1
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
2
|
Polonsky EL, Tikhomirova OV, Zybina NN, Levashkina IM. [Cerebral microangiopathy in men with obstructive sleep apnea syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:66-72. [PMID: 36843461 DOI: 10.17116/jnevro202312302166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
OBJECTIVE To determine factors associated with the development of small vessel disease (SVD) in patients with obstructive sleep apnea syndrome (OSA). MATERIAL AND METHODS One hundred and fifty-two patients with risk factors for the development of cerebrovascular diseases were examined. Based on the results of polysomnography, patients were divided into groups with- (n=84) and without (n=68) OSA. The groups were matched by age, prevalence of arterial hypertension and diabetes mellitus. SVD was diagnosed using brain MRI. Laboratory tests included an assessment of parameters of lipid metabolism, glucose metabolism, concentration of C-reactive protein (CRP), levels of homocysteine and creatinine with the calculation of glomerular filtration rate (GFR). RESULTS Patients with OSA, compared with those without OSA, were characterized by a statistically significant number of gliosis foci, with their large sizes, more frequent changes on the Fazekas scales and the Hassan scale. The most severe degree of damage according to the Hassan scale in patients with OSA was detected more often (55 (66%) and 27 (39%) OR=2.89, 95% CI 1.47-5.67, p=0.002). More pronounced atrophic changes in the brain, an increase in the size of the III ventricle and the index of the anterior horns, significantly lower GFR and higher levels of CRP were noted in the OSA group. Patients with OSA and duration of nocturnal hypoxia for more than 2 minutes were more likely to have hyperintensity of subcortical regions. In patients with OSAS, pronounced manifestations of SMD were associated with a significantly higher level of morning systolic blood pressure (MAP): 140 [120; 150] vs. 127 [120; 130] p=0.029; increased levels of blood homocysteine: 14 [11; 17.8] vs. 13 [9.7; 12.5] p=0.049; a decrease in GFR: 79 [71; 87.3] vs. 89.8 [80.3; 94] p=0.002, respectively. CONCLUSION OSA and intermittent nocturnal hypoxia are independent risk factors for SMD. A more severe micro-focal vascular lesion in OSA is associated with a decrease in renal filtration function, an increase in morning blood pressure and an elevation in homocysteine level.
Collapse
Affiliation(s)
- E L Polonsky
- Nikiforov All-Russian Center for Emergency and Radiation Medicine, St. Petersburg, Russia
| | - O V Tikhomirova
- Nikiforov All-Russian Center for Emergency and Radiation Medicine, St. Petersburg, Russia
| | - N N Zybina
- Nikiforov All-Russian Center for Emergency and Radiation Medicine, St. Petersburg, Russia
| | - I M Levashkina
- Nikiforov All-Russian Center for Emergency and Radiation Medicine, St. Petersburg, Russia
| |
Collapse
|
3
|
Zhang K, Liu Y, Liu L, Bai B, Shi L, Zhang Q. Untargeted Metabolomics Analysis Using UHPLC-Q-TOF/MS Reveals Metabolic Changes Associated with Hypertension in Children. Nutrients 2023; 15:nu15040836. [PMID: 36839194 PMCID: PMC9964282 DOI: 10.3390/nu15040836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The mechanism of hypertension in children remains elusive. The objective of this study was to analyze plasma metabolomics characteristics to explore the potential mechanism of hypertension in children. Serum samples from 29 control children, 38 children with normal body mass index and simple hypertension (NBp), 8 children overweight with simple hypertension (OBp), 37 children with normal body mass index and H-type hypertension (NH) and 19 children overweight with H-type hypertension (OH) were analyzed by non-targeted metabolomics. A total of 1235 differential metabolites were identified between children with hypertension and normal controls, of which 193 metabolites including various lipids were significantly expressed. Compared with the control group, 3-dehydroepiandrosterone sulfate, oleic acid and linoleic acid were up-regulated, and gamma-muricholic acid was down-regulated in the NBp group; 3-dehydroepiandrosterone sulfate, 4-acetamidobutanoate and 1-hexadecanoyl-2-octadecadienoyl-sn-glyero-3-phosphocholine were up-regulated in the OBp group, whereas adenosine and 1-myristoyl-sn-glyero-3-phosphocholine were down-regulated; in the NH group, 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine, phenol and 3-methoxytyramine were up-regulated, while pentadecanoic acid was down-regulated; in the OH group, NG,NG-dimethyl-L-arginine, 1-palmitoyl-sn-glycero-3-phosphocholine and monoethyl phthalate were up-regulated, while phloretin and glycine were down-regulated. The results showed that the children with hypertension had obvious disorders of lipid metabolism (especially in the overweight hypertension group), which led to the occurrence of hypertension. Additionally, the concentration of NO production-related NG, NG-dimethyl-L-arginine, was significantly increased, which may play an important role in H-type hypertension in children.
Collapse
Affiliation(s)
- Kexin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanyan Liu
- Department of Cardiology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
| | - Lingyun Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Shi
- Department of Cardiology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
- Correspondence: (L.S.); (Q.Z.)
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
- Correspondence: (L.S.); (Q.Z.)
| |
Collapse
|
4
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Papadopoulos C, Anagnostopoulos K, Tsiptsios D, Karatzetzou S, Liaptsi E, Lazaridou IZ, Kokkotis C, Makri E, Ioannidou M, Aggelousis N, Vadikolias K. Unexplored Roles of Erythrocytes in Atherothrombotic Stroke. Neurol Int 2023; 15:124-139. [PMID: 36810466 PMCID: PMC9944955 DOI: 10.3390/neurolint15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke constitutes the second highest cause of morbidity and mortality worldwide while also impacting the world economy, triggering substantial financial burden in national health systems. High levels of blood glucose, homocysteine, and cholesterol are causative factors for atherothrombosis. These molecules induce erythrocyte dysfunction, which can culminate in atherosclerosis, thrombosis, thrombus stabilization, and post-stroke hypoxia. Glucose, toxic lipids, and homocysteine result in erythrocyte oxidative stress. This leads to phosphatidylserine exposure, promoting phagocytosis. Phagocytosis by endothelial cells, intraplaque macrophages, and vascular smooth muscle cells contribute to the expansion of the atherosclerotic plaque. In addition, oxidative stress-induced erythrocytes and endothelial cell arginase upregulation limit the pool for nitric oxide synthesis, leading to endothelial activation. Increased arginase activity may also lead to the formation of polyamines, which limit the deformability of red blood cells, hence facilitating erythrophagocytosis. Erythrocytes can also participate in the activation of platelets through the release of ADP and ATP and the activation of death receptors and pro-thrombin. Damaged erythrocytes can also associate with neutrophil extracellular traps and subsequently activate T lymphocytes. In addition, reduced levels of CD47 protein in the surface of red blood cells can also lead to erythrophagocytosis and a reduced association with fibrinogen. In the ischemic tissue, impaired erythrocyte 2,3 biphosphoglycerate, because of obesity or aging, can also favor hypoxic brain inflammation, while the release of damage molecules can lead to further erythrocyte dysfunction and death.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Anagnostopoulos
- Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Stella Karatzetzou
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eirini Liaptsi
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Evangelia Makri
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Maria Ioannidou
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | | |
Collapse
|
6
|
Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Dis 2022; 8:413. [PMID: 36209203 PMCID: PMC9547100 DOI: 10.1038/s41420-022-01200-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Arginase, a binuclear manganese metalloenzyme in the urea, catalyzes the hydrolysis of L-arginine to urea and L-ornithine. Both isoforms, arginase 1 and arginase 2 perform significant roles in the regulation of cellular functions in cardiovascular system, such as senescence, apoptosis, proliferation, inflammation, and autophagy, via a variety of mechanisms, including regulating L-arginine metabolism and activating multiple signal pathways. Furthermore, abnormal arginase activity contributes to the initiation and progression of a variety of CVDs. Therefore, targeting arginase may be a novel and promising approach for CVDs treatment. In this review, we give a comprehensive overview of the physiological and biological roles of arginase in a variety of CVDs, revealing the underlying mechanisms of arginase mediating vascular and cardiac function, as well as shedding light on the novel and promising therapeutic approaches for CVDs therapy in individuals.
Collapse
Affiliation(s)
- Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China.
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Omorou M, Liu N, Huang Y, Al-Ward H, Gao M, Mu C, Zhang L, Hui X. Cystathionine beta-Synthase in hypoxia and ischemia/reperfusion: A current overview. Arch Biochem Biophys 2022; 718:109149. [DOI: 10.1016/j.abb.2022.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
|
8
|
Ni GH, Cheng JF, Li YJ, Xie QY, Yang TL, Chen MF. Effect of profilin-1 on the asymmetric dimethylarginine-induced vascular lesion-associated hypertension. Kaohsiung J Med Sci 2021; 38:149-156. [PMID: 34741409 DOI: 10.1002/kjm2.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that the levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, are strongly associated with hypertension, diabetes, and cardiovascular diseases. Profilin-1, an actin-binding protein, has been documented to be involved in endothelial injury and in the proliferation of vascular smooth muscle cells resulting from hypertension. However, the role of profilin-1 in ADMA-induced vascular injury in hypertension remains largely unknown. Forty healthy subjects and forty-two matched patients with essential hypertension were enrolled, and the related indexes of vascular injury in plasma were detected. Rat aortic smooth muscle cells (RASMCs) were treated with different concentrations of ADMA for different periods of time and transfected with profilin-1 small hairpin RNA to interrupt the expression of profilin-1. To determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, RASMCs were pretreated with AG490 or rapamycin. The expression of profilin-1 was tested using real-time polymerase chain reaction (PCR) and western blot analysis. Cell proliferation was measured by flow cytometry and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide assays. Compared with healthy subjects, the levels of ADMA and profilin-1 were markedly elevated in hypertensive individuals, while the levels of NO were significantly decreased (p < 0.05). In vitro, studies showed ADMA-induced profilin-1 expression in a concentration- and time-dependent manner in RASMCs (p < 0.05), concomitantly with promoting the proliferation of RASMCs. Furthermore, ADMA-mediated proliferation of RASMCs and upregulation expression of profilin-1 were inhibited by blockade of the JAK2/STAT3 pathway or knockdown of profilin-1. Profilin-1 implicated in the ADMA-mediated vascular lesions in hypertension.
Collapse
Affiliation(s)
- Guo-Hua Ni
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Chengdu Jinjiang Sohome Comprehensive Outpatient Clinic), Chengdu, China
| | - Jin-Fang Cheng
- Department of Cardiology, Shanxi Baiqiuen Hospital, Taiyuan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi-Ying Xie
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Lun Yang
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Fang Chen
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Hu F, Sha W, Dai H, Yang X, Hu P, Chu Y, Qiu X, Bu S. Lower expression of Hsa_circRNA_102682 in diabetic hyperhomocysteinemia negatively related to creatinemia is associated with TGF-β and CTGF. J Clin Lab Anal 2021; 35:e23860. [PMID: 34296783 PMCID: PMC8373364 DOI: 10.1002/jcla.23860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Diabetic nephropathy is a kidney disease caused by long‐term hyperglycemia. Hsa_circRNA_102682 is related to the pathogenesis of preeclampsia. Preeclampsia is related to hypertension and proteinuria, and diabetic nephropathy is mainly manifested by hypertension and proteinuria. The main pathological change in diabetic nephropathy is glomerular fibrosis. Methods This study used serum samples of patients treated at Li Huili Eastern Hospital, Ningbo, China, from July 10, 2018 to February 15, 2019. We included 73 patients with diabetes and divided them into a normal‐homocysteine group and a high‐homocysteine group. We selected used quantitative reverse transcriptase‐polymerase chain reaction to measure Hsa_circRNA_102682 concentration in the serum. Serum transforming growth factor‐beta and connective tissue growth factor levels were tested using ELISA. The Pearson correlation test was used to assess the correlations between Hsa_circRNA_102682, transforming growth factor‐beta, connective tissue growth factor, homocysteine, and creatinine. Result Hsa_circRNA_102682 was significantly lower in diabetic patients with high levels of homocysteine than in those with normal levels of homocysteine, whereas transforming growth factor‐beta and connective tissue growth factor levels were higher in diabetic patients with hyperhomocysteinemia. Hsa_circRNA_102682 was negatively correlated with the levels of transforming growth factor‐beta, connective tissue growth factor, homocysteine, and creatinine. Transforming growth factor‐beta and connective tissue growth factor were both positively correlated with homocysteine and creatinine. Conclusion Low Hsa_circRNA_102682 was associated with high levels of transforming growth factor‐beta and connective tissue growth factor as well as homocysteine and creatinine. These results suggest that Hsa_circRNA_102682 might be related to the pathogenesis of hyperhomocysteinemia in diabetic nephropathy.
Collapse
Affiliation(s)
- Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China.,Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, China
| | - Wenxin Sha
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Huixue Dai
- Department of endocrinology, Ninghai Chengguan Hospital, Ningbo, China
| | - Xiangwei Yang
- Department of endocrinology, Ninghai Chengguan Hospital, Ningbo, China
| | - Peng Hu
- Department of endocrinology, Ninghai Chengguan Hospital, Ningbo, China
| | - Yudong Chu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, China.,Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiaohui Qiu
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|