of canagliflozin, with or without irbesartan, on renal injury in Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. METHODS After the preconditioning stage, Dahl SS rats (n = 47) were divided into five experimental groups as follows: low-salt (LS, n = 7), HS (n = 10), HS with canagliflozin (n = 10), HS with irbesartan (n = 10), and HS with canagliflozin and irbesartan (n = 10). RESULTS The HS diet increased systolic blood pressure (SBP), renal fibrosis, fibrotic protein expression, and transforming growth factor-β1 (TGF-β1)/Smad2/3 pathway protein expression compared with the findings in the LS group. Irbesartan reduced SBP and slowed the loss of renal function. Canagliflozin significantly reduced body weight and renal fibrosis and suppressed the TGF-β1/Smad2/3 pathway. The combined therapy exerted better renoprotective effects on all outcome parameters. CONCLUSIONS These results indicate that canagliflozin and irbesartan exert different effects on renal injury in SS hypertensive rats, and the combined regimen could have stronger effects than either monotherapy.
Collapse
Affiliation(s)
- Jianlong Zhai
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Zhongli Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Medical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Pain Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xinyu Wang
- Department of Internal Medicine, Hebei North University, Zhangjiakou, China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Nguyen IT, Joles JA, Verhaar MC, Lamb HJ, Dekkers IA. Obesity in relation to cardiorenal function. VISCERAL AND ECTOPIC FAT 2023:243-264. [DOI: 10.1016/b978-0-12-822186-0.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
The Construction and Analysis of a ceRNA Network Related to Salt-Sensitivity Hypertensives. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8258351. [PMID: 36277897 PMCID: PMC9586768 DOI: 10.1155/2022/8258351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022]
Abstract
Background Salt-sensitivity hypertensives (SSH) are an independent risk factor for cardiovascular disease. However, the mechanism of SSH is not clear. This study is aimed at constructing a competing endogenous RNA (ceRNA) network related to SSH. Methods Data sets were collected from the Gene Expression Omnibus database (GEO) to extract data on salt sensitivity RNA of patients with or without hypertensives in GSE135111. Firstly, we analyzed differentially expressed genes (DEGs, log2FC ≥ 0.5 and P < 0.05) and differentially expressed lncRNAs (DELs, log2FC ≥1 and P<0.05) between SSH and salt-sensitive normotension (SSN). Then, the gene ontology (GO), KEGG pathway enrichment analysis, and PPI network construction of DEGs were performed, and the hub genes in the PPI network by cytoHubba (12 methods) were screened out. Finally, a ceRNA network was constructed based on lncRNA-miRNA-mRNA pairs and hub genes. Results 163 DEGs and 65 DELs were screened out. The GO and KEGG pathway analyses of DEGs were mainly enriched in metabolism (e.g., insulin secretion and cellular response to glucagon stimulus and peptidyl-tyrosine dephosphorylation,) and plasma membrane signaling (e.g., cell adhesion and chemical synaptic transmission and integral component of membrane). Additionally, a ceRNA network, including 1 mRNA (EGLN3), 2 miRNAs (hsa-miR-17-5p and hsa-miR-20b-5p), and 1 lncRNA (C1orf143) was successfully constructed. Conclusions In conclusion, the proposed ceRNA network may help elucidate the regulatory mechanism by which lncRNAs function as ceRNAs and contribute to the pathogenesis of SSH. Importantly, candidate lncRNAs, miRNAs, and mRNAs can be further evaluated as a potential therapeutic targets for SSH.
Collapse
|
10
|
Highlights of mechanisms and treatment of obesity-related hypertension. J Hum Hypertens 2022; 36:785-793. [PMID: 35001082 DOI: 10.1038/s41371-021-00644-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has increased two to three times from 1975 to 2015. Large-scale epidemiological and longitudinal prospective studies link obesity with hypertension. Research suggests that excessive weight gain, particularly when associated with visceral adiposity, may account for as much as 65% to 75% of the risk of incident hypertension. Also, exercise and bariatric/metabolic surgery significantly lowers blood pressure, whereas weight gain increases blood pressure, thus establishing a firm link between these two factors. The mechanisms underpinning obesity-related hypertension are complex and multifaceted, and include, but are not limited to, renin-angiotensin-aldosterone system/sympathetic nervous system overactivation, overstimulation of adipokines, insulin resistance, immune dysfunction, structural/functional renal, cardiac, and adipocyte changes. Though weight loss is the mainstay of treatment for obesity-related hypertension, it is often not a feasible long-term solution. Therefore, it is recommended that aggressive treatment with multiple antihypertensive medications combined with diet and exercise be used to lower blood pressure and prevent complications. The research regarding the mechanisms and treatment of obesity-related hypertension has moved at a blistering pace over the past ten years. Therefore, the purpose of this expert review is two-fold: to discuss the pathophysiological mechanisms underlying obesity-related hypertension, and to revisit pharmacotherapies that have been shown to be efficacious in patients with obesity-related hypertension.
Collapse
|
11
|
Sankararaman S, Hendrix SJ, Schindler T. Update on the management of vitamins and minerals in cystic fibrosis. Nutr Clin Pract 2022; 37:1074-1087. [PMID: 35997322 PMCID: PMC9544449 DOI: 10.1002/ncp.10899] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in respiratory and nutrition management have significantly improved the survival of patients with cystic fibrosis (CF). With the availability of several nutrition interventions such as oral/enteral nutrition supplements, enteric‐coated pancreatic enzymes, and water‐miscible CF‐specific vitamin supplements, frank vitamin deficiencies—with the exception of vitamin D—are rarely encountered in current clinical practice. Whereas they were previously considered as micronutrients, our current understanding of fat‐soluble vitamins and minerals as antioxidants, immunomodulators, and disease biomarkers has been evolving. The impact of highly effective modulators on the micronutrient status of patients with CF remains elusive. This narrative review focuses on the updates on the management of fat‐soluble vitamins and other micronutrients in CF in the current era and identifies the gaps in our knowledge.
Collapse
Affiliation(s)
- Senthilkumar Sankararaman
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sara J Hendrix
- Department of Nutrition Services, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Terri Schindler
- Department of Pediatrics, Division of Pediatric Pulmonology, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Patil CN, Ritter ML, Wackman KK, Oliveira V, Balapattabi K, Grobe CC, Brozoski DT, Reho JJ, Nakagawa P, Mouradian GC, Kriegel AJ, Kwitek AE, Hodges MR, Segar JL, Sigmund CD, Grobe JL. Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. Am J Physiol Regul Integr Comp Physiol 2022; 322:R467-R485. [PMID: 35348007 PMCID: PMC9054347 DOI: 10.1152/ajpregu.00017.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Liao Y, Chu C, Yan Y, Wang D, Ma Q, Gao K, Sun Y, Hu J, Zheng W, Mu J. High Dietary Salt Intake Is Associated With Histone Methylation in Salt-Sensitive Individuals. Front Nutr 2022; 9:857562. [PMID: 35571911 PMCID: PMC9097549 DOI: 10.3389/fnut.2022.857562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background High salt diet is one of the important risk factors of hypertension and cardiovascular diseases. Increasingly strong evidence supports epigenetic mechanisms' significant role in hypertension. We aimed to explore associations of epigenetics with high salt diet, salt sensitivity (SS), and SS hypertension. Methods We conducted a dietary intervention study of chronic salt loading in 339 subjects from northern China in 2004 and divided the subjects into different salt sensitivity phenotypes. A total of 152 participants were randomly selected from the same cohort for follow-up in 2018 to explore the effect of a high-salt diet on serum monomethylation of H3K4 (H3K4me1), histone methyltransferase Set7, and lysine-specific demethylase 1 (LSD-1). Results Among SS individuals, the blood pressure (SBP: 140.8 vs. 132.9 mmHg; MAP: 104.2 vs. 98.7 mmHg) and prevalence of hypertension (58.8 vs. 32.8%) were significantly higher in high salt (HS) diet group than in normal salt (NS) diet group, but not in the salt-resistant (SR) individuals (P > 0.05). Serum H3K4me1 level (287.3 vs. 179.7 pg/ml, P < 0.05) significantly increased in HS group of SS individuals, but not in SR individuals. We found daily salt intake in SS individuals was positively correlated with serum H3K4me1 (r = 0.322, P = 0.005) and Set7 (r = 0.340, P = 0.005) levels after adjusting for age and gender, but not with LSD-1 (r = -0.137, P = 0.251). In addition, positive correlation between the serum H3K4me1 level and Set7 level (r = 0.326, P = 0.007) was also found in SS individuals. These correlations were not evident in SR individuals. Conclusion Our study indicates that high salt diet increases the serum H3K4me1 and Set7 levels in SS individuals.
Collapse
Affiliation(s)
- Yueyuan Liao
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Chao Chu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yu Yan
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Dan Wang
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Qiong Ma
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Ke Gao
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yue Sun
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Jiawen Hu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Wenling Zheng
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Jianjun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
14
|
Labban M, Itani MM, Maaliki D, Nasreddine L, Itani HA. The Sweet and Salty Dietary Face of Hypertension and Cardiovascular Disease in Lebanon. Front Physiol 2022; 12:802132. [PMID: 35153813 PMCID: PMC8835350 DOI: 10.3389/fphys.2021.802132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
According to the World Health Organization (WHO), an estimated 1.28 billion adults aged 30–79 years worldwide have hypertension; and every year, hypertension takes 7.6 million lives. High intakes of salt and sugar (mainly fructose from added sugars) have been linked to the etiology of hypertension, and this may be particularly true for countries undergoing the nutrition transition, such as Lebanon. Salt-induced hypertension and fructose-induced hypertension are manifested in different mechanisms, including Inflammation, aldosterone-mineralocorticoid receptor pathway, aldosterone independent mineralocorticoid receptor pathway, renin-angiotensin system (RAS), sympathetic nervous system (SNS) activity, and genetic mechanisms. This review describes the evolution of hypertension and cardiovascular diseases (CVDs) in Lebanon and aims to elucidate potential mechanisms where salt and fructose work together to induce hypertension. These mechanisms increase salt absorption, decrease salt excretion, induce endogenous fructose production, activate fructose-insulin-salt interaction, and trigger oxidative stress, thus leading to hypertension. The review also provides an up-to-date appraisal of current intake levels of salt and fructose in Lebanon and their main food contributors. It identifies ongoing salt and sugar intake reduction strategies in Lebanon while acknowledging the country’s limited scope of regulation and legislation. Finally, the review concludes with proposed public health strategies and suggestions for future research, which can reduce the intake levels of salt and fructose levels and contribute to curbing the CVD epidemic in the country.
Collapse
Affiliation(s)
| | - Maha M Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lara Nasreddine
- Vascular Medicine Program, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Hana A Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Vascular Medicine Program, American University of Beirut Medical Center, Beirut, Lebanon.,Adjunct Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
15
|
Lee H, Ji SY, Hwangbo H, Kim MY, Kim DH, Park BS, Park JH, Lee BJ, Kim GY, Jeon YJ, Choi YH. Protective Effect of Gamma Aminobutyric Acid against Aggravation of Renal Injury Caused by High Salt Intake in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23010502. [PMID: 35008928 PMCID: PMC8745502 DOI: 10.3390/ijms23010502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters. Several studies have suggested that GABA supplements can reduce blood pressure and modulate the renal immune system in vitro and in vivo. In the present study, we investigated the effect of GABA-enriched salt as an alternative to traditional salt on aggravated renal injury by high salt intake in cisplatin-induced nephrotoxicity mice. High salt intake accelerated the increase of biomarkers, such as blood urea nitrogen and serum creatinine levels for renal injury in cisplatin-induced nephrotoxicity mice. However, oral administration of GABA-contained salt notably suppressed serum BUN and creatinine levels. The efficacy of GABA salt was superior to lacto GABA salt and postbiotics GABA salt. Furthermore, GABA-enriched salt markedly restored histological symptoms of nephrotoxicity including renal hypertrophy, tubular dilation, hemorrhage, and collagen deposition aggravated by salt over-loading in cisplatin-exposed mice. Among them, GABA salt showed a higher protective effect against cisplatin-induced renal histological changes than lacto GABA salt and postbiotics GABA salt. In addition, administration of high salt significantly enhanced expression levels of apoptosis and inflammatory mediators in cisplatin-induced nephrotoxicity mice, while GABA-enriched salt greatly down-regulated the expression of these mediators. Taken together, these results demonstrate the protective effect of GABA against damage caused by high salt intake in cisplatin-induced renal toxicity. Its mechanism may be due to the suppression of hematological and biochemical toxicity, apoptosis, and inflammation. In conclusion, although the protective efficacy of GABA salt on renal injury is different depending on the sterilization and filtration process after fermentation with L. brevis BJ20 and L. plantarum BJ21, our findings suggest that GABA-enriched salt has a beneficial effect against immoderate high salt intake-mediated kidney injury in patients with cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hyesook Lee
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Hyun Hwangbo
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea;
| | - Min Yeong Kim
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Da Hye Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Beom Su Park
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Joung-Hyun Park
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
16
|
Weng HC, Lu XY, Xu YP, Wang YH, Wang D, Feng YL, Chi Z, Yan XQ, Lu CS, Wang HW. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Mol Med 2021; 27:147. [PMID: 34773993 PMCID: PMC8590333 DOI: 10.1186/s10020-021-00408-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/31/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Patients with salt-sensitive hypertension are often accompanied with severe renal damage and accelerate to end-stage renal disease, which currently lacks effective treatment. Fibroblast growth factor 21 (FGF21) has been shown to suppress nephropathy in both type 1 and type 2 diabetes mice. Here, we aimed to investigate the therapeutic effect of FGF21 in salt-sensitive hypertension-induced nephropathy. METHODS Changes of FGF21 expression in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive mice were detected. The influence of FGF21 knockout in mice on DOCA-salt-induced nephropathy were determined. Recombinant human FGF21 (rhFGF21) was intraperitoneally injected into DOCA-salt-induced nephropathy mice, and then the inflammatory factors, oxidative stress levels and kidney injury-related indicators were observed. In vitro, human renal tubular epithelial cells (HK-2) were challenged by palmitate acid (PA) with or without FGF21, and then changes in inflammation and oxidative stress indicators were tested. RESULTS We observed significant elevation in circulating levels and renal expression of FGF21 in DOCA-salt-induced hypertensive mice. We found that deletion of FGF21 in mice aggravated DOCA-salt-induced nephropathy. Supplementation with rhFGF21 reversed DOCA-salt-induced kidney injury. Mechanically, rhFGF21 induced AMPK activation in DOCA-salt-treated mice and PA-stimulated HK-2 cells, which inhibited NF-κB-regulated inflammation and Nrf2-mediated oxidative stress and thus, is important for rhFGF21 protection against DOCA-salt-induced nephropathy. CONCLUSION These findings indicated that rhFGF21 could be a promising pharmacological strategy for the treatment of salt-sensitive hypertension-induced nephropathy.
Collapse
Affiliation(s)
- Hua-Chun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 200000, China
| | - Xin-Yu Lu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Peng Xu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Hong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Yi-Ling Feng
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Zhang Chi
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Qing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
17
|
Chiriacò M, Tricò D, Leonetti S, Petrie JR, Balkau B, Højlund K, Pataky Z, Nilsson PM, Natali A. Female Sex and Angiotensin-Converting Enzyme (ACE) Insertion/Deletion Polymorphism Amplify the Effects of Adiposity on Blood Pressure. Hypertension 2021; 79:36-46. [PMID: 34689596 DOI: 10.1161/hypertensionaha.121.18048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathophysiological link between adiposity and blood pressure is not completely understood, and evidence suggests an influence of sex and genetic determinants. We aimed to identify the relationship between adiposity and blood pressure, independent of a robust set of lifestyle and metabolic factors, and to examine the modulating role of sex and Angiotensin-Converting Enzyme (ACE) insertion/deletion (I/D) polymorphisms. In the Relationship Between Insulin Sensitivity and Cardiovascular Disease (RISC) study cohort, 1211 normotensive individuals, aged 30 to 60 years and followed-up after 3.3 years, were characterized for lifestyle and metabolic factors, body composition, and ACE genotype. Body mass index (BMI) and waist circumference (WC) were independently associated with mean arterial pressure, with a stronger relationship in women than men (BMI: r=0.40 versus 0.30; WC: r=0.40 versus 0.30, both P<0.01) and in individuals with the ID and II ACE genotypes in both sexes (P<0.01). The associations of BMI and WC with mean arterial pressure were independent of age, sex, lifestyle, and metabolic variables (standardized regression coefficient=0.17 and 0.18 for BMI and WC, respectively) and showed a significant interaction with the ACE genotype only in women (P=0.03). A 5 cm larger WC at baseline increased the risk of developing hypertension at follow-up only in women (odds ratio, 1.56 [95% CI, 1.15-2.10], P=0.004) and in II genotype carriers (odds ratio, 1.87 [95% CI, 1.09-3.20], P=0.023). The hypertensive effect of adiposity is more pronounced in women and in people carrying the II variant of the ACE genotype, a marker of salt sensitivity.
Collapse
Affiliation(s)
- Martina Chiriacò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Italy. (M.C., D.T., S.L., A.N.)
| | - Domenico Tricò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Italy. (M.C., D.T., S.L., A.N.).,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy. (D.T.)
| | - Simone Leonetti
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Italy. (M.C., D.T., S.L., A.N.)
| | - John R Petrie
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (J.R.P.)
| | - Beverley Balkau
- Clinical Epidemiology, CESP, University Paris-Saclay, UVSQ, University Paris-Sud, Inserm U1018, Villejuif, France (B.B.)
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Denmark (K.H.)
| | - Zoltan Pataky
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, WHO Collaborating Centre, University Hospitals of Geneva, University of Geneva, Switzerland (Z.P.)
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmö, Sweden (P.M.N.)
| | - Andrea Natali
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Italy. (M.C., D.T., S.L., A.N.)
| | | |
Collapse
|
18
|
Curtis D. Analysis of 200,000 Exome-Sequenced UK Biobank Subjects Implicates Genes Involved in Increased and Decreased Risk of Hypertension. Pulse (Basel) 2021; 9:17-29. [PMID: 34722352 PMCID: PMC8527905 DOI: 10.1159/000517419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous analyses have identified common variants along with some specific genes and rare variants which are associated with risk of hypertension, but much remains to be discovered. METHODS AND RESULTS Exome-sequenced UK Biobank participants were phenotyped based on having a diagnosis of hypertension or taking anti-hypertensive medication to produce a sample of 66,123 cases and 134,504 controls. Variants with minor allele frequency (MAF) <0.01 were subjected to a gene-wise weighted burden analysis, with higher weights assigned to variants which are rarer and/or predicted to have more severe effects. Of 20,384 genes analysed, 2 genes were exome-wide significant, DNMT3A and FES. Also strongly implicated were GUCY1A1 and GUCY1B1, which code for the subunits of soluble guanylate cyclase. There was further support for the previously reported effects of variants in NPR1 and protective effects of variants in DBH. An inframe deletion in CACNA1D with MAF = 0.005, rs72556363, is associated with modestly increased risk of hypertension. Other biologically plausible genes highlighted consist of CSK, AGTR1, ZYX, and PREP. All variants implicated were rare, and cumulatively they are not predicted to make a large contribution to the population risk of hypertension. CONCLUSIONS This approach confirms and clarifies previously reported findings and also offers novel insights into biological processes influencing hypertension risk, potentially facilitating the development of improved therapeutic interventions. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London, London, United Kingdom
- Centre for Psychiatry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
19
|
Du H, Xiao G, Xue Z, Li Z, He S, Du X, Zhou Z, Cao L, Wang Y, Yang J, Wang X, Zhu Y. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats. Biomed Pharmacother 2021; 141:111941. [PMID: 34328102 DOI: 10.1016/j.biopha.2021.111941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypertension is a leading risk factor for developing kidney disease. Current single-target antihypertensive drugs are not effective for hypertensive nephropathy, in part due to its less understood mechanism of pathogenesis. We recently showed that QiShenYiQi (QSYQ), a component-based cardiovascular Chinese medicine, is also effective for ischemic stroke. Given the important role of the brain-heart-kidney axis in blood pressure control, we hypothesized that QSYQ may contribute to blood pressure regulation and kidney protection in Dahl salt-sensitive hypertensive rats. METHODS The therapeutic effects of QSYQ on blood pressure and kidney injury in Dahl salt-sensitive rats fed with high salt for 9 weeks were evaluated by tail-cuff blood pressure monitoring, renal histopathological examination and biochemical indicators in urine and serum. RNA-seq was conducted to identify QSYQ regulated genes in hypertensive kidney, and RT-qPCR, immunohistochemistry, and Western blotting analysis were performed to verify the transcriptomics results and validate the purposed mechanisms. RESULTS QSYQ treatment significantly decreased blood pressure in Dahl salt-sensitive hypertensive rats, alleviated renal tissue damage, reduced renal interstitial fibrosis and collagen deposition, and improved renal physiological function. RNA-seq and subsequent bioinformatic analysis showed that the expression of ADRA1D and SIK1 genes were among the most prominently altered by QSYQ in salt-sensitive hypertensive rat kidney. RT-qPCR, immunohistochemistry and Western blotting results confirmed that the mRNA and protein expression levels of alpha-1D adrenergic receptor (ADRA1D) in the kidney tissue of the QSYQ-treated rats were markedly down-regulated, while the mRNA and protein levels of salt inducible kinase 1 (SIK1) were significantly increased. CONCLUSION QSYQ not only lowered blood pressure, but also alleviated renal damage via reducing the expression of ADRA1D and increasing the expression of SIK1 in the kidney of Dahl salt-sensitive hypertensive rats.
Collapse
Affiliation(s)
- Hongxia Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Xiaoli Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China; Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhengchan Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Linghua Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
| | - Xiaoying Wang
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China.
| |
Collapse
|
20
|
Suzuki D, Hoshide S, Kario K. Renal Sodium Handling: Perspective on Adaptation to Clinical Practice. Am J Hypertens 2021; 34:332-334. [PMID: 33438727 DOI: 10.1093/ajh/hpab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daisuke Suzuki
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
- Department of Medicine, Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
21
|
Sugiura T, Takase H, Ohte N, Dohi Y. Dietary salt intake increases with age in Japanese adults. Nutr Res 2021; 89:1-9. [PMID: 33866192 DOI: 10.1016/j.nutres.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Excess salt intake is linked to cardiovascular disease as well as hypertension, but whether individual salt intake increases with age has not been studied. The present study was designed to test the hypothesis that individual salt intake increases with age in Japanese adults. In this retrospective observational follow-up study, men and women age ≥30 years who participated in a baseline health checkup (2008-2009) at our center and had a health checkup 10 years later (n = 2598) were enrolled and salt intake was estimated by spot urine analysis. Yearly changes in salt intake were also assessed in participants with complete annual data over the course of 10 years from baseline (n = 1543). The follow-up study demonstrated increased salt intake (8.8 ± 2.0 to 9.3 ± 2.1 g/d, P < .001) with increasing age (54.0 ± 9.7 to 64.0 ± 9.8 years). Salt intake increased year over year in participants who had a health checkup annually for the 10-year follow-up period (n = 1543; analysis of variance, P < .001). Cross-sectional analyses using propensity-matched model revealed similar regional levels of salt intake in the baseline period (8.9 ± 2.0 g/d, 55.8 ± 11.4 years, n = 5018) and at 10 years (8.8 ± 2.0 g/d, P = .21; 55.9 ± 13.0 years, P = .65, n = 5105). These results suggest that dietary salt intake increases with age in Japanese adults, which should be considered in devising population-based strategies to lower dietary salt intake.
Collapse
Affiliation(s)
- Tomonori Sugiura
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Takase
- Department of Internal Medicine, Enshu Hospital, Hamamatsu, Japan.
| | - Nobuyuki Ohte
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuaki Dohi
- Department of Internal Medicine, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Nagoya, Japan
| |
Collapse
|
22
|
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and Hypertension in Old Age. Nutrients 2020; 13:E139. [PMID: 33396570 PMCID: PMC7823889 DOI: 10.3390/nu13010139] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Hypertension is a complex condition in which various actors and mechanisms combine, resulting in cardiovascular and cerebrovascular complications that today represent the most frequent causes of mortality, morbidity, disability, and health expenses worldwide. In recent decades, there has been an exceptional number of experimental, epidemiological, and clinical studies confirming a close relationship between magnesium deficit and high blood pressure. Multiple mechanisms may help to explain the bulk of evidence supporting a protective effect of magnesium against hypertension and its complications. Hypertension increases sharply with advancing age, hence older persons are those most affected by its negative consequences. They are also more frequently at risk of magnesium deficiency by multiple mechanisms, which may, at least in part, explain the higher frequency of hypertension and its long-term complications. The evidence for a favorable effect of magnesium on hypertension risk emphasizes the importance of broadly encouraging the intake of foods such as vegetables, nuts, whole cereals and legumes, optimal dietary sources of magnesium, and avoiding processed foods, which are very poor in magnesium and other fundamental nutrients, in order to prevent hypertension. In some cases, when diet is not enough to maintain an adequate magnesium status, magnesium supplementation may be of benefit and has been shown to be well tolerated.
Collapse
Affiliation(s)
| | | | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (L.J.D.); (N.V.)
| |
Collapse
|
23
|
Hu J, Chu C, Shi T, Yan Y, Mu J. Effects of salt intervention on serum levels of Klotho influenced by salt sensitivity. J Clin Hypertens (Greenwich) 2020; 22:2051-2058. [PMID: 33164306 DOI: 10.1111/jch.14044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jia‐Wen Hu
- Department of Cardiovascular Surgery First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
| | - Chao Chu
- Department of Cardiology First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
- Key Laboratory of Molecular Cardiology of Shaanxi Province Xi’an China
| | - Tao Shi
- Department of Cardiovascular Surgery First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
| | - Yang Yan
- Department of Cardiovascular Surgery First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
| | - Jian‐Jun Mu
- Department of Cardiology First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
- Key Laboratory of Molecular Cardiology of Shaanxi Province Xi’an China
| |
Collapse
|
24
|
Wei KY, Gritter M, Vogt L, de Borst MH, Rotmans JI, Hoorn EJ. Dietary potassium and the kidney: lifesaving physiology. Clin Kidney J 2020; 13:952-968. [PMID: 33391739 PMCID: PMC7769543 DOI: 10.1093/ckj/sfaa157] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
Potassium often has a negative connotation in Nephrology as patients with chronic kidney disease (CKD) are prone to develop hyperkalaemia. Approaches to the management of chronic hyperkalaemia include a low potassium diet or potassium binders. Yet, emerging data indicate that dietary potassium may be beneficial for patients with CKD. Epidemiological studies have shown that a higher urinary potassium excretion (as proxy for higher dietary potassium intake) is associated with lower blood pressure (BP) and lower cardiovascular risk, as well as better kidney outcomes. Considering that the composition of our current diet is characterized by a high sodium and low potassium content, increasing dietary potassium may be equally important as reducing sodium. Recent studies have revealed that dietary potassium modulates the activity of the thiazide-sensitive sodium-chloride cotransporter in the distal convoluted tubule (DCT). The DCT acts as a potassium sensor to control the delivery of sodium to the collecting duct, the potassium-secreting portion of the kidney. Physiologically, this allows immediate kaliuresis after a potassium load, and conservation of potassium during potassium deficiency. Clinically, it provides a novel explanation for the inverse relationship between dietary potassium and BP. Moreover, increasing dietary potassium intake can exert BP-independent effects on the kidney by relieving the deleterious effects of a low potassium diet (inflammation, oxidative stress and fibrosis). The aim of this comprehensive review is to link physiology with clinical medicine by proposing that the same mechanisms that allow us to excrete an acute potassium load also protect us from hypertension, cardiovascular disease and CKD.
Collapse
Affiliation(s)
- Kuang-Yu Wei
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Wu J, Nie J, Wang Y, Zhang Y, Wu D. Relationship between saline infusion and blood pressure variability in non-critically patients with hypertension: A retrospective study. Medicine (Baltimore) 2020; 99:e21468. [PMID: 32871869 PMCID: PMC7458164 DOI: 10.1097/md.0000000000021468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
Saline is a commonly used intravenous solvent, however, its excessive infusion may increase drug-induced sodium intake. To investigate the effects of saline infusion on blood pressure variability (BPV) in patients with hypertension, a retrospective study was performed in 1010 patients with hypertension. The patients who received saline infusion before surgery for continuous 3 to 5 days were divided into 2 groups according to the saline infusion volume during the hospitalization, which are >500 mL per day group and <500 mL per day group. The overall incidence of abnormal BPV was 11.58%. As for the incidence of abnormal BPV in the <500 mL per day group with 698 patients was 9.17%, while that in the >500 mL per day group with 312 patients was as high as 16.99%. Additionally, >500 mL of daily saline infusion for continuous 3 to 5 days (P for trend = .004, odds ratio [OR] = 1.911, 95% confidence interval [CI] for OR 1.226-2.977), medical history of diabetes mellitus (P < .001, OR = 4.856, 95% CI for OR 3.118-7.563) and cardiovascular diseases (P < .001, OR = 2.498, 95% CI for OR 1.549-4.029) may be risk factors of abnormal BPV; while anti-hypertensive therapy with diuretics (P < .001, OR = 0.055, 95% CI for OR 0.024-0.125) may be the protective factor. Our study suggests that >500 mL of daily saline infusion for continuous 3 to 5 days may have disadvantages in the blood pressure control for hypertensive patients, especially for the patients with diabetes mellitus and cardiovascular diseases.
Collapse
|
26
|
Hirohama D, Kawarazaki W, Nishimoto M, Ayuzawa N, Marumo T, Shibata S, Fujita T. PGI 2 Analog Attenuates Salt-Induced Renal Injury through the Inhibition of Inflammation and Rac1-MR Activation. Int J Mol Sci 2020; 21:ijms21124433. [PMID: 32580367 PMCID: PMC7353033 DOI: 10.3390/ijms21124433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Renal inflammation is known to be involved in salt-induced renal damage, leading to end-stage renal disease. This study aims to evaluate the role of inflammation in anti-inflammatory and renoprotective effects of beraprost sodium (BPS), a prostaglandin I2 (PGI2) analog, in Dahl salt-sensitive (DS) rats. Five-week-old male DS rats were fed a normal-salt diet (0.5% NaCl), a high-salt diet (8% NaCl), or a high-salt diet plus BPS treatment for 3 weeks. BPS treatment could inhibit marked proteinuria and renal injury in salt-loaded DS rats with elevated blood pressure, accompanied by renal inflammation suppression. Notably, high salt increased renal expression of active Rac1, followed by increased Sgk1 expressions, a downstream molecule of mineralocorticoid receptor (MR) signal, indicating salt-induced activation of Rac1-MR pathway. However, BPS administration inhibited salt-induced Rac1-MR activation as well as renal inflammation and damage, suggesting that Rac1-MR pathway is involved in anti-inflammatory and renoprotective effects of PGI2. Based upon Rac1 activated by inflammation, moreover, BPS inhibited salt-induced activation of Rac1-MR pathway by renal inflammation suppression, resulting in the attenuation of renal damage in salt-loaded DS rats. Thus, BPS is efficacious for the treatment of salt-induced renal injury.
Collapse
Affiliation(s)
- Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8606, Japan
- Correspondence: ; Tel.: +81-3-5452-5057
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Department of Internal Medicine, International University of Health and Welfare Mita Hospital, Tokyo 108-8329, Japan
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Center for Basic Medical Research at Narita Campus, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Shigeru Shibata
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8606, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Shinshu University School of Medicine and Research Center for Social Systems, Nagano 389-0111, Japan
| |
Collapse
|
27
|
Lu YT, Fan P, Zhang D, Zhang Y, Meng X, Zhang QY, Zhao L, Yang KQ, Zhou XL. Overview of Monogenic Forms of Hypertension Combined With Hypokalemia. Front Pediatr 2020; 8:543309. [PMID: 33569358 PMCID: PMC7868374 DOI: 10.3389/fped.2020.543309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hypertension is an important risk factor in many conditions and creates a heavy burden of disease and mortality globally. Polygenic hypertension is the most common form; however, it is increasingly recognized that monogenic hypertension is not rare, especially in patients with electrolyte disorders. Single genetic alterations are associated with plasma volume expansion and catecholamines/sympathetic excess with simultaneously increased potassium excretion in the urine and potassium intracellular shift. Early-onset refractory hypertension and profound hypokalemia are characteristics of monogenic hypertension. However, accumulated evidence shows the existence of phenotypic heterogeneity in monogenic hypertension meaning that, even for mild symptoms, clinicians cannot easily exclude the possibility of monogenic hypertension. Genetic, epigenetic and non-genetic factors are all possible mechanisms influencing phenotypic diversity. Genetic sequencing is a precise and efficient method that can broaden the mutant gene spectrum of the disease and is very helpful for understanding the pathophysiology of monogenic hypertension. Genetic sequencing, along with biochemical tests and imaging modalities, is essential for the early diagnosis and targeted management of monogenic hypertension to avoid long-term catastrophic complications.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong-Yu Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|